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We consider corrections to nucleon correlation functions arising from times that are far from the

asymptotic limit. For such times, the single-nucleon state is contaminated by the pion-nucleon and pion-

delta continuum. We use heavy baryon chiral perturbation theory to derive the spectral representation of

the nucleon two-point function. Finite-time corrections to the axial-current correlation function are also

derived. Pion-nucleon excited-state contributions drive the axial correlator upward, while contributions

from the interference of pion-delta and pion-nucleon states drive the axial correlator downward. Our

results can be compared qualitatively to optimized nucleon correlators calculated in lattice QCD, because

the chiral corrections characterize only low-energy excitations above the ground state. While our

computations suggest that the nucleon axial charge is subject to overestimation, we speculate as to

how underestimation might arise from the use of highly improved nucleon operators.
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I. INTRODUCTION

Lattice gauge theory simulations continue to make im-
pressive progress towards addressing quantitatively the
nonperturabative regime of QCD [1]. Two decades ago, it
was thought impossible that lattice QCD simulations
would confront experimental data without orders of mag-
nitude of increased computing power, and considerable
algorithmic advances. Today, however, state-of-the-art
simulations have pushed forward on all fronts by including
fully dynamical quarks, shrinking the lattice spacing, en-
larging the lattice volume, and decreasing the size of the
light quark masses (including a sprint to the physical point
[2]). The current status of these simulations is reviewed in
[3]. Lattice QCD is approaching a point of not only com-
plementing existing experimental programs, but poten-
tially guiding future ones. A thorough overview of
hadron structure from recent and forthcoming lattice cal-
culations is presented in [4].

Performing lattice QCD calculations with light pions is
an exciting recent development, but one that is accompa-
nied by new problems. At fixed lattice sizes, for example,
finite size effects from virtual pion fluctuations will be-
come increasingly important. Another notorious issue in
dealing with hadrons on the lattice is the signal-to-noise
problem. In the chiral regime, this problem will become
rather acute. Consider the nucleon two-point correlation
function, Gð�Þ. Over long times, �, the two-point function
has an exponential falloff governed by the nucleon mass,
MN . Over such long times, however, the statistical noise in
the correlator, �ð�Þ, is dominated by its coupling to three-
pions [5]. This leads to the signal-to-noise ratio having the
behavior

Gð�Þ
�ð�Þ ���1 ffiffiffiffi

N
p

exp

�
�
�
MN � 3

2
m�

�
�

�
;

with N as the number of independent measurements on
gauge configurations. As pion masses enter the chiral
regime, the long-time behavior of the correlation function
is dominated by statistical noise. Generally this limits
lattice QCD measurements of hadronic correlation func-
tions to times that are not ideally long.1

In this work, we consider corrections to hadronic corre-
lation functions arising from the pion continuum. The
Lehmann-Symanzik-Zimmerman (LSZ) reduction formula
provides the field-theoretic recipe for producing hadronic
states in the limit of asymptotically long times. Over
shorter times, however, there are transient fluctuations to
multiparticle states within a hadron. As the signal-to-noise
problem restricts lattice QCD simulations to times far from
the asymptotic regime where LSZ applies, we are moti-
vated to investigate corrections to the reduction formula.
To focus our discussion, we consider the chiral dynamics
of the nucleon. We derive corrections to nucleon two- and
three-point functions using chiral perturbation theory. In
heavy baryon chiral perturbation theory, one expands about
small energies above the nucleon mass. The nucleon op-
erator should thus be thought of as some baryon interpolat-
ing field that has been optimized through the removal of
high-lying modes, i.e. modes k that are k * �� above the

nucleon mass, where �� � 1 GeV is the chiral symmetry

breaking scale. In the language of lattice QCD, the renor-
malized nucleon operator in chiral perturabtion theory
behaves similarly to a quark-smeared baryon interpolating
field. It is obviously difficult to compare our results quan-
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1Excluding pion zero modes by using parity-orbifold boundary
conditions has been suggested as a means to overcome the
signal-to-noise problem [6,7].
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titatively with those from similarly optimized nucleon
interpolating fields currently used in lattice QCD studies.
Our results, however, provide a clean field-theoretic ex-
ample of the difficulties encountered from excited-state
contamination. Additionally qualitative information, such
as the sign of corrections from excited states, may be
garnered from our computations. For three-point functions,
the sign is nontrivial due to the lack of a spectral repre-
sentation. We find that contributions from pion-nucleon
states are driving the axial correlator up, while those
from the interference of pion-delta and pion-nucleon states
drive the correlator down.

The organization of our presentation is as follows. First,
in Sec. II, we derive the spectral representation of the
nucleon propagator in heavy baryon chiral perturbation
theory. Here we investigate the effects from pion fluctua-
tions on the time dependence of nucleon two-point func-
tions. Next, in Sec. III, we extend our consideration to the
LSZ reduction of the nucleon three-point function involv-
ing the axial-vector current. Sizable corrections to the axial
correlator are found, and can lead to overestimation of the
nucleon axial charge, GA. On the other hand, we speculate
on an alternate scenario in which the axial charge could be
underestimated by improving the nucleon overlap in two-
point functions. Concluding remarks are given in Sec. IV.

II. SPECTRAL REPRESENTATION

Consider a free fermion field, NðxÞ, of mass M. In the
limit of large mass, the velocity becomes a good quantum
number in coordinate space; and, to leading order in 1=M,
we can write down a heavy fermion effective Lagrangian
[8–10], L ¼ NyD4N, where N is a two-component Pauli
spinor. The coordinate-space propagator, Dðx; 0Þ, for the
free heavy fermion has a simple form, Dðx; 0Þ ¼
�ðx4Þ�ðxÞe�Mx4 . When interaction terms are included in
the Lagrangian, the full two-point function,Gðx; 0Þ, has the
general form

Gðx; 0Þ ¼ �ðx4Þ�ðxÞe�Mx4
Z 1

0
dE�ðEÞe�Ex4 ; (1)

which follows from taking the large mass limit of the
Källén-Lehmann spectral representation. The spectral
function, �ðEÞ, is a positive function in the distribution
sense. Assuming there is an isolated single-particle state
corresponding to the N, we write �ðEÞ ¼ �ðEÞ þ ��ðEÞ.
The residual spectral function, ��ðEÞ, is then assumed to
vanish below the energy Eth, with Eth > 0. With the single-
particle state isolated, the spectral representation has the
form

Gðx; 0Þ ¼ �ðx4Þ�ðxÞe�Mx4

�
1þ

Z 1

Eth

dE ��ðEÞe�Ex4

�
: (2)

In the absence of bound states, Eth is the threshold energy
to create a multiparticle state.

Suppose there is an excited state, N�, of mass M�
contributing to the spectral function. The spectral weight
around the value E ¼ M� �M then contains a delta func-
tion. For asymptotically large time separation between
source and sink, x4 � 1, this excited-state contribution is
suppressed relative to the ground state by an exponentially
small factor: exp½�ðM� �MÞx4�. The contributions from
multiparticle states too are suppressed in the limit of
asymptotic time separation. If we assume the spectral
weight near threshold is of the form ��ðEÞ / ðE�
EthÞn�1, then the contribution from the multiparticle
branch cut is suppressed by a factor of ðx4Þ�n �
expð�Ethx4Þ, for large time separation. The power n is
determined by the available phase space at threshold, and
the required angular momentum for multiparticle produc-
tion. If correlation functions are not deduced at large
enough time separations, the light pions will likely present
difficulty for bound states in QCD, because Eth ¼ m�.

A. Chiral computation

Treated as heavy fermions, free nucleons can be de-
scribed by the heavy fermion Lagrangian, with N now
upgraded to a two-component isospinor, N ¼ ðp; nÞT .
Interactions between pions and nucleons; as well as pions,
nucleons and deltas can be included in a way consistent
with chiral symmetry [11,12]. These interactions, more-
over, can be systematically organized in terms of a small
expansion parameter ", where the quantities—k=M with k
as residual baryon momentum, p=�� with p as pion

momentum and �� ¼ 4�f as the chiral symmetry break-

ing scale, m�=��, and �=�� with � as the nucleon-delta

mass splitting—are all treated to be of the size ". The
leading interactions among the baryons and pions are at
Oð"Þ, and contained in the Lagrangian

L ¼ 2gAN
yS �AN þ g�N½Ty �AN þ NyA � T�: (3)

Here S ¼ �=2 is the spin operator, and the quartet of deltas
are packaged in a Rarita-Schwinger field T. The axial-
vector field of pions is at leading order A ¼ 1

fr�þ . . . ,

with � ¼ �a�a.
Using Eq. (3), we can determine the interacting nucleon

two-point function at one-loop order in the chiral expan-
sion and thereby determine the spectral function. The
contributing diagrams are shown in Fig. 1. Their compu-
tation is complicated by divergences which we regulate
using dimensional regularization. To renormalize the two-

FIG. 1. One-loop diagrams contributing to the nucleon two-
point function. Single (double) lines denote nucleons (deltas),
while the dashed lines denote pions. The filled circles denote
axial couplings from the interaction Lagrangian, Eq. (3).
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point function, we choose to work in coordinate space.2

This is particularly advantageous for our consideration of
the LSZ reduction for three-point functions which we
undertake in Sec. III.

We first define the zero-momentum projected two-point
function

Gð�Þ �
Z

dxGðx; �; 0; 0Þ; (4)

where we have used spacetime translational invariance to
locate the nucleon source at the origin of our coordinate
system. To renormalize the zero-momentum two-point
function, we require that there be a single-nucleon contri-
bution at asymptotically large �. This consists of two parts,
the mass renormalization

lim
�!1

�
� d

d�
logGð�Þ

�
� Mphys; (5)

that fixes the nucleon mass to its physical value (which thus
absorbs its pion-mass dependence), and the wave function
renormalization

lim
�!1½e

Mphys�Gð�Þ� � 1; (6)

that fixes the single-nucleon probability to unity. Carrying
out the one-loop chiral computation of the nucleon two-
point function, we find3

Gð�Þ ¼ �ð�Þe�Mphys�

�
1þ

Z 1

m�

dE ���NðEÞe�E�

þ
Z 1

m�þ�
dE ����ðEÞe�E�

�
; (7)

where the pion-nucleon and pion-delta fluctuations are
described the by spectral weights

���NðEÞ ¼ 6g2A
ð4�fÞ2

½E2 �m2
��3=2

E2
; (8)

����ðEÞ ¼
16g2�N
3ð4�fÞ2

½ðE� �Þ2 �m2
��3=2

E2
: (9)

For asymptotically large times, the decaying exponential
from the single-nucleon state is the dominant contribution
to the two-point function. Modification from pion interac-
tions can be deduced in this limit by considering the
spectral weights near threshold. The pion-nucleon and
pion-delta spectral functions both vanish as the 3=2 power

of the energy available at threshold, / ðE� EthÞ3=2. This
power-law behavior is due to the two-body phase space, /
ðE� EthÞ1=2, and the requirement that the pion and baryon
be in a relative pwave. Because the pion-delta threshold is
larger than the pion-nucleon threshold by the mass splitting
�, the pion-delta contributions are suppressed relative to
pion-nucleon contributions by the exponential factor
expð���Þ. Hence we shall neglect the delta contribution
in asymptopia.
Expanding the pion-nucleon spectral weight about

threshold, we arrive at the asymptotic expansion of the
nucleon two-point function,

Gð�Þ !��1
e�Mphys�

�
1þ ffiffiffiffiffiffiffi

2�
p �

3gAm�

4�f

�
2 e�m��

ðm��Þ5=2

�
�
1� 25

8

1

m��
þ 1785

128

1

ðm��Þ2
þ . . .

��
: (10)

The . . . denotes power-law suppressed terms proportional
to 1=m��. The expansion for large times is only an asymp-
totic one, which is evidenced by the particularly large
numerical coefficients of higher-order terms. The times
over which the expansion in 1=m�� results in a controlled
approximation to Eq. (7) are quite large, � * 50a, for a ¼
0:125 fm. For smaller times, the first term in the expansion
yields the best agreement with Eq. (7), as is characteristic
of asymptotic expansions used outside their range of va-
lidity [13]. To analyze nucleon two-point functions, how-
ever, we shall not use the approximation in Eq. (10), but
return to the full form in Eq. (7).

B. Mass extraction

Now we consider the effect of the pion continuum on the
nucleon two-point function. A typical quantity used for
guiding the eye in fits of lattice two-point functions is the

2It is instructive to carry out the computation additionally in
momentum space. After the mass and wave function renormal-
ization have been taken into account, the renormalized self-
energy �renðEÞ has the form

�renðEÞ ¼ �ðEÞ ��ð0Þ � E
d

dE
�ð0Þ;

but still contains divergences. These divergences only contribute
to the extreme short-time behavior of the two-point function, i.e.
contributions to Gð�Þ in Eq. (4) of the form �0ð�Þ, and �00ð�Þ. The
spectral function, however, can be deduced from the regulated
self-energy from analyticity. The relation

�ðEÞ ¼ � 1

�
=m½GðEÞ�;

produces the same spectral function as deduced in coordinate
space.

3It is straightforward to derive analogous results in a finite
spatial volume. With periodic boundary conditions, the lattice
momentum modes are quantized in the form k ¼ 2�n=L, where
n 2 Z3, and L is size of the lattice, which is assumed to be the
same in each of the three spatial directions. Integrals over the
energy are replaced by sums over the momentum modes

Z 1

m�

dEEfðEÞ ! X
n

2�n

L
fð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

�

q
Þ;

where n ¼
ffiffiffiffiffiffi
n2

p
. We are assuming a large enough volume,

m�L � 1, so that the sum can be replaced by the integral for
which the spectrum is continuous. Finite volume corrections to
this approximation can be calculated as the difference between
the sum and integral.
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effective mass, and we shall employ this tool to investigate
the interacting nucleon two-point function derived from
chiral perturbation theory. The effective mass function is
defined as

Meffð�=aÞ ¼ � log
Gð�þ aÞ
Gð�Þ : (11)

We employ lattice units using a temporal lattice spacing of
a ¼ 0:125 fm, which is the spacing in some current-day
lattices. For large �=a, the effective mass should become
flat with a value corresponding to the nucleon mass. The
onset of a plateau in the effective mass gives one an
indication of when the ground state dominates the two-
point correlation function. Of course, in actual lattice
calculations the signal-to-noise problem for the nucleon
limits one to times that are not ideally long.

In Fig. 2, we make two effective mass plots using the
interacting nucleon two-point function in Eq. (7). The low-
energy constants are fixed to their known values, specifi-
cally we use gA ¼ 1:27, g�N ¼ 1:5, � ¼ 290 MeV, and
f ¼ 130 MeV. We plot the ratio of the effective mass to
the nucleon mass for two values of the pion mass, m� ¼
140, and 300 MeV. The onset of a plateau in the effective
mass hence corresponds the ratio Meff=MN approaching
unity which is exhibited in both panels of the figure. We
see, moreover, that the pion-delta continuum gives negli-
gible contributions due to the exponential suppression
factor, expð���Þ. In a recent lattice study [14], the noise
begins to dominate the signal around �=a ¼ 12 at m� �
300 MeV. We show a vertical line at this time to denote an
imagined noise barrier for our chiral computation. Fitting
the nucleon two-point function with a single exponential
form at m� ¼ 300 MeV for 6 	 �=a 	 12 will overesti-
mate the nucleon mass by�3%. For the plot at the physical
pion mass, we assume that the imagined noise barrier

remains at �=a ¼ 12. Fitting the two-point function on a
smaller time interval, say, 8 	 �=a 	 12 results in the
same quantitative overestimation of the nucleon mass.
We can see, moreover, that improving the signal-to-noise
at light pion masses will expose effective masses which
continue to fall with time. These qualitative features can be
deduced directly from the positivity of the spectral
representation.
One final observation about the nucleon two-point func-

tion is as follows. Improving the overlap with the nucleon
in two-point functions largely removes contamination from
the pion-nucleon continuum, as evidenced by Fig. 2.
Because of the exponential suppression, pion-delta contri-
butions are largely unaffected by the improvement. Such
contributions are not necessarily suppressed, however, in
other nucleon correlation functions. The axial correlator
provides such an example.

III. AXIAL THREE-POINT FUNCTION

We now treat the nucleon axial-current correlation func-
tion at finite times using the coordinate-space approach.
Formally there are no spectral representations for three-
point functions. Consequently contamination from excited
states can drive the correlator up or down depending on the
underlying dynamics.

A. Chiral computation

Nucleon three-point functions are constructed using the
LSZ reduction formula to isolate single-nucleon contribu-
tions from the external legs. We are interested in a three-
point function formed from inserting the axial current
Jþ5�ðy; tÞ between two nucleon states. Following the typical
lattice procedure (for recent lattice calculations of the axial
charge, see [15–19]), and projecting both source and sink
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FIG. 2 (color online). Interacting nucleon effective mass plots. The curve denoted by Full corresponds to the effective mass derived
from the fully interacting two-point function in Eq. (7), while that denoted by No � is the same two-point function evaluated without
delta-resonance contributions, i.e. g�N ¼ 0. The vertical bar symbolizes the region where we imagine noise might dominate the
correlation function.
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onto vanishing three momentum, we form the ratio

R 5�ð�; tÞ ¼
R
dx

R
dyh0jNðx; �ÞJþ5�ðy; tÞNyð0; 0Þj0iR
dxh0jNðx; �ÞNyð0; 0Þj0i :

(12)

Using the axial current at tree-level in the effective theory,
namely, Jþ5� ¼ 2gAN

yS��þN, we arrive at

R 5�ð�; tÞ ¼ �ð�� tÞ�ðtÞ2gAuyS�u; (13)

where u is a Pauli spinor. Working beyond tree level, there
are divergences. After regularization, we renormalize to
the physical axial charge, GA, namely,

R 5�ð�; tÞ !��t�1
2GAu

yS�u; (14)

which additionally absorbs the pion-mass dependence of
the axial charge into the physical coupling GA.

The leading one-loop diagrams contributing to the three-
point function of the axial current are shown in Fig. 3. The
required terms of the baryon axial current appear as [9,10]

Jþ5� ¼ 2gAN
yS��þN þ g�NðTy

��
þN þ Ny�þT�Þ

� 2g��T
yS��þ � T; (15)

while the pion-nucleon and pion-nucleon-delta interaction
terms are contained in the Lagrangian Eq. (3). Additionally
to calculate the ratioR5�ð�; tÞ, we must divide by the two-

point function calculated to one-loop order. The result of
the chiral computation can be cast in the form

R 5�ð�; tÞ ¼ 2uyS�u½GA þ FAð�; tÞ��ð�� tÞ�ðtÞ; (16)

where the function FAð�; tÞ encodes the deviation from the
limit of infinite time separation. The form of this function
is

FAð�; tÞ ¼ 8gA
9

Z 1

m�

dE ��N�ðEÞ½e�Eð��tÞ þ e�Et � e�E��

� 16g�N

27
ffiffiffi
2

p
Z 1

m�

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��N�ðEÞ���ðEþ �Þ

q

� ½e�Eð��tÞð1þ e��ð��tÞÞ þ e�Etð1þ e��tÞ
� e�E�ðe��t þ e��ð��tÞÞ� þ

�
gA þ 25g��

81

�

�
Z 1

m�þ�
dE ����ðEÞ½e�Eð��tÞ þ e�Et � e�E��:

(17)

The nucleon-pion, ��N�ðEÞ, and delta-pion, ����ðEÞ, spec-
tral weights have been given above in Eqs. (8) and (9). In
the limit f�; tg ! 1 with � > t, accordingly we have
FAð�; tÞ ! 0.

B. Axial charge extraction

To investigate the effect of finite times on the extraction
of the nucleon axial charge, we plot the ratio of axial three-
point to two-point functions, R5�ð�; tÞ, given simply by

R5�ð�; tÞ ¼ GA þ FAð�; tÞ: (18)

Scaling R5�ð�; tÞ by the axial charge, GA, we thus expect a

plateau at unity for asymptotically large time separations,
� � t � 1. We fix the sink time at �=a ¼ 12, which is a
typical source-sink separation in lattice QCD computations
of three-point functions. With the sink time � fixed, the
current insertion time dependence of R5� is shown in

Fig. 4. We compare the behavior with and without delta
resonances. Including the resonances requires knowledge
of the delta axial charge, g��. This low-energy constant is
poorly known (see [20]) and we assume the value g�� ¼
�2:25. Rather fortuitously the time-dependence of the
axial correlator is largely insensitive to the value of the
delta axial charge. To a good approximation, we can drop
all terms in Eq. (17) that arise from diagrams with only
intermediate state deltas, that is,

FIG. 3. One-loop diagrams contributing to the axial-vector current matrix element of the nucleon. The open squares denote axial-
vector current insertions, while the remaining diagram elements are as in Fig. 1.
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FAð�; tÞ 
 8gA
9

Z 1

m�

dE ��N�ðEÞ½e�Eð��tÞ þ e�Et � e�E��

� 16g�N

27
ffiffiffi
2

p
Z 1

m�

dE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N�ðEÞ ����ðEþ�Þ

q

� ½e�Eð��tÞð1þ e��ð��tÞÞ þ e�Etð1þ e��tÞ
� e�E�ðe��t þ e��ð��tÞÞ�; (19)

which is independent of g��. The figure confirms that Eq.
(19) well approximates the time dependence of the axial
correlation function. Excluding the delta completely (by
setting g�N ¼ 0), however, has a dramatic effect on the
time dependence of the axial correlation function. The
figure shows that the contributions from pion-nucleon
excited states drive the axial correlator upward. Those
from pion-delta states are negligible, while contributions
from the interference of pion-delta and pion-nucleon states
drive the axial correlator downward.

We see the effect of insufficient time can lead to spurious
plateaus for three-point functions. At both pion masses
depicted, the derived correlation function flattens out, but
above the asymptotic value of unity. Our expectation from
chiral perturbation theory is that the nucleon axial charge
would be overestimated, with the overestimation worsen-
ing as the pion mass is lowered. Rather large couplings of
the pion to the nucleon, and nucleon-delta transition com-
plicate extraction of quantities from lattice three-point
functions. As such systematic errors, moreover, depend
on the pion mass, the resulting chiral behavior of GA, for
example, will be specious. Lattice QCD calculations often
extract the ratio of the axial-to-vector charges, GA=GV .
The vector charge, GV , is determined from the three-point
function of the vector current which is also susceptible to
an effect from insufficient time. The one-loop calculation

of the vector three-point function in heavy baryon chiral
perturbation theory, however, does not produce any finite-
time corrections due to exact cancellation borne in by the
vector Ward identity. This cancellation is only guaranteed
at zero-momentum transfer. Thus away from this limit, the
vector three-point function too is subject to finite-time
corrections.
As a final comment, there has been debate about under-

estimation of the axial charge in lattice computations
[21,22]. The most recent study of the axial charge in fully
dynamical three-flavor simulations [18] finds GA falling as
the pion mass is decreased. This behavior was attributed to
a finite volume effect, but not that described by effective
field theory [23–25].4 We undertook the present study with
the hope that the falling value of GA could be attributed to
excited-state contamination: i.e. although the axial charge
is calculated in [18] on two volumes, these volumes have
differing temporal extents, and hence differing effects from
insufficient source-sink separation. While our results are
inconsistent with this picture, we can nevertheless use
them to speculate as to how such underestimation might
be possible.
Underestimation of the axial correlation function could

arise from improvement of the nucleon overlap in two-
point functions. Designing baryon operators with the best
ground-state overlap in a two-point function does not
necessarily optimally improve three-point functions. In a
two-point function, improvement of the nucleon operator
decreases contamination from the pion-nucleon contin-
uum, but not from the pion-delta continuum, because the
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FIG. 4 (color online). Time-dependence of the axial-current correlation function. For sink time �=a ¼ 12, we plot the ratio of the
axial three-point to two-point correlators as a function of the current insertion time t=a. This ratio we scale by the axial chargeGA. The
curve denoted by Full corresponds to the axial correlation function determined from Eq. (17), while No � corresponds to the correlator
without delta-resonance contributions, i.e. g�N ¼ 0. The curve No Exp � excludes from the axial correlator contributions that are
suppressed by an exponential factor involving the mass splitting �; see Eq. (19).

4While the volume dependence employed in [18] is inspired
by the p regime of chiral perturbation theory, the size of the
corrections is not consistent with expectations [23].
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latter makes only negligible contributions. In the axial
three-point function, however, the dominate excited-state
contributions arise from both the square of the overlap with
pion-nucleon states, and the interference term between
pion-nucleon and pion-delta states. Improving the nucleon
operator diminishes the former faster than the latter. As the
latter is negative, the axial correlator could thus be under-
estimated for highly optimized nucleon interpolating
fields. For example, improving the nucleon signal in two-
point functions by a factor of 9 will lead to the same
decrease in the pion-nucleon contamination of the axial
correlation function, but only a factor of 3 decrease in the
pion-nucleon–pion-delta contamination. Based on our chi-
ral computation, such highly optimized nucleon operators
would underestimate the axial charge by about 2%, for
m� ¼ 140 MeV.

IV. SUMMARY

In an interacting quantum field theory, single-particle
states emerge only in the limit of long times. The existence
of particle interactions necessarily implies that at shorter
times a single-particle state can fluctuate into multiparticle
configurations. Such configurations can affect the extrac-
tion of hadronic observables. In particular, the existence of
light pions in the spectrum of QCD complicates the ex-
traction of hadronic properties as they introduce a charac-
teristically long time scale, �� 1=m�, over which pion
branch cuts can be important. Using the nucleon in chiral
perturbation theory as an example, we investigated multi-
particle contributions to two- and three-point functions.
Specifically we found the nucleon mass is subject to over-
estimation, which is directly related to the positivity of the
spectral function. For the nucleon axial charge, GA, we
found that three-point functions calculated away from
asymptotic time separations are affected by the competi-
tion between pion-nucleon and pion-delta contributions.
Pion-nulceon excited states drive the axial correlation
function upward, while the interference between pion-delta
and pion-nucleon excited states drives the axial correlation
function downward. The sign of these corrections depends
on the underlying chiral dynamics, and cannot be deduced
from general principles alone.

The formulas derived in this work apply to the renor-
malized nucleon operator in chiral perturbation theory.
Because high-lying excitations are absent, this operator

behaves like a quark-smeared lattice QCD interpolating
field. While not quantitative, the analytic insight offered by
our computation, however, is useful for comparing quali-
tatively with lattice QCD computations, nearly all of which
use optimized baryon operators with smeared quark fields.
Using a basis of interpolating operators, a variational
method can be employed to isolate ground states from
contamination by excited states [26,27]. Work along these
lines has been pursued, for example, the baryon spectrum
has been investigated in [28–31]. Removing pion-nucleon
contamination from the nucleon two-point function should
improve the mass determination, although the study in [30]
seems to overestimate the nucleon mass. Despite eliminat-
ing a large part of the excited-state contamination, the
nucleon effective mass continues to drop (their Fig. 6 has
the same qualitative behavior as our Fig. 2), signaling the
need for a two-exponential fit. Only a single exponential
fit, however, was carried out.
Our chiral computation of the nucleon axial current

shows an overestimation of the axial charge as deduced
from three-point functions. The structure of our result,
however, leads us to speculate about possible means by
which GA could be underestimated in practice. The use of
highly improved nucleon operators could potentially lead
to an underestimation of the axial charge. The extraction of
nucleon observables from three-point functions is poten-
tially fallible due to the pion continuum, which is impor-
tant owing to the lightness of the pion, as well as the
comparatively large axial coupling, gA. The same obser-
vation can be made for three-point functions involving
deltas due to the size of the axial transition coupling,
g�N . As pion masses approach the physical point, the effect
of insufficient time in lattice QCD calculations of nucleon
and delta properties will become pronounced. Optimizing
the overlap with the ground state in two-point functions
will not necessarily lead to better determination of observ-
ables from three-point functions because of interference
terms. We hope our work can qualitatively guide the ex-
traction of nucleon and delta observables from lattice
QCD.
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