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The inclusive light hadronic decays of 1D2 heavy quarkonia are studied within the framework of the

nonrelativistic QCD at the leading order in v and up to the order of �3
s . With one-loop QCD corrections,

the infrared divergences and Coulomb singularities in the decay amplitudes are proved to be absorbed by

the renormalization of the matrix elements of corresponding nonrelativistic QCD operators, and the

infrared finite short-distance coefficients are obtained through the matching calculations. By taking the

factorization scale to be 2mQ, the light hadronic decay widths are estimated to be about 274, 4.7, and

8.8 KeV for �c2, �b2, and �0
b2, respectively. Based on the above estimates, and using the E1 transition

width and dipion transition width for �c2 estimated elsewhere, we get the total width of �c2 to be about

660–810 KeV, and the branching ratio of the E1 transition �c2 ! �hc to be about (44–54)%, which will

be useful in searching for this missing charmonium state through, e.g., �c2 ! �hc followed by hc ! ��c.
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I. INTRODUCTION

The studies of production and decay mechanisms for
heavy quarkonia provide important information on both
perturbative and nonperturbative QCD. Based on the non-
relativistic (NR) nature of heavy quarkonium systems, an
effective field theory, the nonrelativistic QCD (NRQCD)
factorization formalism was proposed by Bodwin, Braaten,
and Lepage in the 1990s [1]. Within this framework, the
inclusive decay and production of heavy quarkonium can
be factorized into two parts, the short-distance coefficients
and the long-distance matrix elements. Differing from the
color-singlet model (CSM) [2], in the NRQCD factoriza-
tion formalism, the heavy quark and antiquark pair annihi-
lated or produced at short distances can be in both the
color-singlet and the color-octet states with the same or
different angular momentum quantum numbers [1], and the
latter is known as the color-octet mechanism. This mecha-
nism has been used to remove the infrared divergences in
inclusive P-wave charmonium production [3] and decay
[1,4–6] to give the infrared safe and model independent
predictions.

Recently, the inclusive light hadronic decays of 3DJ

charmonium states were also studied within the framework
of NRQCD factorization up to order �3

s [7,8]. The infrared
divergence found in the CSM calculation [9] is removed by
absorbing it into the matrix elements of the color-octet 3PJ

operators. Furthermore, the new contributions at order �2
s

from the color-octet 3PJ and
3S1 matrix elements enhance

the decay widths of 3DJ states, and the numerical results
are larger than those estimated in the CSM by several times
in magnitude [8]. One can expect that a similar case will
emerge in the inclusive light hadronic decay of 1D2 char-

monium, namely, the �c2 state. The difference between the
�c2 and

3DJ states is that there are no infrared divergences

in the inclusive decay width of �c2 in the CSM up to order
�2
s [10], and the numerical result is about 110 KeV [11].

However, the infrared divergence will emerge again in the
decay width of �c2 in the CSM at order �3

s , which needs to
be removed by invoking the color-octet mechanism, i.e. by
absorbing it into the corresponding color-octet matrix
elements.
On the other hand, the estimation of the inclusive light

hadronic decay width of �c2 is also important phenomeno-
logically for probing this missing charmonium state. Quark
model predicts its mass within the range 3.80–3.84 GeV
[12,13], which lies between the D �D and the D� �D thresh-
olds. However, its odd parity (JPC ¼ 2�þ) forbids the
decay to D �D. As a result, it should be a narrow state, and
its main decay modes are the electric as well as hadronic
transitions to lower-lying charmonium states and the in-
clusive light hadronic decay. Therefore, the study for the
inclusive light hadronic decay of �c2 in NRQCD factori-
zation will provide important information on searching for
this state in high-energy p �p collision [14], in B decays
[15], in higher charmonium transitions, and in the low-
energy p �p reaction in PANDA at FAIR [16] and in the
eþe� process in BESIII at BEPC [17].
In this paper, we study the one-loop QCD corrections to

light hadronic decay of 1D2 within the framework of

NRQCD factorization. The paper is organized as follows:
after an introduction of the NRQCD factorization formal-
ism in Sec. II, we calculate the decay widths up toOð�3

sÞ in
perturbative QCD in Sec. III, where both the real and
virtual corrections are considered. Then perturbative
NRQCD is applied to obtain the imaginary parts of the
forward scattering amplitudes in Sec. IV. Combined with
the QCD results, the infrared divergences are either can-
celed or absorbed into the long-distance NRQCD matrix
elements, and the finite short-distance coefficients are ob-
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tained. Together with the long-distance matrix elements
estimated by solving the operator evolution equations, the
decay width is determined. The numerical results and
phenomenological discussions are given in Sec. V.
Finally, we will give a brief summary of our results in
Sec. VI.

II. GENERAL FORMULAS

There are four important scales in the heavy quarkonium
system: the heavy quark mass mQ, the typical momentum

of the heavy quark or the inverse of the size of the bound
state mQv,

1 the binding energy mQv
2, and the QCD scale

�QCD, while the dynamical property of the bound state is

mainly determined by the latter three scales. Thus, one can
choose a cutoff �� with condition mQ >�� �
mQvðmQv

2;�QCDÞ to integrate out the hard scale mQ.

Expanding the nonlocal effective action in power of v
and writing the result in the two-component Pauli spinor
space, one then can get the effective Lagrangian for
NRQCD [1]

L NRQCD ¼ Llight þLheavy þ �L; (1)

where the Lagrangian Llight describes gluon and light

quarks. At leading order in v, the heavy quark and anti-
quark are described by Lheavy

L heavy ¼ c y
�
iDt þ D2

2mQ

�
c þ �y

�
iDt � D2

2mQ

�
�; (2)

where c denotes the Pauli spinor field that annihilates a
heavy quark, � denotes the Pauli spinor field that creates a
heavy antiquark, and Dt and D are the time and space
components of the gauge-covariant derivative D�, respec-
tively. The relativistic corrections toLheavy are included in

the term �L. The most important correction terms for
heavy quarkonium energy splitting are the bilinear ones:

�Lbilinear ¼ c1
8m3

Q

½c yðD2Þ2c � �yðD2Þ2��

þ c2
8m2

Q

½c yðD � gE� gE �DÞc

þ �yðD � gE� gE �DÞ��
þ c3

8m2
Q

½c yðiD� gE� gE� iDÞ � �c

þ �yðiD� gE� gE� iDÞ � ���
þ c4

2mQ

½c yðgB � �Þc � �yðgB � �Þ��; (3)

where Ei ¼ G0i and Bi ¼ 1
2 �

ijkGjk are the electric and

magnetic components of the gluon field-strength tensor
G�	, respectively.
In the Lagrangian LNRQCD in (1), there are still three

low-energy scales: the soft scale mQv, the ultrasoft scale

mQv
2, and the QCD scale �QCD. The existence of multi-

scales makes the power counting rules of NRQCD (the
velocity scaling rules [1]) generally nonhomogeneous.
More seriously, if one wants to do the NRQCD loop
calculations in a dimensional regularization scheme with
LNRQCD defined in (1), one will find that the hard scale

cannot decouple from the loop integrals and the power
counting rules are inevitably violated [18]. These problems
can be solved simultaneously by the method of regions
[19], which will be explained and applied in our calcula-
tions in Sec. IV.
To reproduce the annihilation contribution to a low-

energy Q �Q ! Q �Q scattering amplitude in NRQCD, local
four-fermion operators in �L are needed, which have the
general form [1]

�L4-fermion ¼
X
n

fnð��Þ
mdn�4

Q

Onð��Þ; (4)

where On denotes regularized local four-fermion opera-
tors, such as c y��yc , and dn is the naive scaling dimen-
sion of the operator. The dependence on cutoff �� of the
operator On is canceled by that of scaleless coefficient
fnð��Þ, which can be computed by matching the full
QCD onto the NRQCD as perturbation series in �s.
In NR theory, the width of heavy quarkonium H is �2

times the imaginary part of the energy of the state, thus one
has [1]

�ðH ! LHÞ ¼ 2 ImhHj�L4-fermionjHi

¼ X
n

2 Imfnð��Þ
mdn�4

Q

hHjOnð��ÞjHi; (5)

where LH represents all possible light hadronic final states,
and the operator On here and afterward only denotes the
one relevant to the strong annihilation of Q �Q. The NR
normalization has been applied for the state jHi in (5).
In order to calculate the coefficients of the four-fermion

operators in (5), the equivalence of full QCD and NRQCD
at long distance is exploited. Since in construction, the
coefficient fn is of a short-distance nature and is indepen-
dent on the long-distance asymptotic state, one can get it
by replacing the state jHi by the on-shell heavy quark pair
state jQ �Qi, with small relative momentum and matching
the forward scattering amplitude of Q �Q ! Q �Q in full
QCD onto that of NRQCD perturbatively. The matching
condition is written as [1]

AðQ �Q ! Q �QÞjpertQCD ¼ X
n

fnð��Þ
mdn�4

Q

� hQ �QjOnð��ÞjQ �QijpertNRQCD:
(6)

1Here, v denotes the relative velocity of the heavy quark pair
in the meson frame. The average value of v2 is about 0.3 for
charmonium and about 0.1 for bottomonium [1].
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Since we only need the imaginary parts of the coefficients,
the optical theorem can be used to simplify the matching
calculations.

The physical 1D2 state can be expanded in powers of v
in the Fock space

j1D2i ¼ Oð1ÞjQ �Qð1D½1�
2 Þi þOðvÞjQ �Qð1P½8�

1 Þi
þOðv2ÞjQ �Qð1S½1;8�0 Þi þ . . . ; (7)

where the superindices [1,8] denote the color-singlet and
color-octet, respectively. The contributions from the
P-wave and S-wave Fock states to the annihilation rate
of 1D2 are at the same order of v2 as that from the D-wave
state, because their relevant operators scale v�2 and v�4

relative to O1ð1D2Þ, as can be seen later. Other Fock states
contribute at the higher order of v2. Therefore, the light
hadronic decay width of 1D2 at leading order in v2 can be
described in NRQCD factorization framework as follows:

�ð1D2 ! LHÞ ¼ 2 Imfð1D½1�
2 Þ h

1D2jO1ð1D2Þj1D2i
m6

Q

þ 2 Imfð1P½8�
1 Þ h

1D2jO8ð1P1Þj1D2i
m4

Q

þ 2 Imfð1S½8�0 Þ h
1D2jO8ð1S0Þj1D2i

m2
Q

þ 2 Imfð1S½1�0 Þ h
1D2jO1ð1S0Þj1D2i

m2
Q

; (8)

where the four-fermion operators are [20,21]

O1ð1S0Þ ¼
1

2Nc

c y��yc ;

O8ð1S0Þ ¼ c yTa��yTac ;

O8ð1P1Þ ¼ c y
�
� i

2
D
$
�
Ta� � �yð� i

2
D
$
DÞTac ;

O1ð1D2Þ ¼
1

2Nc

c ySij��ySijc ; (9)

where D
$ ¼ ~D�DQ and Sij ¼ ð� i

2Þ2ðD
$iD

$j � 1
3D
$2�ijÞ.

Since D2=m2
Q scales as v2, it can be ensured that the four

terms in (47) are at the same order of v.
The coefficients in (47) can be obtained by applying the

matching conditions (6) to appropriate Q �Q configurations.
To subtract the full QCD amplitude of Q �Q state of a
particular angular momentum, the covariant projection
method is adopted. In practice, the optical theorem can
relate the imaginary part of the QCD amplitudeA in (6) to
the parton-level decay width [20,22]

�ðQ �Q½n� ! LFsÞ ¼ 1

2M
hQ �Q½n�jO½n�jQ �Q½n�iLONR

� �XZ
jMðQ �Q½n� ! LFsÞj2d�;

(10)

where LFs denote the gluons or light quarks and ½n�
denotes the configuration of the Q �Q. The state jQ �Q½n�i
has been normalized relativistically as one composite state
with mass M ¼ 2EQ, except that in the matrix element in

(10), where the state is normalized nonrelativistically to
match the results in perturbative NRQCD conveniently.
The superindex LO of the matrix element means that it is
evaluated at tree level, and we always use the abbreviation
hO½n�iLO to represent it in our calculations. Moreover, the
summation/average of the color and polarization for the

final/initial state has been implied by the symbol �P.
For spin-singlet states with L ¼ 0, L ¼ 1 and L ¼ 2, the

amplitudes M defined in (10) are given by [22]

MððQ �QÞ½1;8�1S
0

! LFsÞ ¼
ffiffiffiffiffi
2

M

s
Tr½C½1;8��0Mam�jq¼0;

MððQ �QÞ½8�1P1
! LFsÞ ¼ �½P��

ffiffiffiffiffi
2

M

s
d

dq�
Tr½C½8��0Mam�jq¼0;

MððQ �QÞ½1�1D
2

! LFsÞ ¼ 1

2
�½D�
�


ffiffiffiffiffi
2

M

s
d2

dq�dq


�Tr½C½1��0Mam�jq¼0; (11)

whereMam denotes the parton-level amplitude amputated

of the heavy quark spinors, and �½P�� and �½D�
�
 are the

polarization tensors for the L ¼ P, D states, respectively.

The factor
ffiffiffiffi
2
M

q
¼

ffiffiffiffiffi
2M

pffiffiffiffiffiffiffi
2EQ

p ffiffiffiffiffiffiffi
2EQ

p comes from the normalization

of the composite state jQ �Q½n�i. For the color-singlet and

octet states, the color projectors are C½1� ¼ �ijffiffiffiffiffi
Nc

p and C½8� ¼ffiffiffi
2

p ðTaÞij, respectively [22]. The covariant spin-singlet pro-
jector �0 in (11) is defined by

�0 ¼ X
s�s

uðsÞ �vð �sÞ
�
1

2
; s;

1

2
; �s

��������0; 0
�
: (12)

The explicit form of�0 in D dimensions will be discussed
in the next subsection.

The sums over polarization tensors for �½P�� and �½D�
�
 inD

dimensions areX
Jz

�½P�� �½P��
�0 ¼ ���0 ; (13a)

X
Jz

�½D�
�
�

½D��
�0
0 ¼ 1

2
ð���0�

0 þ��
0��0
Þ

� 1

D� 1
��
��0
0 : (13b)
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Here, ���0 is defined as

���0 ¼ �g��0 þ P�P�0

M2
; (14)

where P is the total momentum of Q �Q, and P2 ¼ M2 ¼
4E2

Q.

Needless to say, the final result should be independent on
the normalization convention of theQ �Q state. If one wants
to apply NR normalization thoroughly in the calculations,
one needs to eliminate the factors 1=ð2MÞ in (10) andffiffiffiffiffiffiffiffiffiffi
2=M

p
in (11), and then to replace the covariant spinors in

(12) with the NR ones with the normalization condition
uyu ¼ vyv ¼ 1.

A. Discussions on �5 scheme and projection operator

We will do our calculations in a dimensional regulari-
zation scheme both for QCD and NRQCD. Since we are
only dealing with the spin-singlet Fock states, there will be
the problem of definition of �5 in D dimensions. In our
calculation, the �5 matrix can be represented as [23]

�5 ¼ � i

4!
��	�����	����: (15)

The calculation involving �5 is carried out in D dimen-
sions, where ��	�� and �� are all defined inD dimensions.
Our prescription of �5 is equivalent to the naive �5 scheme
for processes where each closed fermion chain contains at
most one �5. Other prescriptions may be found in the
literature [24–27].

In four dimensions, the covariant spin-singlet projector
�0 defined in (12) can be given by (see, e.g., [28])

�0 ¼ 1

2
ffiffiffi
2

p ðEQ þmQÞ
�
P6
2
þ q6 þmQ

� ðP6 þMÞ
M

� �5

�
P6
2
� q6 �mQ

�
; (16)

where q is half of the relative momentum of the heavy
quark pair. The form in (16) cannot keep C parity conser-

vation inD dimensions because ðP6 þMÞ�5 cannot keep an
invariant form under charge conjugation transformation in
D � 4 dimensions. This problem can be solved by replac-
ing it by the following two operators: For spin-singlet
states the spin projectors of incoming heavy quark pairs
at any order in v2 are given by

�0 ¼ 1

2
ffiffiffi
2

p ðEQ þmQÞ
�
P6
2
þ q6 þmQ

�

� ½ðP6 þMÞ�5 þ �5ð�P6 þMÞ�
2M

�
P6
2
� q6 �mQ

�
(17)

from [29] and

�0 ¼ 1

2
ffiffiffi
2

p ðEQ þmQÞ
�
P6
2
þ q6 þmQ

�

� ðP6 þMÞ�5ð�6PþMÞ
2M2

�
P6
2
� q6 �mQ

�
(18)

from [30]. The above two projection operators both give
correct results and keep C parity conservation.

III. FULL QCD CALCULATION

In this section, we calculate the imaginary part of Q �Q
forward scattering amplitude, or equivalently, the parton-
level decay width � defined in (10). In the calculation, we
use FEYNARTS [31] to generate the Feynman diagrams and
amplitudes and FEYNCALC [32] for the tensor reduction.
We regularize the ultraviolet (UV) and infrared (IR) diver-
gence in dimensional regularization scheme and extend the
covariant projection method into D ¼ 4� 2� dimensions
as has been mentioned.
The leading order subprocesses in �s are the annihila-

tions of Q �Q½n� into two gluons, where n can be any
configurations of the Fock states listed in (7). The
Feynman diagrams at LO of �s are shown in Fig. 1. And
the results in D dimensions are

�Bornð1S½1�0 ! ggÞ ¼ CF�
2
s16�

2

m2
Q

�2ð1� �Þð1� 2�ÞhOð1S½1�0 ÞiLO;

�Bornð1S½8�0 ! ggÞ ¼ BF�
2
s16�

2

m2
Q

�2ð1� �Þð1� 2�ÞhOð1S½8�0 ÞiLO;

�Bornð1P½8�
1 ! ggÞ ¼ CA�

2
s4�

2

m4
Q

�2

ð1� �Þð1� 2�Þ
3� 2�

hOð1P½8�
1 ÞiLO;

�Bornð1D½1�
2 ! ggÞ ¼ CF�

2
s4�

2

m6
Q

�2

ð1� 2�Þð6�2 � 15�þ 8Þ
4�2 � 16�þ 15

hOð1D½1�
2 ÞiLO;

(19)
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where BF ¼ N2
c�4
4Nc

¼ 5
12 , and �ð2Þ is the two-body phase

space in D dimensions: 1
8�

�ð1��Þ
�ð2�2�Þ ð �

m2
Q

Þ�. The first three

results in (19) are consistent with those in Refs. [20,22].
At the Born level, there are no IR divergences in the results
since both the two gluons should be hard in the rest frame
of Q �Q.

A. Real corrections

The real corrections to Born level subprocesses in-
clude the decays into ggg and q �qg final states. The corre-
sponding Feynman diagrams are shown in Figs. 2 and 3.
For simplicity, unphysical polarization summation is used
for final state gluons, so diagrams with ghosts in the
final states must be included in the calculation when a
three gluon vertex appears, in order to cancel the non-
physical degrees of freedom to keep the full results gauge
invariant.

1. ðQ �QÞ
1L½1;8�

J
! ggg

Our results of S-wave configurations agree with those in
[20,22] and are listed below:

�ð1S½1�0 ! gggÞ ¼ CA�s

�
�Bornð1S½1�0 ! ggÞf�ðM2Þ

�
�
1

�2
þ 11

6�
þ 181

18
� 23

24
�2

�
;

�ð1S½8�0 ! gggÞ ¼ CA�s

�
�Bornð1S½8�0 ! ggÞf�ðM2Þ

�
�
1

�2
þ 7

3�
þ 104

9
� �2

�
; (20)

where f�ðM2Þ ¼ ð4��2

M2 Þ��ð1þ �Þ. TheD-dimension P and

D-wave results are

�ð1P½8�
1 ! gggÞ ¼ CA�s

�
�Bornð1P½8�

1 ! ggÞf�ðM2Þ

�
�
1

�2
þ 71

27�
þ 7ð�168þ 25�2Þ

162

�
;

�ð1D½1�
2 ! gggÞ ¼ CA�s

�
�Bornð1D½1�

2 ! ggÞf�ðM2Þ

�
�
1

�2
þ 3

�
þ 7027

144
� 277

64
�2

�
: (21)

Both soft and collinear IR divergences are there in the
results in (20) and (21), and the square pole 1=�2 comes
from the overlap of the soft and the collinear regions.

2. ðQ �QÞ
1L½1;8�

J
! q �qg

Another subprocess of light hadronic decay is to q �qg
final states, and only two graphs make contribution to this
subprocess (shown in Fig. 3).
We get the following results:

�ð1S½1�0 ! q �qgÞ ¼ Nf�Bornð1S½1�0 ! ggÞ�s

�

f�ðM2Þ
K

TF

�
� 2

3�
� 16

9

�
;

�ð1S½8�0 ! q �qgÞ ¼ Nf�Bornð1S½8�0 ! ggÞ�s

�

f�ðM2Þ
K

TF

�
� 2

3�
� 16

9

�
;

�ð1P½8�
1 ! q �qgÞ ¼ Nf�Bornð1P½8�

1 ! ggÞ�s

�

f�ðM2Þ
K

TF

�
� 2

3�
� 16

9

�
;

�ð1D½1�
2 ! q �qgÞ ¼ Nf�Bornð1D½1�

2 ! ggÞ�s

�

f�ðM2Þ
K

TF

�
� 2

3�
� 16

9

�
;

(22)

where Nf is the number of light flavor quarks. Nf ¼ 3 and 4 for charmonium and bottomonium, respectively. TF ¼ 1=2,
K ¼ �ð1þ �Þ�ð1� �Þ ’ 1þ �2 �2

6 , and the S-wave results agree with [20,22].
There are only single poles of � in the results in (22), and they can be identified as collinear ones. The absence of the soft

IR divergence can be seen from the diagrams in Fig. 3. When the momentum of the real gluon goes to zero, it will decouple

FIG. 2. Feynman diagrams for 1L½1;8�
J ! ggg.

FIG. 1. Feynman diagrams for 1L½1;8�
J ! gg.
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from the quark line as an eikonal factor [20], then the
results will be zero since Q �Q in spin singlet cannot couple
to one virtual gluon.

As will be seen later, the collinear divergences and
partial soft IR ones in (20)–(22) are canceled by the virtual
corrections to the Born level decay width. The remaining

soft IR divergences are those in �ð1P½8�
1 ! gggÞ and

�ð1D½1�
2 ! gggÞ from the first diagram in Fig. 2, which

will be absorbed in the renormalization of the operators
O1;8ð1S0Þ and O8ð1P1Þ in perturbative NRQCD. These are

just the general results of the so-called topological facto-
rization discussed in [1].

B. Virtual corrections

There are 23 virtual correction diagrams, including
counterterm diagrams, divided into 9 groups.
Representative Feynman diagrams of each class are shown
in Fig. 4. And the others can be found through reversing the
arrows on the quark lines or exchanging the final state
gluons. UV divergences are removed by renormalization.
The definitions of the renormalization constant of QCD
gauge coupling constant gs ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4��s

p
, heavy quark mass

mQ, heavy quark field c Q, light quark field c q, and gluon

field A� are

g0s ¼ Zggs; m0
Q ¼ ZmQ

mQ; c 0
Q ¼

ffiffiffiffiffiffiffiffi
Z2Q

q
c Q;

c 0
q ¼

ffiffiffiffiffiffiffiffi
Z2q

q
c q; A0

� ¼ ffiffiffiffiffiffi
Z3

p
A�; (23)

where the superscript 0 labels bare quantities, and Zi ¼
1þ �Zi. The renormalized constant Zg is defined by

minimal-subtraction (MS) scheme, and the others by the
on-mass-shell (OS) scheme, similar to that in [33]. Then
the results are

�ZOS
2Q ¼ �CF

�s

4�
f�ðM2Þ

�
1

�UV

þ 2

�
þ 6 lnð2Þ þ 4

�
;

�ZOS
2q ¼ �CF

�s

4�
f�ðM2Þ

�
1

�UV

� 1

�

�
;

�ZOS
3 ¼ ðb0 � CAÞ �s

4�
f�ðM2Þ

�
2

�UV

� 2

�

�
;

�ZOS
mQ

¼ �3CF

�s

4�
f�ðM2Þ

�
1

�UV

þ 2 lnð2Þ þ 4

3

�
;

�ZMS
g ¼ �b0

�s

4�
f�ðM2Þ

�
1

�UV

� ln

�
�2

4m2
Q

��
;

(24)

where b0 ¼ 11CA

6 � Nf

3 .

We calculate diagrams one by one and summarize the
results in the following form:

�ð1L½1;8�
J ! ggÞVC ¼ �ð1L½1;8�

J ! ggÞBorn �s

�
f�ðM2Þ

�X
k

Dk; (25)

where the results ofDk are listed in Tables I, II, III, and IV.
We add the counterterm diagrams with the corresponding
self-energy and vertex diagrams to show the explicit can-
cellation of the UV divergence. There are still IR diver-

FIG. 4. One-loop Feynman diagrams for ðQ �QÞ1L½1;8�
J

! gg.

FIG. 3. Feynman diagrams for 1L½1;8�
J ! q �qg.
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gences left, which will be canceled by those in the real
corrections as we have mentioned. There are also the well-
known Coulomb singularities, which have been regular-
ized by the relative velocity v, in Tables I, II, III, and IV.
These singularities can be absorbed by the corresponding
matrix element through the matching condition (6).

C. Summary of the QCD results

Combining the real and virtual correction results to-
gether and translating the parton-level decay width back
to the imaginary part of the forward scattering amplitude,
we get the full QCD results up to Oð�3

sÞ:

ð2 ImAðQ �Q½1S½1�0 � ! Q �Q½1S½1�0 �ÞÞjpertQCD ¼
�
8��2

s

3m2
Q

�
1þ 2��s

3v

�
þ �3

s

27m2
Q

�
4ð477� 16NfÞ

þ 12ð33� 2NfÞ ln �2

4m2
Q

� 93�2

	

hOð1S½1�0 ÞiLO; (26a)

ð2 ImAðQ �Q½1S½8�0 � ! Q �Q½1S½8�0 �ÞÞjpertQCD ¼
�
5��2

s

6m2
Q

�
1� ��s

12v

�
þ 5�3

s

432m2
Q

�
16ð153� 4NfÞ

þ 12ð33� 2NfÞ ln �2

4m2
Q

� 129�2

	

hOð1S½8�0 ÞiLO; (26b)

ð2 ImAðQ �Q½1P½8�
1 � ! Q �Q½1P½8�

1 �ÞÞjpertQCD ¼
�
��2

s

2m4
Q

�
1� ��s

12v

�
� 19�3

s

18m4
Q

�
1

�
� �E þ lnð4�Þ

	

þ
�3
s½2ð3ð�8Nf � 21 lnð2Þ � 229Þ þ 119�2Þ � 3ð6Nf � 61Þ lnð �2

4m2
Q

Þ�
108m4

Q




� hOð1P½8�
1 ÞiLO; (26c)

ð2 ImAðQ �Q½1D½1�
2 � ! Q �Q½1D½1�

2 �ÞÞjpertQCD ¼
�
16��2

s

45m6
Q

�
1þ 2��s

3v

�
� 8�3

s

9m6
Q

�
1

�
� �E þ lnð4�Þ

	

�
�3
s½4ð128Nf þ 1008 lnð2Þ � 19509Þ þ 192ðNf � 9Þ lnð �2

4m2
Q

Þ þ 7263�2�
1620m6

Q




� hOð1D½1�
2 ÞiLO; (26d)

TABLE I. Virtual corrections to ðQ �QÞ
1S½1�

0
! gg.

Diag. Dk

a1þ a2 CFð1� þ 1þ 6 ln2Þ
a3þ a4þ a9 � CA

2�2
þ 1

� ð�2CF � b0 þ CA

2 Þ þ b0 ln
�2

4m2
Q

þ CFð�8 ln2� 4þ �2

4 Þ � CA

2 ð�4þ �2

12Þ
a5 CAð� 1

�2
� 1

� � 2þ 2 ln2þ 2
3�

2Þ
a6 1

2CAð 1�2 þ 1
� þ 2� 4 ln2� 5

12�
2Þ

a7 CFð�2

2v þ 1
� � 2þ 2 ln2Þ

a8 0

TABLE II. Virtual corrections to ðQ �QÞ
1S½8�

0
! gg.

Diag. Dk

a1þ a2 CFð1� þ 1þ 6 ln2Þ
a3þ a4þ a9 � CA

2�2
þ 1

� ð�2CF � b0 þ CA

2 Þ þ b0 ln
�2

4m2
Q

þ CFð�8 ln2� 4þ �2

4 Þ � CA

2 ð�4þ �2

12Þ
a5 1

2CAð� 1
�2
� 1

� � 2þ 2 ln2þ 2
3�

2Þ
a6 0

a7 ðCF � 1
2CAÞð�2

2v þ 1
� � 2þ 2 ln2Þ

a8 0
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where the states jQ �Q½n�i in the left-hand side and the right-
hand side should be understood to have been normalized
under the same condition. Moreover, the equalities in (26)
are independent on the normalization conventions. That is,
the state jQ �Q½n�i can be normalized either relativistically
or nonrelativistically, either as a composite state or as a
discrete state. Therefore, it is convenient to use ImA to do
the matching calculations, and we will use the abbreviation
ImAðnÞ to represent the amplitudes in (26).

The remaining infrared divergences and Coulomb sin-
gularities in (26) will be precisely repeated in the radiative
corrections of the matrix elements in perturbative NRQCD
in next section. The finite short-distance coefficients will
be obtained after matching calculations.

IV. NRQCD RESULTS AND OPERATOR
EVOLUTION EQUATIONS

In this section, we calculate the NRQCD corrections to
the four-fermion operators in D dimensions. As we have
mentioned, we will adopt the method of regions [19] to
avoid the mismatch of the loop momenta in different
regions. Furthermore, each loop integral in this method
contributes only to a single power in v, thus one can do the
power counting before the integral has been explicitly
done.

Since the ultrasoft and the QCD scale are comparable,
mQv

2 ��QCD, for both charmonium and bottomonium,

there are only two low-energy scales to be considered in
NRQCD, which satisfy the inequality mQv � mQv

2.

Thus, the nontrivial contributions to the NRQCD loop
integrals come only from the following three regions:

soft: A�
s : k0 � j ~kj �mQv;

�s: T � j ~pj �mQv;

potential: A�
p : k0 �mQv

2; j ~kj �mQv;

�p: T �mQv
2; j ~pj �mQv;

ultrasoft: A
�
u : k0 � j ~kj �mQv

2; (27)

where k	 and p	 are the momenta of gluon field and heavy
quark field, respectively, and T ¼ p0 �mQ. The loop

momenta running in these regions scale as those of the
corresponding gluons in dimensional regularization
scheme. One can check that the other regions, such as

that with k0 �mQv and ~k�mQv
2, have no contributions

to the NRQCD loop integrals in the dimensional regulari-
zation scheme. From the view point of effective field
theory, the five modes defined in (27) can be all treated
as the effective fields in NRQCD. Only after parting these

TABLE IV. Virtual corrections to ðQ �QÞ
1D½1�

2
! gg.

Diag. Dk

a1þ a2 CFð1� � 10þ 22 ln2Þ
a3þ a4þ a9 � CA

2�2
� 1

� ð2CF þ b0 þ CAÞ þ b0 ln
�2

4m2
Q

þ CFð10þ 3
4�

2 � 38 ln2Þ � CA

2 ð� 15
8 þ 7

12�
2 þ 2 ln2Þ

a5 CAð� 1
�2
� 1

� � 8þ 2
3�

2 þ 12 ln2Þ
a6 1

2CAð 1�2 þ 69
8 � 7

6�
2 � 16 ln2Þ

a7 CFð�2

2v þ 1
� � 2þ 4 ln2Þ

a8 0

TABLE III. Virtual corrections to ðQ �QÞ
1P½8�

1
! gg.

Diag. Dk

a1þ a2 CFð1� � 3þ 10 ln2Þ
a3þ a4þ a9 � CA

2�2
� 1

� ð2CF þ b0 þ CA

2 Þ þ b0 ln
�2

4m2
Q

þ CFð�2

2 � 16 ln2Þ � CA

2 ð�6þ �2

3 þ 2 ln2Þ
a5 1

2CAð� 1
�2
� 1

� � 5þ 2
3�

2 þ 5 ln2Þ
a6 0

a7 ðCF � 1
2CAÞð�2

2v þ 1
� � 2þ 2 ln2Þ

a8 CAð� 1
2 þ ln2

2 Þ

FIG. 5. NRQCD Feynman rules for heavy quark and gluon
propagators in different regions.
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low-energy modes sufficiently like what has been done in
(27), the homogeneous power counting rules can be gotten.

In practice, we use the NRQCD Feynman rules [34]
derived in Coulomb gauge for the three regions (or the
five low-energy modes) in our calculations. These rules are

shown in Figs. 5 and 6, where �ij
tr ¼ �ij � kikj

jkj2 . The

Feynman rules for antiheavy quark could be obtained by
charge conjugation symmetry.

The Coulomb singularities calculated in the full QCD
theory correspond to the potential region, while the soft
divergences to the soft one. The LO Feynman diagrams for
matrix elements are shown in Fig. 7. The on-shell external
quark lines lie in potential region. At next-to-leading order
(NLO) in �s, only six classes of Feynman diagrams shown
in Fig. 8 need to be calculated for our purpose [8]. The first
four diagrams (a)–(d) have inner gluon lines connecting
with one incoming quark line and one outgoing quark line,
and the soft region will give the lowest order nontrivial
result in v [8]. In the last two diagrams (e) and (f) the inner
gluon line joints two incoming or outgoing quark lines, and
only the potential region has nonvanishing real value [8].
The self-energy diagrams in the external legs are dropped
in accordance with the on-shell renormalization scheme
used in the full QCD calculation.

We present here the detailed calculation of the NLO

correction to the P-wave octet operator Oð1P½8�
1 Þ. The LO

result hOð1P½8�
1 ÞiBorn is trivial. Using the Feynman rules for

propagators of heavy quark and gluon in soft region and for
the heavy quark gluon vertex between potential and soft
regions, the loop integral of diagram (a) is

Ia ¼ ig2s
m2

Q

Z dDk

ð2�ÞD
p � p0 � ðp � kÞðp0 � kÞ=k2

k20 � k2 þ i�

� 1

k0 � i�

1

k0 � i�
: (28)

After performing the contour integration of k0 ¼ jkj � i�,
we get2

Ia ¼ g2s
2m2

Q

Z dD�1k

ð2�ÞD�1

p � p0 � ðp � kÞðp0 � kÞ=k2

jkj3 ; (29)

which is both infrared and ultraviolet divergent. The inte-

gral in (29) is scaleless, so it vanishes in dimensional
regularization. That is, the UV pole will be canceled by
the IR one. But the result is nontrivial:

Ia ¼ �s

3�m2
Q

�
1

�UV

� 1

�

�
p � p0: (30)

The integrals of (b)–(d) in Fig. 8 could be evaluated in the
same way, and their results are

Ib�d ¼ �s

3�m2
Q

�
1

�UV

� 1

�

�
p � p0: (31)

Making use of the Feynman rules for heavy quarks and
gluon in potential region, we obtain the loop integral of
diagram (e):

Ie ¼ �ig2s
Z dDk

ð2�ÞD
1

k2

1

T þ k0 � ðpþkÞ2
2mQ

þ i�

� 1

T � k0 � ðpþkÞ2
2mQ

þ i�
; (32)

where T ¼ jpj2
2mQ

. Integrating k0, we have

Ie ¼ g2smQ

Z dD�1k

ð2�ÞD�1

1

k2

1

k2 þ 2p � k� i�
: (33)

This integral could be performed directly by introducing

v ¼ jpj
mQ

, and we get the Coulomb singularity

Ie ¼ �s�

4v

�
1� i

�

�
1

�
� ln

�m2
Qv

2

��2

�
� �E

��
: (34)

The integral of diagram (f) gives the same Coulomb sin-
gularity but with opposite sign in the imaginary part.
The color structures of diagrams (a,c), (b,d), and (e,f)

are obtained by color decomposition and are listed below,
respectively:

ffiffiffi
2

p
TaTb�Tb

ffiffiffi
2

p
Ta ¼CF

1ffiffiffi
3

p � 1ffiffiffi
3

p þN2
c � 2

2Nc

ffiffiffi
2

p
Tc� ffiffiffi

2
p

Tc;

ffiffiffi
2

p
TaTb� ffiffiffi

2
p

TaTb ¼CF

1ffiffiffi
3

p � 1ffiffiffi
3

p þ �2

2Nc

ffiffiffi
2

p
Tc� ffiffiffi

2
p

Tc;

Tb
ffiffiffi
2

p
TaTb� ffiffiffi

2
p

Ta ¼
�
CF � 1

2
CA

� ffiffiffi
2

p
Tc� ffiffiffi

2
p

Tc: (35)

Summing over each integral multiplied by the according
color factor we get NRQCD matrix element of the P-wave
operator at NLO, which is UV divergent and needs to be

FIG. 6. NRQCD Feynman rules for heavy quark and gluon
vertices.

FIG. 7. NRQCD Feynman diagrams for LO Matrix Elements.

2Since the quark propagator poles should be taken into account
in the potential region, one only needs to evaluate the contribu-
tion from the gluon pole in the soft region [19].
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renormalized:

hO0ð1P½8�
1 ÞiNLO ¼

��
1þ �s�

2v

�
CF � 1

2
CA

�� ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc

þ 4�sð ���
Þ2�

3�m2
Q

�
1

�UV

� 1

�

��
CF

1ffiffiffi
3

p � 1ffiffiffi
3

p

þ BF

ffiffiffi
2

p
Tc � ffiffiffi

2
p

Tc

	
p � p0



h �Oð1P1ÞiLO;

(36)

where we have used hO0ð1P½8�
1 Þi ¼ h �O0ð1P1Þi�ffiffiffi

2
p

Ta � ffiffiffi
2

p
Ta and the superscript 0 means the bare opera-

tor. Before doing the operator renormalization, we first re-
express the bare result as

hO0ð1P½8�
1 ÞiNLO ¼

�
1þ �s�

2v

�
CF � 1

2
CA

��
hOð1P½8�

1 ÞiLO

þ 4�sð ���
Þ2�

3�m2
Q

�
1

�UV

� 1

�

�

�ðCFhOð1D½1�
2 ÞiLO þ BFhOð1D½8�

2 ÞiLOÞ:
(37)

From the above equation we can see that the color-octet
P-wave operator is mixed with the color-singlet D-wave
operator at NLO in �s. We define the renormalized opera-

tor ORð1P½8�
1 Þ through [33]

hO0ð1P½8�
1 ÞiNLO ¼ hORð1P½8�

1 ÞiNLO þ 4�sð ���
Þ2�

3�m2
Q

�
�

1

�UV

þ ln4�� �E

�
ðCFhOð1D½1�

2 ÞiLO
þ BFhOð1D½8�

2 ÞiLOÞ: (38)

Here, the MS renormalization scheme is adopted. The
matrix element of the renormalized operator is UV finite,
but still has an IR divergence term, which will cancel the
infrared divergentD-wave full QCD result. And it also has
the Coulomb singularity, which is the same as that appear-
ing in the full QCD virtual correction:

hORð1P½8�
1 ÞiNLO ¼

�
1þ �s�

2v

�
CF � 1

2
CA

��
hOð1P½8�

1 ÞiLO

þ 4�sð ���
Þ2�

3�m2
Q

�
� 1

�
� ln4�þ �E

�

�ðCFhOð1D½1�
2 ÞiLO þ BFhOð1D½8�

2 ÞiLOÞ:
(39)

Here, the matrix element ofOð1D½8�
2 Þ is at higher order in v

in our case and therefore can be eliminated. The matrix
elements of S-wave singlet and octet operators and that of
theD-wave singlet operator could be computed in the same
way:

hORð1S½1�0 ÞiNLO ¼
�
1þ �s�

2v
CF

�
hOð1S½1�0 ÞiLO

þ 1

2Nc

4�sð ���
Þ2�

3�m2
Q

�
� 1

�
� ln4�þ �E

�

� hOð1P½8�
1 ÞiLO; (40)

hORð1S½8�0 ÞiNLO ¼
�
1þ �s�

2v

�
CF � 1

2
CA

��
hOð1S½8�0 ÞiLO

þ BF

4�sð ���
Þ2�

3�m2
Q

�
� 1

�
� ln4�þ �E

�

� hOð1P½8�
1 iLO þ . . . ; (41)

hORð1D½1�
2 ÞiNLO ¼

�
1þ �s�

2v
CF

�
hOð1D½1�

2 ÞiLO þ . . . ;

(42)

where ‘‘. . .’’ denotes terms at higher order in v.
Finally, combining the matrix elements given abovewith

the short-distance coefficients, accordingly, we get the
forward scattering amplitudes for the 1LJ states computed
by the NRQCD effective theory, which are summarized
below:

FIG. 8. NRQCD Feynman diagrams for NLO Matrix
Elements.
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ð2 ImAð1S½1�0 ÞÞjpertNRQCD ¼ 2 Imfð1S½1�0 Þ
m2

Q

�
1þ CF

�s�

2


�
hOð1S½1�0 ÞiLO; (43a)

ð2 ImAð1S½8�0 ÞÞjpertNRQCD ¼ 2 Imfð1S½8�0 Þ
m2

Q

�
1þ

�
CF � 1

2
CA

�
�s�

2


	
hOð1S½8�0 ÞiLO; (43b)

ð2 ImAð1P½8�
1 ÞÞjpertNRQCD ¼

�
2 Imfð1P½8�

1 Þ
m4

Q

�
1þ

�
CF � 1

2
CA

�
�s�

2


	
� 1

2Nc

4�s

3�m4
Q

2 Imfð1S½1�0 Þ
�

�
4��2

�2
�

�
�
�ð1þ �Þ

� 4�sBF

3�m4
Q

2 Imfð1S½8�0 Þ
�

�
4��2

�2
�

�
�
�ð1þ �Þ



hOð1P½8�

1 ÞiLO; (43c)

ð2 ImAð1D½1�
2 ÞÞjpertNRQCD ¼

�
2 Imfð1D½1�

2 Þ
m6

Q

�
1þ CF

�s�

2


�
� 4�sCF

3�m6
Q

2 Imfð1P½8�
1 Þ

�

�
4��2

�2
�

�
�
�ð1þ �Þ

	
hOð1D½1�

2 ÞiLO: (43d)

Setting expressions in (44) equal to those in (26), respectively, and expanding Imfn in the power of �s, we obtain the IR
finite short-distance coefficients up to Oð�3

sÞ:
2 Imfð1S½1�0 Þ ¼ 8��2

s

3
þ �3

s

27

�
4ð477� 16NfÞ þ 12ð33� 2NfÞ ln

�
�2

4m2
Q

�
� 93�2

�
; (44a)

2 Imfð1S½8�0 Þ ¼ 5��2
s

6
þ 5�3

s

432

�
16ð153� 4NfÞ þ 12ð33� 2NfÞ ln

�
�2

4m2
Q

�
� 129�2

�
; (44b)

2 Imfð1P½8�
1 Þ ¼ ��2

s

2
þ �3

s

108

�
�3ð6Nf � 61Þ ln

�
�2

4m2
Q

�
þ 2

�
�ð24Nf þ 63 lnð2Þ þ 725Þ þ 119�2 þ 114 ln

�
�

��

�	

; (44c)

2 Imfð1D½1�
2 Þ ¼ 16��2

s

45
þ �3

s

1620

�
78720� 512Nf � 7263�2 � 4032 lnð2Þ þ 2880 ln

�
�

��

�
� 192ðNf � 9Þ ln

�
�2

4m2
Q

�	
;

(44d)

where the short-distance coefficients of the Pwave andD wave are�� dependent. Their�� dependence will be canceled
by that of the corresponding renormalized operators, which could be obtained by finding the derivative of both sides of

(39)–(41) of ��. For Born quantities,
dhOð1L½1;8�

J ÞiLO
d��

¼ 0. Then we obtain the renormalization group equations at leading
order in v and �s:

dhORð1P½8�
1 ÞiNLO

d ln��

¼ 8�sCF

3�m2
Q

hOð1D½1�
2 ÞiLO; dhORð1S½1�0 ÞiNLO

d ln��

¼ 1

2Nc

8�s

3�m2
Q

hOð1P½8�
1 ÞiLO;

dhORð1S½8�0 ÞiNLO
d ln��

¼ 8�sBF

3�m2
Q

hOð1P½8�
1 ÞiLO:

(45)

The solutions of the matrix elements h11D2jOð��Þj11D2i in the heavy quarkonium D-wave state 1D2 are

h11D2jORð1P½8�
1 Þð��Þj11D2i ¼

8CF

3m2
Qb0

ln
�sð��0

Þ
�sð��Þ h1

1D2jOð1D½1�
2 Þj11D2i;

h11D2jORð1S½1�0 Þð��Þj11D2i ¼
CF

4Nc

�
8

3m2
Qb0

ln
�sð��0

Þ
�sð��Þ

�
2h11D2jOð1D½1�

2 Þj11D2i;

h11D2jORð1S½8�0 Þð��Þj11D2i ¼
CFBF

2

�
8

3m2
Qb0

ln
�sð��0

Þ
�sð��Þ

�
2h11D2jOð1D½1�

2 Þj11D2i;

(46)

where the initial matrix elements like h11D2jORð1P½8�
1 Þð��0

Þj11D2i at ��0
¼ mQv are eliminated [1,7,8].

To justify the elimination of initial matrix elements at��0
¼ mQv, we will compare our method with an alternative one

in the potential NRQCD (pNRQCD) [35], where the soft scalemQv in NRQCD is integrated out. Take spin-singlet S-wave

color-octet matrix element hhQjOð1S½8�0 ÞjhQi, for example. In NRQCD [1], it is determined by operator evolution equation
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hhQjOð1S½8�0 Þð��ÞjhQi ¼ hhQjOð1S½8�0 Þð��0
ÞjhQi

þ 4CF

3Ncb0m
2
Q

ln
�sð��0

Þ
�sð��Þ

� hhQjOð1P½1�
1 ÞjhQi: (47)

As proposed in [1], the second term on the right-hand side

of Eq. (47) is enhanced by ln
�sð��0

Þ
�sð��Þ and the first term may

be neglected, if the difference between the two scales ��0

and �� is large enough. However, in our case we have
ln�sðmcvÞ

�sð2mcÞ ¼ 1:10 for charmonium and ln�sðmbvÞ
�sð2mbÞ ¼ 0:738 for

bottomonium at ��0
¼ mQv and �� ¼ 2mQ (see the next

section for the explicit input parameter values). Therefore,

the ln
�sðmQvÞ
�sð2mQÞ term does not contribute large enhancement;

thus, the neglect of the first term in Eq. (47) should be
carefully examined.

On the other hand, in pNRQCD [36,37], the color-octet
matrix element can be related to the corresponding color-
singlet one in the factorization form, for example [36],

hhQðnPÞjOð1S½8�0 ÞjhQðnPÞið�Þ

¼ 1

9N2
cm

2
Q

Eð�ÞhhQðnPÞjOð1P½1�
1 ÞjhQðnPÞi; (48)

where hQðnPÞ denotes the n1P1 heavy quarkonium state,

and at the leading-log approximation the nonperturbative
constant Eð�Þ is

E ð�Þ ¼ Eð�0Þ þ 24NcCF

2b0
ln
�sð�0Þ
�sð�Þ : (49)

Equation (49) is applicable to both charmonium and bot-
tomonium. Substituting Eq. (49) into Eq. (48), one can get
the leading-log behavior of the color-octet matrix element

hhQðnPÞjOð1S½8�0 ÞjhQðnPÞið�Þ, which is consistent with

that in NRQCD [1]. The authors of Ref. [36] fit the value
of Eð�Þ with the experimental data at � ¼ 1 GeV and get

E ð� ¼ 1 GeVÞ ¼ 5:3þ3:5
�2:2: (50)

Setting �0 ¼ mQv and using the central value given in

Eq. (50), one can find a rough estimate:

E ðmcvÞ ¼ 2:01
24NcCF

2b0
ln
�sðmcvÞ
�sð2mcÞ ¼ 11:7; (51)

which indicates that the initial matrix element could be
neglected compared to the evolution term. While for bot-
tomonium,

E ðmbvÞ ¼ 9:27
24NcCF

2b0
ln
�sðmbvÞ
�sð2mbÞ ¼ 8:51; (52)

and the initial matrix element contributes at the same order
as the evolution term. Considering theoretical uncertainties
and experimental errors, our analysis above should be
regarded as giving a reasonable qualitative estimate.

Moreover, in Ref. [7], the same approximation was used
to get the color-octet matrix elements for the 3PJ charmo-
nium states, and the obtained color-octet matrix elements
are consistent with lattice QCD calculations and extracted
values from the observed �cJ decays within 20–30% (see
[7] for related references). Those conclusions are for the
P-wave case, and we assume that they can be extended to
D-wave case too. Our method of determining color-octet
matrix elements in Eq. (46) may give the correct order of
magnitude of the matrix elements, and is consistent with
the pNRQCD approach proposed in [36,37].

V. NUMERICAL RESULTS AND
PHENOMENOLOGICAL DISCUSSIONS

The long-distance matrix element of D-wave four-
fermion color-singlet operator in the hadron state is related
with the second derivative of radial wave function at the
origin through the following relation:

hn1D2jOðn1D2Þjn1D2i ¼
15jR00

nDð0Þj2
8�

¼ m6
QHDn: (53)

Combining the leading order coefficient 2 Imfð1D½1�
2 ÞLO ¼

16��2
s=45 given in (44d) and the color-singlet matrix

element given in (53), one can reproduce the decay width
of 1D2 state in the CSM at leading order in �s [10]:

�CSMðn1D2 ! ggÞ ¼ 2�2
s

3

jR00
nDð0Þj2
m6

Q

: (54)

However, there are contributions from the color-octet Fock
states in (7) in NRQCD even at the order of �2

s . The matrix
elements of the P-wave octet operator and S-wave singlet
as well as octet operators in the 1D2 bound state could be
estimated through the solutions of the operator evolution
equations in (46).
The region of validity of the evolution equation is

chosen as follows: the lower limit ��0
¼ mQ
 and the

upper limit �� of order mQ. For convenience, we take the

factorization scale �� to be the same as the renormaliza-
tion scale � of order mQ. We choose the pole mass mc ¼
1:5 GeV, 
2 ¼ 0:3, ��0

¼ mc
, �� ¼ 2mc, �sð2mcÞ ¼
0:249, Nf ¼ 3, �QCD ¼ 390 MeV, HD1 ¼ 15jR00

1D
ð0Þj2

8�m6
c

¼
0:786� 10�3 GeV [38] for charmonium, and mb ¼
4:6 GeV, 
2 ¼ 0:1, ��0

¼ mb
, �� ¼ 2mb, �sð2mbÞ ¼
0:180, Nf ¼ 4, �QCD ¼ 340 MeV, HD1 ¼ 15jR00

1D
ð0Þj2

8�m6
b

¼
0:401� 10�4 GeV for 1D states and HD2 ¼ 15jR00

2Dð0Þj2
8�m6

b

¼
0:750� 10�4 GeV for 2D states [38] for bottomonium.
The � dependence curves of the decay widths are shown
in Figs. 9 and 10. When � ¼ 2mc for c �c systems and 2mb

for b �b systems, we get the predictions at Oð�3
sÞ
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�Cð11D2 ! LHÞ ¼ 274 KeV;

�Bð11D2 ! LHÞ ¼ 4:70 KeV;

�Bð21D2 ! LHÞ ¼ 8:78 KeV:

(55)

The LO decay widths for charmonium and bottomonium
11D2 states are 155 KeVand 3.22 KeV. Therefore, the NLO
QCD corrections contribute enhancement of factor 1.8 and
1.5, respectively.

For the 11D2 charmonium state �c2, the numerical val-
ues for all subprocesses are also listed in Table V. One can
see from this table that the contributions from the Fock

states other than j1D½1�
2 i are dominant in the decay width,

and the total result is about 1–3 times larger than that in
CSM even at leading order in �s.

For the phenomenological analysis of �c2, we vary the
renormalization/factorization scale from 2mc tomc and get

�ð�c2 ! LHÞ ¼ 274–392 KeV. The electric transition
rate �ð�c2 ! �hcÞ ¼ 339–375 KeV [13] and the dipion
transition rate �ð�c2 ! �c��Þ 	 45 KeV [11] have been
estimated elsewhere in the literature.
As emphasized before, the �c2 should be a narrow state,

since its mass and quantum numbers forbid it to decay into
charmed meson pairs D �D and D� �D. Therefore, the main
decays modes of �c2 are expected to be the electric as well
as hadronic transitions to lower-lying charmonium states
and the inclusive light hadronic decay. With all these decay
widths given above, we get the total width of �c2 to be
about 660–810 KeV, and the branching ratio of the electric
transition to be

B ð�c2 ! �hcÞ ¼ ð44–54Þ%; (56)

which provides important information on probing this
missing state. In practice, one can search for �c2 through
the cascade decay �c2 ! �hc ! ���c ! ��K �K� with
branching ratiosBðhc ! ��cÞ 	 0:4 [11,39] andBð�c !
K �K�Þ 	 7% [40]. Similar decay chains can also be used to

search for the �ð0Þ
b2.

The production rates of �c2 are expected to be generally
low in many processes, because the rates are suppressed by
the small values of the second derivative squared of the
wave function at the origin, and also by its spin-singlet
nature, which forbids �c2 to couple to a photon, or to be
detected from the E1 transitions of higher spin-triplet
charmonia. Nevertheless, efforts should be made to find
this very unique missing charmonium state. Hopefully, the
study for the inclusive light hadronic decay of �c2 in
NRQCD will provide useful information on searching for
this state in high-energy p �p collision [14], in B decays
[15], in higher charmonium transitions, in eþe� process in
BESIII at BEPC [17], and particularly in the low-energy
p �p reaction in PANDA at FAIR [16].

VI. SUMMARY

In this paper, we calculate the inclusive light hadronic
decay width of the 1D2 heavy quarkonium state up to order
of �3

s and at the leading order in v within the framework of
NRQCD. We find that the inclusive decay widths into light
hadrons via gluons and light quarks at order of �3

s in QCD
suffer from both IR divergences and Coulomb singular-
ities, but they can be absorbed into the renormalization of

TABLE V. Subprocess decay rates of 11D2 charmonium,
where mc ¼ 1:5 GeV, 
2 ¼ 0:3, ��0

¼ mc
, �� ¼ 2mc, and

�sð2mcÞ ¼ 0:249.

Subprocess LO (KeV) NLO (KeV)

ð1D2Þ1 ! LH 54.7 75.1

ð1P1Þ8 ! LH 66.6 132

ð1S0Þ8 ! LH 15.0 31.3

ð1S0Þ1 ! LH 19.2 36.1

FIG. 10. Renormalization scale dependence of the decay width
of bottomonium state 11D2 to LH.

FIG. 9. Renormalization scale dependence of the decay width
of charmonium state 11D2 to light hadrons (LH).
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the matrix elements of the four-fermion operators in
NRQCD precisely. Therefore, after matching the full
QCD onto NRQCD, the IR divergent part is removed,
and IR finite short-distant coefficients are obtained, and
the dependence on the factorization scale of the coefficient
is canceled by that of the corresponding matrix element
with the renormalization group analysis.

At leading order in �s, the result in the CSM can be
reproduced but there are many other contributions, such as
that from color-octet P-wave operators, which will en-
hance the width in CSM by several times in magnitude
even at the leading order in �s. Furthermore, the NLO
results give extra enhancement factors of 1.8 for �c2 and
1.5 for �b2 relative to the LO ones, respectively. By choos-
ing the factorization scale as 2mQ, the light hadronic decay

widths are found to be about 274, 4.7, and 8.8 KeV for the
�c2, �b2, and �0

b2, respectively. Based on these estimates,

and using the E1 transition width and dipion transition
width for the �c2 estimated elsewhere in the literature,

we get the total width of �c2 to be about 660–810 KeV,
and the branching ratio of the electric transition�c2 ! �hc
to be about (44–54)%, which will be useful in searching for
this missing charmonium state through, e.g., �c2 ! �hc
followed by hc ! ��c.
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(1981); J. H. Kühn and H. Schneider, Phys. Rev. D 24,
2996 (1981); L. Clavelli, Phys. Rev. D 26, 1610 (1982).

[3] G. T. Bodwin, E. Braaten, T. C. Yuan, and G. P. Lepage,
Phys. Rev. D 46, R3703 (1992).

[4] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D 54,
3065 (1996); 56, 7472(E) (1997); 60, 079901(E) (1999).

[5] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D 55,
244 (1997).

[6] Han-Wen Huang and Kuang-Ta Chao, Phys. Rev. D 54,
6850 (1996); 56, 1821(E) (1997).

[7] Zhi-Guo He, Ying Fan, and Kuang-Ta Chao, Phys. Rev.
Lett. 101, 112001 (2008).

[8] Zhi-Guo He, Ying Fan, and Kuang-Ta Chao (unpub-
lished).

[9] G. Belanger and P. Moxhay, Phys. Lett. B 199, 575 (1987);
L. Bergstrom and P. Ernstrom, Phys. Lett. B 267, 111
(1991).

[10] V. A. Novikov et al., Phys. Rep. 41, 1 (1978).
[11] Estia J. Eichten, Kenneth Lane, and Chris Quigg, Phys.

Rev. Lett. 89, 162002 (2002).
[12] E. J. Eichten, K. Lane, and C. Quigg, Phys. Rev. D 69,

094019 (2004).
[13] T. Barnes, S. Godfrey, and E. S. Swanson, Phys. Rev. D 72,

054026 (2005); B. Q. Li and K. T. Chao, Phys. Rev. D 79,
094004 (2009).

[14] Frank Close, Phys. Lett. B 342, 369 (1995); Peter L. Cho
and Mark B. Wise, Phys. Rev. D 51, 3352 (1995).

[15] Pyungwon Ko, Jungil Lee, and H. S. Song, Phys. Lett. B
395, 107 (1997); F. Yuan, C. F. Qiao, and K. T. Chao, Phys.

Rev. D 56, 329 (1997).
[16] J. Ritman (PANDA Collaboration), arXiv:hep-ex/

0702013.
[17] D.M. Asner et al., arXiv:0809.1869.
[18] A. V. Manohar, Phys. Rev. D 56, 230 (1997).
[19] M. Beneke and V.A. Smirnov, Nucl. Phys. B522, 321

(1998).
[20] F. Maltoni, PhD thesis, University of Pisa, 1999.
[21] E. Braaten and J. Lee, Phys. Rev. D 67, 054007 (2003); 72,

099901(E) (2005).
[22] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, and M. L.

Mangano, Nucl. Phys. B514, 245 (1998).
[23] J. Novotny, Czech. J. Phys. 44, 633 (1994).
[24] R. Mertig and W. L. van Neerven, Z. Phys. C 70, 637

(1996).
[25] D. Kreimer, arXiv:hep-ph/9401354.
[26] S. A. Larin, Phys. Lett. B 303, 113 (1993).
[27] P. Breitenlohner and D. Maison, Commun. Math. Phys.

52, 11 (1977); 52, 39 (1977); 52, 55 (1977).
[28] G. T. Bodwin and A. Petrelli, Phys. Rev. D 66, 094011

(2002).
[29] R. Ticciati, Quantum Field Theory For Mathematicians

(Cambridge University Press, United Kingdom, 1999).
[30] Wai-Yee Keung and I. J. Muzinich, Phys. Rev. D 27, 1518

(1983).
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