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The exclusive two-body nonleptonic B ! VV decays are investigated, within the factorization

approximation, in the relativistic independent quark model based on a confining potential in the scalar-

vector harmonic form. The branching ratios and the logitudinal polarization fraction (RL) are calculated

yielding the model predictions in agreement with experiment. Our predicted CP-odd fraction (R?) for
B ! D�D�

ðsÞ decays are in general agreement with other model predictions and within the existing

experimental limit.
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I. INTRODUCTION

The nonleptonic weak decay of Bmesons is important as
it provides a good opportunity to probe the interplay of
QCD and electroweak interactions, to evaluate the
Cabibbo-Kobayashi-Maskawa (CKM) elements like
‘‘Vbc’’ and ‘‘Vbu,’’ and to study the CP violation to find
possible hints for any new physics beyond standard model
(SM). The mechanism of these decays, however, is still not
clear in the SM framework. The problem essentially lies in
the calculation of transition amplitude where one needs to
evaluate the matrix element of the local four-quark opera-
tors in the nonperturbative QCD approach. Various ap-
proaches within the factorization approximation [1–5]
have been employed to evaluate the transition amplitudes
and explain existing data in the B ! PP, PV, VV decay
channels within the limitation of the method.

If weak annihilation contributions are ignored, the
analysis of such decay is simplified by using the factoriza-
tion hypothesis in which the hadronic matrix element of the
local four-quark operators is factorized into two single
current matrix elements: one connecting the parent B
meson with one of the daughter mesons and the other
connecting the vacuum with the second daughter meson.
The analysis of two-body nonleptonic weak B decays is
thus reduced to the evaluation of the relevant meson form
factors parametrizing hadronic matrix elements as in the
case of semileptonic decays and the meson decay constants
describing the leptonic decays. This makes the factoriza-
tion hypothesis an appealing assumption for analyzing
these decays. Theoretical developments based on the
QCD approach in the 1

Nc
! 0 limit [6], Bjorken’s intuitive

argument based on color transparency [7], and the heavy
quark effective theory [8] have justified the factorization
approximation in energetic nonleptonic B decays of B !

PP, PV type. In such decays, the strong interaction effects
such as the final state interactions and rescattering of final
state hadrons, as well as the renormalization point depen-
dence of the initial and factorized amplitudes, have been
shown [9] to be marginal. Similar arguments, however,
may not hold up well in analyzing B ! VV decays involv-
ing two vector mesons in the final state.
In B ! VV decays, the strong interaction effects can not

be considered negligible when both the mesons in the final
state are heavy and are expected to be in the region close to
the zero recoil. Contributions to these decay rates come
from both the longitudinal and transverse polarization
fractions which can be measured in the experiments. It is
also known from the naive counting rules based on the
factorization approach that the longitudinal polarization
dominates the decay rate and transverse polarization is
suppressed. In fact much attention has been paid in the
literature to the two-body charmless hadronic B decays,
but there has been relatively less discussion on the B !
VV decays with one or both charmed vector mesons in the
final state. The two charmed meson decays of Bmesons are
of special interest as they provide valuable information
which is different from the light meson productions. For
example, CP asymmetries in B ! D�þD�� play an im-
portant role in testing the SM and exploring new physics
beyond SM. Moreover, these decays are ideal modes to
check the factorization hypothesis, as the phenomenon of
color transparency applicable to the light energetic hadrons
is not valid in these cases. The recent data from the
BABAR and Belle collaboration experiments [10,11]
have produced considerable theoretical interest in these
decays. Since the decay branching ratios (BRs), CP asym-
metries, and the polarization fractions of B ! D�D� and
D�D�

s have been partially observed in the experiments, it is
timely to examine the B ! VV decay modes in more de-
tail. In fact these decays have been studied in the past by
various models including Bauer-Stech-Wirbel (BSW) [1],
the QCD factorization approach [4], the improved

*nbarik@iopb.res.in
†naim@iopb.res.in

PHYSICAL REVIEW D 80, 014004 (2009)

1550-7998=2009=80(1)=014004(10) 014004-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.014004


Bouckaert-Smoluchowski-Wigner model [12], the relativ-
istic quark model [13], the constituent quark model (CQM)
[14], the light front (LF) QCD [15], and the heavy quark
symmetry (HQS)[16]. Some of the predictions were found
to satisfy the requirement of the heavy quark effective
theory [17]. Recent studies by Cheng et al. [15], Luo and
Rosner [18], Chen et al. [19], Datta and O’Donnell [20],
and Thomas [21] have predicted B ! VV decays in rea-
sonable agreement with that of the improved Isgur-Scora-
Grinstein-Wise (ISGW) model [22] and the experiment.

We have used the factorization hypothesis to analyze
successfully B ! PP, PV in the relativistic independent
quark model (RIQM) based on the confining potential in
the scalar-vector harmonic form [23]. The model in its
earlier applications has also predicted successfully a wide
ranging hadronic phenomena in the light and heavy flavor
sector [24,25]. In this paper we would like to extend the
applicability of the RIQM model and predict, within facto-
rization approximation, the B ! VV decays with one or
both of the charmed vector mesons in the final state in
comparison with existing experimental data and other
model predictions.

The paper is organized in the following manner. In the
following section we provide the general remarks on fac-
torization hypothesis and nonleptonic decay amplitudes. In
Sec. III we describe in brief the RIQM-model framework.
In Sec. IV we obtain model expressions for the weak form
factors and that of the polarized transition amplitudes. We
discuss the numerical results in Sec. V. Section VI em-
bodies our summary and conclusion.

II. GENERAL DEFINITIONS AND
FACTORIZATION

In the factorization approach, the decay amplitude for
the two-body nonleptonic decays Bð �bqÞ ! Xðq �q0ÞYðq1 �q2Þ
can be approximated by the product of one particle matrix
element [1,13,23] such as

hXYjHeffjBi ¼ GFffiffiffi
2

p Vq0bVq1q2½a1ð�ÞhYjJ�j0ihXjJ�jBi

þ a2ð�ÞhXjJ�j0ihYjJ�jBi�; (1)

where, GF is the Fermi constant, Vq0b and Vq1q2 are CKM-

matrix elements, J� � V� � A� � �q0��ð1� �5Þb is the

vector-axial vector current, and a1ð�Þ and a2ð�Þ denote
the strength of interaction expressed in terms of the Wilson
coefficients as

a1ð�Þ ¼ C1ð�Þ þ 1

Nc

C2ð�Þ;

a2ð�Þ ¼ C2ð�Þ þ 1

Nc

C1ð�Þ;
(2)

where Nc is the number of colors (Nc ¼ 3).
In the general case, the renormalization point � depen-

dence of the product of current operator matrix elements do

not cancel the � dependence of a1;2ð�Þ. Thus nonfactor-
izable contributions to Eq. (1) must be present in order to
make the physical amplitude renormalization scale inde-
pendent. In the present analysis as in Ref. [21], the non-
factorizable vertex, penguin, and hard spectator corrections
are thought to be incorporated into the effective Wilson
coefficient ai (i ¼ 1, 2). The coefficient ai varies from
process to process but only less than about 1%
[1,13,18,21]. It is, therefore, a good approximation to
take a1 ¼ 1:05 and a2 ¼ 0:25 for all processes.
In QCD factorization, in the heavy quark limit and to

leading order �s, the current-current amplitude can be
factorized into a product of two single quark currents, if
weak annihilation contributions are ignored. We neglect
here the so-called W exchange and annihilation diagrams;
since in the limit MW ! 1, they are connected by Fiertz
transformation and are doubly suppressed by the kinematic
factor of the order ðM2

X=M
2
BÞ [6]. We also discard the color

octet currents which emerge after the Fiertz transformation
of color-singlet operators. Clearly these currents violate
factorization since they can not provide transitions to the
vacuum states.
The matrix element of the weak current J� between

meson states has the covariant decomposition

hX j A� j Bi ¼ fðq2Þ��� þ aþðq2Þð��:PBÞðPB þ PXÞ�
þ a�ðq2Þð��:PBÞðPB � PXÞ�; (3)

hX j V� j Bi ¼ igðq2Þ 2���� ���ðPB þ PXÞ�ðPB � PXÞ�;
(4)

where �� is the polarization vector for the mesonX. With 4-
momenta q � ðE; 0; 0; j ~qjÞ and mass MX, the polarization
vector is taken in the form

�
�
� � 1ffiffiffi

2
p ð0;�1;�i; 0Þ; �

�
L � 1

MX

ðj ~qj; 0; 0; EÞ: (5)

The matrix element of the current J� between the vac-
uum and final vector meson state in the covariant form is
parametrized by the meson decay constant fY as

hYjJ�j0i ¼ ��YfYMY: (6)

In the factorization approximation there are three classes
of possible diagrams for B meson nonleptonic decays as
shown in Fig. 1 which can contribute to the decay ampli-
tude. Figure 1(a) represents ‘‘class I’’ transitions, such as
B0 ! X�Yþ, where only the term with a1 in Eq. (1)
contributes, and both the final state mesons are produced
by charged currents. Figure 1(b) represents ‘‘class II’’
transitions such as B0 ! X0Y0, where only the term with
a2 in Eq. (1) contributes, and both the final state mesons are
produced by neutral currents. Fig. 1(c) represents
‘‘class III’’ transitions such as Bþ ! X0Yþ, where both
the terms can contribute coherently.
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For the color favored general-type tree decay Bð �bqÞ !
X�ðq �q0ÞYþðq1 �q2Þ pertaining to class I transition, the decay
rate can be written as

� ¼ G2
F

16�
a21jVq0bVq1q2 j2

j ~qj
M2

B

jAj2; (7)

where ~q is the recoil 3-momenta in the rest frame of B, and
MB is the Bmeson mass. jAj2 is the sum of the squares of
the polarization amplitudes Aj � hYjJ�j0ihXjJ�jBi such
that

jAj2 ¼X
j

jAjj2: (8)

Here we use the notation j ¼ þ� , �þ or ll, where the
first and second label denote the helicity of the X and Y
meson, respectively.

The polarized amplitudes Aj are related to the weak

form factors f, g and aþ, and the decay constant
fY (3)–(6). The resulting relationships for positive, nega-
tive, and longitudinal polarization, respectively, of the
daughter meson X are obtained in the straightforward
manner as

Aþ� ¼ �fYMYðfþ 2gj ~qjMBÞ
A�þ ¼ �fYMYðf� 2gj ~qjMBÞ
All ¼ fY

MX

�
f

�
j ~qj2 þ 1

4M2
B

ðM2
B þM2

X �M2
YÞ

� ðM2
B þM2

Y �M2
XÞ
�
þ 2aþj ~qj2M2

B

�
: (9)

Here,

j ~qj ¼
��

M2
B þM2

X �M2
Y

2MB

�
2 �M2

X

�
1=2

:

For predicting the decay rate �ðB ! VVÞ, one needs to
calculate the relevant weak form factors in a suitable bound
state model. Before calculating the form factors in the
RIQM, we describe the brief outline of the model frame-
work in the following section.

III. MODEL FRAMEWORK

The model framework based on the relativistic indepen-
dent quark model has been described earlier to analyze the
decays of hadrons in the light as well as heavy flavor sector
in their annihilation mode [23–25]. However, for the sake
of completeness, here we provide a brief outline of the
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FIG. 1. Quark level diagrams for B meson nonleptonic decays.
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same. In this model, the decaying meson such as B0ð �bdÞ is
represented by a suitably constructed definite momentum
and spin state j Bð ~p; SBÞi in the form of a momentum wave
packet reflecting the momentum and spin distribution of its
constituent antiquark ‘‘ �b’’ and quark ‘‘d’’ as

j Bð ~p; SBÞi ¼
ffiffiffi
3

p
ffiffiffiffiffiffiffiffiffiffiffi
Nð ~pÞp X

	b;	d


Bb;dð	b; 	dÞ
Z

d3 ~pbd
3 ~pd

� �ð3Þð ~pb þ ~pd � ~pÞGBð ~pb; ~pdÞ
� b̂yd ð ~pd; 	dÞ ~̂byb ð ~pb; 	bÞ j 0i; (10)

where b̂yd ð ~pd; 	dÞ and ~̂b
y
b ð ~pb; 	bÞ are the quark and anti-

quark creation operators, respectively. 
Bb;dð	b; 	dÞ stands
for the appropriate SU(6)-spin flavor coefficient for the
meson Bð �bdÞ. Nð ~pÞ is the meson-state normalization factor

which is realized from hBð ~pÞ j Bð ~p0Þi ¼ �ð3Þð ~p� ~p0Þ in the
integral form as

Nð ~pÞ ¼
Z

d3 ~pbjGBð ~pb; ~p� ~pbÞj2: (11)

Finally, GBð ~pb; ~pdÞ represents the effective momentum
distribution function for the quark-antiquark pair inside
the meson bound state which is taken in the form

G Bð ~pb; ~pdÞ ¼ ½Gdð ~pdÞ ~Gbð ~pbÞ�1=2: (12)

Here Gdð ~pdÞ and ~Gbð ~pbÞ are the momentum probability
amplitude of the bound quark (d) with momentum ~pd and
antiquark �b with momentum ~pb, respectively. The bound
quark and antiquark (d �b) inside the meson core are in fact
in definite energy states with no definite momenta.
However, it is possible to extract the momentum probabil-
ity amplitude of the bound quark and antiquark inside the
meson core from the respective quark-antiquark orbitals
derivable in the relativistic independent quark model. In
this model, the meson is pictured as a color-singlet assem-
bly of a quark-antiquark (d �b) independently confined by an
effective and average flavor independent potential of the
form [23–25] UðrÞ ¼ 1

2 ð1þ �0Þðar2 þ V0Þ. It is believed
that the zeroth order quark dynamics generated by the
phenomenological confining potential UðrÞ can provide
an adequate tree level description of the decay processes:
B ! VV. With the potentialUðrÞ built into the zeroth order
quark Lagrangian density, the ensuing Dirac equation ad-
mits static solutions of the positive and negative energy in
zeroth order, which for the ground state meson can be
obtained in the form

�ðþÞ
q ð ~r; 	qÞ ¼ 1ffiffiffiffiffiffiffi

4�
p

igqðrÞ
r

~�:r̂fqðrÞ
r

0
@

1
A
ð	qÞ

�ð�Þ
q ð ~r; 	qÞ ¼ 1ffiffiffiffiffiffiffi

4�
p

ið ~�:r̂ÞfqðrÞ
r

gqðrÞ
r

0
@

1
A~
ð	qÞ;

(13)

where the spinors are


ð"Þ ¼ 1
0

� �
¼ i~
ð#Þ and 
ð#Þ ¼ 0

1

� �
¼ �i~
ð"Þ:

The reduced radial parts as the upper and lower compo-
nents of the quark orbitals in Eq. (6) can be realized in this
potential model as

gqðrÞ ¼ N q

�
r

r0q

�
exp

�
� r2

2r20q

�

fqðrÞ ¼ � N q

!qr0q

�
r

r0q

�
2
exp

�
� r2

2r20q

�
;

(14)

where the quark binding energy Eq in the meson ground

state is derivable from the bound state condition ðEq þ
mqÞðEq �mq � V0Þ2 ¼ 9a. With E0

q ¼ ðEq � V0

2 Þ, m0
q ¼

ðmq þ V0

2 Þ, !q ¼ ðEq þmqÞ, and r0q ¼ ða!qÞ�1=4, the

normalization factor N q appearing in Eq. (7) is obtained

in the form

N 2
q ¼ 8!qffiffiffiffi

�
p

r0q

1

ð3E0
q þm0

qÞ : (15)

Then, by taking suitable momentum space projections of
the bound quark-antiquark orbitals in Eqs. (13) and (14), it
is straightforward to obtain the momentum probability

amplitudes Gdð ~pdÞ and ~Gbð ~pbÞ in the form

Gdð ~pdÞ ¼ i�N d

2�d!d

�
�dð ~pdÞ
Edð ~pdÞ

�
1=2½Edð ~pdÞ þ Ed� exp

�
� ~p2

d

4�d

�

~Gbð ~pbÞ ¼ �i�N b

2�b!b

�
�bð ~pbÞ
Ebð ~pbÞ

�
1=2½Ebð ~pbÞ þ Eb�

� exp

�
� ~p2

b

4�b

�
: (16)

Here Eqð ~pqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~p2
q þm2

q

q
, �qð ~pqÞ ¼ ðEqð ~pqÞ þmqÞ �

�q, and �q ¼ 1
ð2r2

0q
Þ . We may point out here that although

3-momenta conservation at the composite level of the

meson has been ensured through �ð3Þð ~pb þ ~pd � ~pÞ in
the expression for the meson state j Bð ~p; SBÞi in Eq. (10),
the energy conservation EB ¼ Ebð ~pbÞ þ Edð ~pdÞ at the me-
son level is not so explicit here. This is, indeed, a patho-
logical problem common to all such models attempting to
explain the hadron decays in terms of constituent level
dynamics in zeroth order. However, it is quite reassuring
to note here that the effective momentum profile function
GBð ~pb; ~pdÞ, defined through Eqs. (12) and (16) in our
model, somehow ensures the energy conservation in an
average sense satisfying EB ¼ hBð ~p; SBÞj½Ebð ~pbÞ þ
Edð ~pdÞ�jBð ~p; SBÞi which was shown in our earlier works
[26] in the context of radiative leptonic decays of the Bu

meson in the present model. However, this point will be
illustrated further in the present context for jBð ~p; SBÞi in
the appropriate section hereafter.
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Now with this phenomenological picture showing de-
tailed dynamics of the constituent quark and antiquark in
the meson bound state, we would extract the model ex-
pressions for the weak form factors, polarized amplitudes,
and the decay width in the following section.

IV. TRANSITION AMPLITUDE AND DECAY
WIDTH

As discussed earlier, the transition amplitude for the
B ! VV decay mode can be calculated from any of the
three diagrams in Fig. 1 depending on the decay process
under investigation. Let us consider B0 ! D��D�þ

s decay
which represents the class I transition shown in Fig. 1(a).
At the constituent level this process is pictured as the decay
of antiquark �b with 4-momenta pb inside the meson state
jBð ~pÞi to antiquark �c with 4-momenta pc, which along
with the spectator quark dwith 4-momenta pd hadronize to

the meson state jD��ð ~kÞi. In the process, the externally
emitted W boson with 4-momenta q decays to a quark c
and an antiquark �swith 4-momenta p0

c and p
0
s, respectively,

which subsequently hadronize to the other meson state
jD�þ

s ð ~qÞi. Considering the factorization hypothesis (1)
and using the appropriate meson states jBð ~pÞi and

jD��ð ~kÞi, the S-matrix element for the process can be
obtained in the form

Sfi ¼ �i
GFffiffiffi
2

p VbcVcsa1h
0�H 0

�; (17)

where

h0� ¼ hD�þ
s ð ~qÞjJ�j0i (18)

and

H 0
� ¼ hD��ð ~kÞjJ�jBð ~pÞi

¼ 1

ð2�Þ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBð ~pÞND��ð ~kÞ
q Z d ~pbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ebð ~pbÞ2Ecð ~pb þ ~kÞ
q

�GBð ~pb; ~pdÞGD��ð ~pb þ ~k; ~pdÞ
� �ð4Þðpb � pc � p0

c � p0
sÞhSD�� jJ�jSBi: (19)

Here Ebð ~pbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~pb

2 þm2
b

q
and Ecð ~pb þ ~kÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð ~pb þ ~kÞ2 þm2
c

q
stand for the energy of the nonspectator

quark of the B and D�� meson, respectively. hSD�� jJ�jSBi,
which symbolically represents the spin matrix elements
due to vector-axial vector current, is given by

hSD�� jJ�jSBi¼
X

	b;	c;	d


Bð	b;	dÞ
D��ð	c;	dÞ �Ucð ~pbþ ~k;	cÞ

���ð1��5ÞUbð ~pb;	bÞ; (20)

where the free particle spinors Uqð ~pq; 	qÞ are taken in the

form

Uqð ~pq; 	qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�qð ~pqÞ

q 
ð	qÞ
~�: ~pq

�ð ~pqÞ
ð	qÞ
 !

(21)

with


ð"Þ ¼ �~
ð#Þ ¼ 1
0

� �
; 
ð#Þ ¼ ~
ð"Þ ¼ 0

1

� �
:

It may be noted here that in the present model, the
energy conservation at the composite level is expected to
be satisfied in an average sense through the momentum
distribution function GBð ~pb; ~pdÞ and GD��ð ~pc; ~pdÞ.
Therefore we may assume EB ¼ Ebð ~pbÞ þ Edð ~pdÞ and

ED�� ¼ Ecð ~pb þ ~kÞ þ Edð ~pdÞ, which together with the 3-

momenta conservation ~p ¼ ~pb þ ~pd and ~k ¼ ð ~pc þ ~pdÞ
ensured by �3ð ~p� ~pb � ~pdÞ and �3ð ~k� ~pc � ~pdÞ appear-
ing, respectively, in the meson states jBð ~pÞi and jD��ð ~kÞi,
can enable us to write p ¼ ðpb þ pdÞ and k ¼ ðpc þ pdÞ.
With this assumption, we pull out �ð4Þðpb � pc � p0

c �
p0
sÞ appearing in Sfi (17) from the quark level integral in

the form �ð4Þðp� q� kÞ that ensures the desired 4-
momenta conservation in the decay process. Then we can
write

Sfi ¼ ð2�Þ4�ð4Þðp� q� kÞ½�iMfi�
Y
f

�
1

ð2�Þ3=2
1ffiffiffiffiffiffiffiffiffi
2Ef

p �
:

(22)

We may further point out that the normalization factors
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2�Þ32EB

p , 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32ED��

p and 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2�Þ32ED�þ

s

p for the initial and final

meson states do not appear automatically in the kinematic
expression (22) for Sfi. We, therefore, incorporate these

factors by adequately compensating the same in the nu-
merator. The compensating factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2EB2ED��

p
relevant for

the matrix element H 0
� ¼ hD��ð ~kÞjJ�jBð ~pÞi is then

pushed inside the integral asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEbð ~pbÞ þ Edð ~pdÞÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEcð ~pcÞ þ Edð ~pdÞÞ

p
under the

same assumption of the energy conservation mentioned
earlier to be expressed hereafter as H �. The factorffiffiffiffiffiffiffiffiffiffiffiffiffi
2ED�þ

s

p
together with hD�þ

s ð ~kÞjJ�j0i defines the covariant
matrix element which can be parametrized as

ðMD�þ
s
fD�þ

s
���
D�þ

s
Þ. Thus realizing the meson level S-matrix

element for the decay process in the desired form, the
corresponding invariant transition amplitude in the rest
frame of the B meson is extracted as

M fi ¼ GFffiffiffi
2

p VbcVcsa1A: (23)

Here A ¼ h�H � represents the polarized amplitude

with

h� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ED�þ

s

q
h0� ¼ MD�þ

s
fD�þ

s
���
D�þ

s
ð ~q; 	Þ; (24)

and the hadronic term H � is obtained in the form
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H �¼ 1

ð2�Þ3=2
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NBð0ÞND��ð ~kÞ
q Z d ~pbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ebð ~pbÞ2Ecð ~pbþ ~kÞ
q

�GBð ~pb;� ~pbÞGD��ð ~pbþ ~k;� ~pbÞ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðEbð ~pbÞþEdð� ~pbÞÞ2ðEcð ~pbþ ~kÞþEdð� ~pbÞÞ

q
�hSD�� jJ�jSBi: (25)

Now applying the usual spin algebra to calculate the spin
matrix elements hSD�� jðV� � A�ÞjSBi, it is easy to check

that the matrix element due to the vector current provides
nonvanishing spacelike contribution. However, the contri-
bution of the matrix element due to the axial vector current
is both spacelike and timelike. The nonvanishing contribu-
tions obtained separately due to the vector and axial vector
currents are found in the following form:

H i ¼ hD��ð ~kÞ j Vi j B0ð0Þi
¼ i

Z
d ~pbQð ~pbÞðEbð ~pbÞ þmbÞð ~��ð ~k; 	Þ � ~kÞi;

(26)

H 5
0 ¼ hD��ð ~kÞ j A0 j B0ð0Þi
¼ �

Z
d ~pbQð ~pbÞð ~��ð ~k; 	Þ � ~kÞ; (27)

H 5
i ¼ hD��ð ~kÞ j Ai j B0ð0Þi ¼ �

Z
d ~pbRð ~pbÞ��i ð ~k; 	Þ;

(28)

when

Q ð ~pbÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½Ebð ~pbÞþEdð� ~pbÞ�½ðEcð ~pbþ ~kÞþEdð� ~pbÞ�

NB0ð0ÞND��ð ~kÞ

vuut

� GB0ð ~pb;� ~pbÞGD��ð ~pbþ ~k;� ~pbÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ebð ~pbÞEcð ~pbþ ~kÞðEbð ~pbÞþmbÞðEcð ~pbþ ~kÞþmcÞ

q
(29)

and

Rð ~pbÞ ¼ Qð ~pbÞðEbð ~pbÞ þmbÞðEcð ~pb þ ~kÞ þmcÞ

�
�
1� ~pb

2

3ðEbð ~pbÞ þmbÞðEcð ~pb þ ~kÞ þmcÞ
�
:

(30)

These model expressions are compared with the corre-
sponding expressions from Eqs. (3) and (4), which yield
model expressions for the relevant weak form factors in the
form

gðq2Þ ¼ � 1

2MB

Z
d ~pbQð ~pbÞðEbð ~pbÞ þmbÞ; (31)

fðq2Þ ¼ �
Z

d ~pbRð ~pbÞ; (32)

and

aþðq2Þ ¼ a�ðq2Þ

¼ � 1

2M2
B

�
ðED��Þ

Z
d ~pbQð ~pbÞ �

Z
d ~pbRð ~pbÞ

�
:

(33)

We then find the polarized amplitude squared jAjj2 from
Eq. (9) and carry out the polarization sum

P
jjAjj2.

Finally, we integrate over the final particles ðD��; D�þ
s Þ

momenta to obtain the expression of the decay width
�ðB ! D��D�þ

s Þ in the B-rest frame from its generic ex-
pression,

�ðB0 ! D��D�þ
s Þ ¼ 1

ð2�Þ2
Z d ~kd ~q

2MB2ED��2ED�þ
s

� �ð4Þðp� k� qÞ �XjMfij2; (34)

in the forms (7)–(9). The magnitude of 3-momenta transfer
~q appearing in the final expression for helicity amplitude
squared in �ðB0 ! D��D�þ

s Þ is fixed by the argument
factorization of the energy delta function as

j ~qj ¼
��M2

B þM2
D�� �M2

D�þ
s

2MB

�
2 �M2

D��

�
1=2

: (35)

The class II transitions [Fig. 1(b)] such as B0 ! D�0K�0,
are described at the constituent level as the decay of
antiquark �b to another antiquark with the internal emission
of the W boson, which subsequently decays to a pair of
quark-antiquark. Three constituent particles so emitted in
the process along with the spectator quark d of the parent
meson finally hadronize to two vector mesons by two
neutral currents. The transition amplitudes of these decays
are derived from the factorized amplitudes associated with
the effective Wilson coefficient a2 instead of a1. The
class III transitions of the type Bþ ! �D�0�þ, however,
involve the antiquark �b decay with both the external and
internal W emission as shown in Fig. 1(c). In these decays
the contribution from both the diagrams, in principle, add
up at the amplitude level to give the transition amplitude.
However, for some specific channels in the class III tran-
sition like Bþ ! �D�0D�þ

s , the factorized amplitudes asso-
ciated with a1 only contribute as the diagram
corresponding to the a2 term is not kinematically possible.
The decay width expression for all other B ! VV channels
belonging to class I, class II, and class III transitions can be
obtained from Eqs. (7)–(9) through (29)–(33) by replace-
ment with appropriate flavor degrees of freedom, quark
masses, meson masses, meson decay constants, and the
effective Wilson coefficient ai.
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V. RESULTAND DISCUSSION

For numerical calculations, we take the potential pa-
rameters ða; V0Þ and the quark masses along with the
corresponding quark binding energies as in Refs. [23–26],

ða;V0Þ � ð0:017 166 GeV3;�0:1375 GeVÞ
ðmu ¼ md;msÞ � ð0:07 875 GeV; 0:31 575 GeVÞ

ðmc;mbÞ � ð1:49 276 GeV; 4:77 659 GeVÞ
ðEu ¼ Ed;EsÞ � ð0:47 125 GeV; 0:591 GeVÞ

ðEc;EbÞ � ð1:57 951 GeV; 4:76 633 GeVÞ: (36)

We take into account the central values of the CKM
parameters, the half life of B0 and Bþ, and the observed
meson masses from the Particle Data Group [27] as

ðVcb;Vcs;VcdÞ � ð0:0412; 1:04; 0:23Þ
ðVub;Vus;VudÞ � ð0:00 393; 0:2255; 0:97 418Þ

ð� �B0 ; �BþÞ � ð1:530 ps; 1:638 psÞ
ðMB0 ;MBþÞ � ð5:2795 GeV; 5:2791 GeVÞ: (37)

In the absence of reliable experimental data for the meson
decay constants, we take their values equal to the corre-
sponding pseudoscalar meson decay constants obtained
earlier in the present model [28] in GeV units as

f� ¼ 0:22; fK � fK� ¼ 0:157;

fD � fD� ¼ 0:161; fDs
� fD�

s
¼ 0:205:

(38)

As discussed earlier, we take the effective Wilson coeffi-
cients a1 and a2 as

ða1; a2Þ � ð1:05; 0:25Þ: (39)

At the outset we must point out that we have assumed
energy conservation constraint Ebð ~pbÞ þ Ed;uð ~pd;uÞ ¼ EB,

which together with the 3-momenta conservation through

�ð3Þð ~p� ~pb � ~pdÞ in the meson state, jBð ~p; SBÞi is thought
to ensure the required 4-momenta conservation. However,
imposition of this energy conservation constraint Ebð ~pbÞ þ
Ed;uð� ~pbÞ ¼ MB corresponding to the rest frame of the

decaying B meson may present spurious kinematic singu-
larities. This can be dealt with as in Ref. [29] by retaining
the definite spectator quark mass md;u while assigning a

running mass mbð ~pbÞ to the b quark in the form

m2
bðj ~pbjÞ ¼ M2

B þm2
u;d � 2MB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j ~pbj2 þm2

u;d

q
(40)

as an outcome of MB ¼ Ebð ~pbÞ þ Ed;uð� ~pbÞ. This would
impose an upper bound on the momentum j ~pbj<
M2

B�m2
u;d

2MB
¼ j ~pbjmax in order to retain m2

bðj ~pbjÞ positive

definite.
The upper limit j ~pbjmax of the quark momentum would

have no other bearing to seriously affect the calculation,
which is apparent from the shape of the radial quark

momentum distribution amplitude j ~pbjGBð ~pb;� ~pbÞ
shown in Fig. 2. The radial quark momentum distribution
in the present model is very similar to that obtained in the
QCD relativistic model [29,30]. From the expectation
value hBð0Þj ~p2

bjBð0Þi ¼ h ~p2
bi, we find the rms value of the

quark momentum in the state jBð0Þi as
ffiffiffiffiffiffiffiffiffi
h ~p2

bi
q

¼
0:51 GeV 	 j ~pbjmax. The expectation values of the quark
and antiquark binding energies are obtained as hEbð ~pbÞi ¼
4:799 GeV and hEd;uð� ~pbÞi ¼ 0:480 GeV, which are very
close to the respective model solutions for the quark bind-
ing energies Eb and Ed;u in Eq. (36). We also find that

hBð0Þj½Ebð ~pbÞ þ Eu;dð� ~pbÞ�jBð0Þi ¼ 5:279 GeV ¼ MB.

These results vindicate our ansatz that energy conservation
is somehow ensured by the quark momentum distribution
in the meson state in an average sense.
With the values of model parameters and other relevant

physical quantities (36)–(39), we first evaluate the form
factors f, g, and aþ from Eqs. (29)–(33) and then predict
the BRs for B ! VV decays as shown in Table I. Our
predictions for class I transitions are found in agreement
with the experiment, and those for class II and class III are
mostly within the experimental limits. A scrutiny of our
results shows that the contributions from a2 terms in those
class III transitions involving both the internal and external
W emission are small compared to those obtained in other
models [12,13]. This may be due to different q2 depen-
dence of B ! �ðk�Þ transition form factors (Fig. 3) in the
present model.
The predicted form factors along with their q2 behavior

and the branching ratios for B ! VV decays have been
shown to vary in the same order of magnitude in various
model dependent studies. This is not surprising, since
uncertainties in the predictions may come mainly from
two counts. (i) Since the decay amplitudes are proportional
to the meson decay constants, the predictions would
change from one model study to other using different
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FIG. 2. Radial quark momentum distribution amplitude
j ~pbjGBð ~pb;� ~pbÞ versus j ~pbj.

EXCLUSIVE NONLEPTONIC B ! VV DECAYS PHYSICAL REVIEW D 80, 014004 (2009)

014004-7



decay constants. (ii) The form factors and their q2 behavior
depend typically on the model assumptions. For example,
some models assume universal q2 dependence of the rele-
vant form factors [12], while others do not. We would like
to present here the q2 dependence of the form factors of a
representative B ! D� transition. The form factors f, g,
and aþ in their dimensionless forms

Vðq2Þ ¼ ðMB þMD� Þgðq2Þ
A1ðq2Þ ¼ ðMB þMD� Þ�1fðq2Þ
A2ðq2Þ ¼ �ðMB þMD� Þaþðq2Þ

A0ðq2Þ ¼ 1

2MD�

�
ðMB þMD� ÞA1

� ðM2
B �M2

D� þM2
D�

s
ÞA2

ðMB þMD� Þ
�

(41)

and their q2 dependence in the present model are shown in
Fig. 4, which are found comparable to those obtained in
other models [12,13] for all form factors except for Vðq2Þ.
The values of these form factors at q2 ! 0 and q2 ! q2max

for B ! D� transition in the present approach are given in
Table II.
Our results for BRs are found slightly lower in compari-

son to those in other models [12–16,21]. However, present
experimental data for most of these decay modes can not
distinguish which model is more preferred. More precise
data are necessary to help constrain the q2 behavior of the
transition form factors and test the validity of the factori-
zation approximation in the study of B ! VV decays in
various bound state models. As expected, we also find that
the BRs for the neutral B decays are smaller than those for
the charged B decays, which may be due to the spectator
interaction effects of the d and u quark, respectively.
Our prediction for longitudinal polarization fractions:

RL ¼ jAllj2
jAþ�j2þjA�þj2þjAllj2 for different decay modes are pre-

sented in Table III. The predicted RL’s for B0 !
D��ðD�þ

s ; D��; �þÞ and Bþ ! �D�ð�þ; K�þÞ decays are
obtained in agreement with the available experimental
data. We find that all the B ! VV decays studied here
are found in a more dominant longitudinal mode compared
to other model predictions [12–16,21].
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FIG. 3. The q2 dependence of form factors of B ! � transi-
tions.
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FIG. 4. The q2 dependence of form factors of B ! D� tran-
sitions.

TABLE I. Predicted branching ratios for B ! VV nonleptonic
decays (in percent) in comparison with the experimental data.

Decays Our result Our result Experiment [27]

B0 ! D��D�þ
s 1:74a21 1.92 (1:79� 0:14)

B0 ! D�þD�� 0:0512a21 0.0565 (0:082� 0:009)
B0 ! D�þ

s �� 0:0035a21 0.0039 <0:06
B0 ! D���þ 1:27a21 1.40 (0:68� 0:09)

B0 ! �D�0�0 0:1888a22 0.0118 <0:051
B0 ! �D�0! 0:1856a22 0.0116 (0:027� 0:008)

B0 ! D�0K�0 0:0048a22 0.0003 <0:004
B0 ! �D�0K�0 0:025a22 0.0016 <0:0069
Bþ ! �D�0D�þ

s 1:86a21 2.06 (1:75� 0:23)
Bþ ! �D�0D�þ 0:055a21 0.0606 (0:081� 1:7)
Bþ ! D�þ

s �0 0:00378a21 0.00418 <0:04
Bþ ! D�þ

s ! 0:00374a21 0.00412 <0:06
Bþ ! �D�0K�þ 0:04ða1 þ 0:842a2Þ2 0.0603 (0:081� 0:014)
Bþ ! �D�0�þ 1:4ða1 þ 0:385a2Þ2 1.79 (0:98� 0:17)

TABLE II. Values of form factors at q2 ¼ 0 and q2 ¼ q2max for
B ! D� transition.

Form factor q2 ¼ 0 q2 ¼ q2max

Vðq2Þ 0.57 1.44

A1ðq2Þ 0.44 0.87

A2ðq2Þ 0.10 0.28

A0ðq2Þ 0.71 1.32
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Another area that arouses a great deal of interest is the
study of the CP violation in B ! D�D�, D�D�

s decays and
the test of new physics. This aspect can be assessed in
evaluating the CP-odd fraction R? which is related to the
helicity amplitudes in the form

R? ¼ jAþ� � A�þj2
2ðjAþ�j2 þ jA�þj2 þ jAllj2Þ

:

For color-allowed B ! D�D� andD�D�
s decays, the effects

arising out of the short distance nonspectator contributions
is shown to be small [31]. However, the long distance (LD)
nonfactorizable contributions governed by the rescattering
effects or final state interactions may not be negligible in
these cases. If there exists a significant LD effect, one
expects a large value of the CP-odd fraction (R?) to appear
in these decays. The predicted R?’s, in the present scheme,

for different B ! VV decays are shown in Table IV. Our
results for two charmful final states, i.e., D�D� and D�D�

s

are broadly in agreement with the experiment remaining
within the experimental limit: 0:125� 0:043ðstatÞ �
0:023ðsystÞ [10].
The large values of the predicted R?’s for the modes

with two charmful final states compared to those obtained
in other modes vindicate the assumption that the nonvan-
ishing LD contributions lead to significant CP violation in
B ! D�D� and D�D�

s decays. Our predictions on R?’s for
all B ! VV decays including B ! D�D� andD�D�

s are, in
fact, found slightly smaller in comparison with other model
predictions [12–16,21]. This may be due to large helicity
amplitude All and a small value of the form factor g
obtained in the present model.

VI. SUMMARYAND CONCLUSION

We have calculated the branching ratio, longitudinal
polarization fraction, and the CP-odd fraction of B !
VV decays, within factorization approximation, in the
RIQM based on the confining potential in the scalar-vector
harmonic form. The predicted branching ratios are found in
general agreement with the available experimental data
and compared to other model predictions. However, the
decay modes studied here are found in a rather more
dominant longitudinal mode compared to most other
model predictions, of course, remaining within the experi-
mental limit. The CP-odd fraction (0.060, 0.063) obtained
in B ! D�D�, D�D�

s modes, respectively, in particular,
indicate significant CP violation in this sector.
In conclusion, our study shows that factorization works

well also in the Bmeson heavy-heavy decays in the RIQM-
model framework. More precise data would provide better
justification of the factorization hypothesis and applicabil-
ity of the RIQM model in this sector.

TABLE III. Predicted longitudinal polarization fraction RL for B ! VV nonleptonic decays in
comparison with the experiment.

Decay mode CQM LF HQS Our result Experiment [27]

B0 ! D��D�þ
s 0.523 0.512 0.55 0.647 (0:52� 0:05)

B0 ! D�þD�� 0.547 0.535 0.538 0.675 0:57� 0:08� 0:02
B0 ! D�þ

s �� � � � � � � � � � 0.921 � � �
B0 ! D���þ � � � � � � � � � 0.945 (0:885� 0:016� 0:012)

B0 ! �D�0�0 � � � � � � � � � 0.931 � � �
B0 ! �D�0! � � � � � � � � � 0.929 � � �
B0 ! D�0K�0 � � � � � � � � � 0.915 � � �
B0 ! �D�0K�0 � � � � � � � � � 0.915 � � �
Bþ ! �D�0D�þ

s 0.524 0.512 0.512 0.647 � � �
Bþ ! �D�0D�þ 0.547 0.535 0.538 0.676 � � �
Bþ ! D�þ

s �0 � � � � � � � � � 0.921 � � �
Bþ ! D�þ

s ! � � � � � � � � � 0.919 � � �
Bþ ! �D�0K�þ � � � � � � � � � 0.924 (0:86� 0:06� 0:03)
Bþ ! �D�0�þ � � � � � � � � � 0.943 (0:892� 0:018� 0:016)

TABLE IV. Predicted CP-odd fraction R? for B ! VV non-
leptonic decays in the RIQM model.

Decay mode CQM LF HQS Our result

B0 ! D��D�þ
s 0.069 0.077 0.055 0.063

B0 ! D�þD�� 0.069 0.077 0.055 0.060

B0 ! D�þ
s �� � � � � � � � � � 0.052

B0 ! D���þ � � � � � � � � � 0.013

B0 ! �D�0�0 � � � � � � � � � 0.046

B0 ! �D�0! � � � � � � � � � 0.047

B0 ! D�0K�0 � � � � � � � � � 0.048

B0 ! �D�0K�0 � � � � � � � � � 0.048

Bþ ! �D�0D�þ
s 0.070 0.078 0.055 0.063

Bþ ! �D�0D�þ 0.069 0.077 0.055 0.060

Bþ ! D�þ
s �0 � � � � � � � � � 0.052

Bþ ! D�þ
s ! � � � � � � � � � 0.053

Bþ ! �D�0K�þ � � � � � � � � � 0.030

Bþ ! �D�0�þ � � � � � � � � � 0.023
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