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Within the minimal supersymmetric model (MSSM) and standard model (SM) frameworks, we analyze

the 1loop electroweak predictions for the helicity amplitudes describing the 17 processes gg ! HH0, and
the 9 processes gg ! VH; where H, H0 denote Higgs or Goldstone bosons, while V ¼ Z, W�.
Concentrating on MSSM, we then investigate how the asymptotic helicity conservation (HCns) property

of supersymmetry (SUSY) affects the amplitudes at the LHC energy range and what is the corresponding

situation in the SM, where no HCns theorem exists. HCns is subsequently used to construct many relations

among the cross sections of the above MSSM processes, depending only on the standard MSSM angles �

and � characterizing the two Higgs doublets. These relations should be asymptotically exact but as the

energy decreases toward the LHC range, mass-depending deviations should start appearing. Provided the

SUSY scale is not too high, these relations may remain roughly correct, even at the LHC energy range.
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I. INTRODUCTION

The fact that supersymmetry confers remarkable prop-
erties to scattering amplitudes at high energy has already
been noticed in the literature. One aspect of it emphasized
some time ago is that in processes involving standard
external particles and nonvanishing Born contributions,
the coefficients of the 1loop linear logarithmic corrections
at high energy differ strikingly, between the minimal super-
symmetric model (MSSM) and the standard model (SM),
reflecting the differences in the gauge and Yukawa inter-
actions [1–3].

Another aspect concerns the important helicity conser-
vation (HCns) theorem established in supersymmetry
(SUSY) [4]. This property demands that for any 2-to-2
process, all amplitudes that violate HCns exactly vanish, at
energies much higher than all masses, and fixed angles.
More explicitly this theorem states that for any process

a�a
þ b�b

! c�c
þ d�d

; (1)

with �j denoting the particle helicity, all amplitudes sat-

isfying

�a þ �b � �c � �d � 0; (2)

vanish exactly at asymptotic energies. The amplitudes
obeying (2) are called below helicity violating (HV) am-
plitudes; while those satisfying �a þ �b � �c � �d ¼ 0,
are termed as helicity conserving (HC) amplitudes. HCns
should be true to all orders in the SUSY couplings, dras-
tically reducing the number of the asymptotically nonvan-
ishing amplitudes [4].

This HCns theorem is particularly nontrivial for pro-
cesses involving external gauge bosons, where huge can-
cellations among the various diagrams conspire for its
realization [4]. Moreover, the theorem crucially depends

on the renormalizability of the model; any anomalous
coupling will violate it [5].
In SM there is no general all-order proof for HCns.

Nevertheless, in several processes, it has been found to
be approximately correct. Thus, if the Born contribution is
nonvanishing, then at the tree level, the HVamplitudes for
any 2-to-2 processes always vanish asymptotically, while
the HC ones usually tend to nonvanishing constants [4]. If
1loop corrections are included to such processes, then
HCns remains approximately correct; in the sense that
the HC amplitudes receive considerable ln and ln2 correc-
tions at high energies, and are always much larger than the
HV amplitudes, which however do not necessarily vanish
asymptotically [1].
Concerning processes with vanishing Born contribu-

tions, we mention �� ! ZZ, �Z, ��, studied some time
ago, at the complete 1loop electroweak (EW) order, in both
SM and MSSM [6]. In these cases, it has then been seen
explicitly in both SM and MSSM that the HC amplitudes
rise logarithmically, due to the gauge (and gaugino in
MSSM) loop contributions, and are predominantly imagi-
nary [6]. On the contrary, the HVamplitudes tend to angle-
dependent small constants in SM, but vanish in MSSM [6].
Thus, in all SM cases studied so far, HCns is approxi-

mately valid in the sense that the HC amplitudes dominate
the HV ones, but the HV amplitudes do not necessarily
vanish asymptotically. For SM processes with vanishing
Born contributions though, no general statement on even
the approximate validity of HCns exists in the literature.
Coming back to the supersymmetric case, where HCns

has been proved to all orders for asymptotic energies [4];
we remark that its relevance for realistic energies is
process-dependent and needs to be separately investigated.
To this aim, the complete 1loop electroweak corrections

were calculated for ug ! dWþ, which determinesW þ jet
production at LHC [7]. Assuming that the SUSY masses
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are in the range set by the SPS1a0 benchmark of the SPA
convention1 [9], it has been found that the HC amplitudes
are much larger than the HVones, for energies* 0:5 TeV,
and a wide range of angles [7]. Similar results are expected
for benchmarks with somewhat heavier SUSY masses, like
those in Table I.

Furthermore, to the 1loop EW order in MSSM, HCns
was used to derive relations between the differential cross

sections for the subprocess ug ! dWþ and ug ! ~dL ~�
þ
i ,

where ~dL denotes an L-down-squark and ~�þ
i describes any

of the two charginos [12]. The derivation of these relations
was based on the asymptotic properties of the helicity
amplitudes. But for benchmarks like those in Table I, the
relations remained approximately correct, even at LHC

energies; where the HCns validity for the ug ! ~dL ~�
þ
i

amplitudes is not yet reached [12]. Similar relations should
be true for many other analogous pairs of processes.

In the present work we propose to study more stringently
the helicity conservation property, i.e. to study the energies
needed for establishing HCns in MSSM, and possibly
identify cases where it is strongly violated in SM.

We therefore look at processes where the dominant HC
amplitudes do not increase logarithmically at high ener-
gies, but rather tend to angular dependent, ‘‘constants.’’
Our previous experience implies that in such cases there
should be no Born contribution [1] and moreover that there
should not be any gauge exchange contributions, like those
in �� ! ZZ, �Z, �� [6].

In the MSSM case, where HCns is obeyed, we could
then also derive asymptotic relations analogous to those in
[12], hoping that theymay again be useful, even at the LHC
range.

Thus, we study here the gluon-gluon fusion to gauge or
Higgs bosons, at the complete 1loop EW order, in either
SM or MSSM. For simplicity, we assume a CP invariant
framework, where all soft breaking terms and superpoten-
tial and Yukawa couplings are real. More explicitly the
processes we study are

gðl; �Þgðl0; �0Þ ! HðpÞH0ðp0Þ;
gðl; �Þgðl0; �0Þ ! Vðp; �ÞHðp0Þ; (3)

where

H; H0 ) H�; G�; HSM;

H0; h0; G0; A0;
(4)

denote the Higgs or Goldstone bosons in MSSM or SM,
and2

V ) W�; Z: (5)

In (3), ð�;�0; �Þ describe the helicities of the two incoming

gluons and the final vector boson, respectively, while ðl; l0Þ
are the incoming momenta, and ðp; p0Þ the outgoing.
Concerning gg ! HH0, we consider the 17 processes

4 SM processes ! HH;G0H;GþG�; G0G0;

13MSSM processes ! HþH�; H0H0; h0h0; H0h0; A0h0;

A0H0; A0A0; G0h0; G0H0; GþH�;

G0A0; GþG�; G0G0; (6)

calculated from the general graphs of Fig. 1. For each of
these processes, we study the energy and angular behavior
of the four helicity amplitudes corresponding to � ¼ �1
and �0 ¼ �1, emphasizing the difference between the HC
and HV amplitudes.
Turning next to gg ! VH, we consider the 9 processes

3SMprocesses! ZH;WþG�; ZG0;

6MSSMprocesses!WþH�;ZH0;Zh0;ZA0;WþG�; ZG0;

(7)

calculated from the diagrams in Fig. 2. In these cases, we
have a richer helicity structure with � ¼ �1, �0 ¼ �1,
and � ¼ �1; 0.

FORTRAN codes calculating the helicity amplitudes for

all these processes are constructed, which are released in
[13].
We indeed find that the HC amplitudes dominate at high

energies in MSSM, behaving like angular dependent con-
stants, for both groups of processes in (6) and (7). Several
relations among the dominant HC amplitudes for such
processes are established. These are used to derive asymp-
totic relations among various cross sections, which may
lead to interesting tests of the underlying supersymmetric
structure, even at nonasymptotic energies.
In SM, the HC amplitudes of (3) are again found to

behave asymptotically like angular dependent constants.
But the HCns picture is distorted, and some helicity violat-
ing (HV) amplitudes also tend to constants, comparable in
magnitude to those of the HC ones. There exist processes
though, where in SM also, the HV amplitudes vanish at
high energies.
Cross sections for the 1loop EW contributions to many

such processes exist in the literature [14–18]; but a detail

TABLE I. Input parameters at the grand scale, for three con-
strained MSSM benchmark models with �> 0; dimensional
parameters in GeV.

SPS1a0 [9] BBSSW [10] FLN mSP4 [11]

m1=2 250 900 137

m0 70 4716 1674

A0 �300 0 1985

tan� 10 30 18.6

1This model is very close to the best fit of the precision data in
[8].

2V ¼ � is impossible due to CP invariance.
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amplitude analysis studying the helicity conservation prop-
erty has not yet been done.

The contents of the paper are: In Sec. II we present the
general structure of the gg ! HH0 and gg ! VH ampli-
tudes. In Sec. III, the high energy behaviors of the helicity
amplitudes for the various processes are analyzed and the
asymptotic relations among several cross sections are de-
rived. In Sec. 4, we introduce the aforementioned FORTRAN

codes, which calculate the 1loop EW helicity amplitude
and we give our numerical results. Particular attention is
paid to investigating the behavior of the above asymptotic
cross section relations, as the energy decreases. Finally,
Sec. V contains the summary and an outlook.

We do not make any detailed proposal for an LHC
observable, in this paper. Applications to LHC would

require additional work including QED and (most impor-
tantly) QCD corrections [19], as well as the final state
identification and background analysis, which are beyond
the scope of this paper.

II. THE gg ! HH0 AND gg ! VH AMPLITUDES

A. The gg ! HH0 case
Defining the kinematics for the process gg ! HH0 as in

(3), the corresponding helicity amplitudes are written as

FHH0
��0 ðs; �Þ, where s is the square of the c.m. energy, and �

is the corresponding scattering angle (0< �<	). A color
factor 
ab has always been removed from the amplitudes,
where ða; bÞ describe the color indices of the two incoming

FIG. 1. Independent diagrams for calculating gg ! HH0 in MSSM and SM; with ðH;H0Þ denoting scalar Higgs particles or
Goldstone bosons. The diagrams are named as A, A0, B, B0, B00, C, C0, C00, D, F, G, H, J. The s-channel scalar or vector exchanges in
some of the triangular and bubble graphs are named as H00 and V. Solid, broken, and wavy lines describe, respectively, fermionic,
scalar, and vector particles. The incoming and outgoing momenta and helicities are indicated in parentheses.
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gluons. The phase of F��0 ðs; �Þ is related to the phase of

the S matrix by S ¼ iF
ab.
Bose statistics for the initial gluons and CP invariance

imply

Bose ) F��0 ð�Þ ¼ F�0�ð	� �Þ;
CP ) F

H0
aH

0

a0
��0 ð�Þ ¼ F

H0
aH

0

a0
����0 ð�Þ;

F
H0

b
H0

b0
��0 ð�Þ ¼ F

H0
b
H0

b0
����0 ð�Þ;

F
H0

aH
0
b

��0 ð�Þ ¼ �F
H0

aH
0
b

����0 ð�Þ;
FH�H�
��0 ð�Þ ¼ FH�H�

����0 ð�Þ; (8)

where the charged final state relations also apply for the
H�G� and G�G� amplitudes. In MSSM we use the

notation H0
a ¼ ðH0; h0Þ and H0

b ¼ ðA0; G0Þ, while in SM

we identify H0
a ¼ H and H0

b ¼ G0.

Relations (8) constrain the four gg ! HH0 amplitudes

Fþþ; Fþ�; F�þ; F��; (9)

so that the first two may be considered as independent.
According to HCns, only F�� survive asymptotically in
MSSM [4]. The corresponding cross section is

d�ðgg ! HH0Þ
d cos�

¼ j ~pj
512	s

ffiffiffi
s

p X
�;�0

jF��0 j2; (10)

where the summation is over all possible (� ¼ �1, �0 ¼
�1), and j ~pj denotes the absolute value of the 3-
momentum in the c.m. of the HH0 pair.

FIG. 2. Independent diagrams for calculating gg ! VH in MSSM and SM, with V denoting a vector particle, and H describing a
scalar Higgs-type particle or Goldstone boson. The diagrams are named as A, A0, B, B0, C, C0,D, E, F,G,H, J. The s-channel scalar or
vector exchanges in some of the triangular and bubble graphs are named as H0 and V0. Solid, broken, and wavy lines describe,
respectively, fermionic, scalar, and vector particles. The incoming and outgoing momenta and helicities are indicated in parentheses.
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The generic set of the 1loop EW diagrams for gg !
HH0 in MSSM and SM is presented in Fig. 1, where solid,
broken, and wavy lines describe, respectively, fermionic,
scalar, and vector particles. The contributions from inter-
changing the two gluons should be added for the diagrams3

A, A0, B, B0, B00, F, G, H, J; on the contrary, for the
diagrams C, C0, C00, D, the gluon symmetrization is auto-
matically included.

No ðH;H0Þ symmetrization is assumed. Consequently,
for the F and G boxes, the respective quark- and squark-
loops are independent of the corresponding antiquark- and
antisquark-loops, which should therefore be added, respec-
tively. For the rest of the graphs, only the quark or squark-
loops are needed.

The specific graphs of Fig. 1 contributing to each of the
17 processes in (6), are

(i) In SM, the only relevant boxes are F and H, which
contribute to all possible processes in (6).

(ii) In MSSM, all F, G, H, J boxes contribute to the
processes in (6).

(iii) Triangle and bubble contributions in SM arise as
follows:

(a) for gg ! HH, G0G0, they come from graph A with
H00 ¼ H;

(b) for gg ! G0H, they come from graph A with H00 ¼
G0, and graph A0 with V ¼ Z;

(c) for gg ! GþG�, they come from graph A with
H00 ¼ H.

(iv) Triangle and bubble contributions in MSSM arise as
follows:

(a) for gg ! H0H0, h0h0, H0h0, A0A0, G0G0, A0G0,
they come from graphs A, B, C, with H00 ¼ H0, h0;
and from graphs B00, C00, D;

(b) for gg ! A0H0, A0h0,G0H0,G0h0, they come from
graph A with (H00 ¼ A0, G0); and graphs A0, B0, C0
with V ¼ Z;

(c) for gg ! HþH�,GþG�, they come from graphs A,
B, C, with (H00 ¼ H0, h0); and from graphs B00, C00,
D;

(d) for gg ! GþH�, they come from graph A with
(H00 ¼ H0, h0, A0); from graphs B, C, with (H00 ¼
H0, h0); and from graphs B00, C00, D.

B. The gg ! VH amplitudes

Using again the notation (3), we describe the helicity
amplitudes as FVH

��0�ðs; �Þ. The same phase conventions as

in the previous subsection are used, and a color factor 
ab

is again removed.
Bose statistics for the initial gluons and CP invariance

imply

Bose ) F��0�ð�Þ ¼ ð�1Þ�F�0��ð	� �Þ;
CP ) FZH0

a

��0�ð�Þ ¼ ð�1Þð1��ÞFZH0
a

����0��
ð�Þ;

) F
ZH0

b

��0�ð�Þ ¼ �ð�1Þð1��ÞFZH0
b

����0��
ð�Þ;

) FWþH�
��0� ð�Þ ¼ ð�1Þð1��ÞFW�Hþ

����0��
ð�Þ;

FWþG�
��0� ð�Þ ¼ ð�1Þð1��ÞFW�Gþ

����0��
ð�Þ; (11)

where H0
a, H

0
b are defined immediately after (8).

Relations (11) constrain the 12 possible helicity ampli-
tudes

Fþþþ; Fþþ�; Fþþ0; Fþ�þ; Fþ��; Fþ�0;

F���; F��0; F��þ; F�þþ; F�þ�; F�þ0;
(12)

so that the first six may be considered as the independent
for neutral final states, while for charged final states we
take the first nine as independent. According to the HCns
theorem, only F��0 may survive at asymptotic energies in
MSSM [4]. The corresponding cross section is given by

d�ðgg ! VHÞ
d cos�

¼ j ~pj
512	s

ffiffiffi
s

p X
�;�0;�

jF��0�j2; (13)

where the summation is done over all possible (� ¼ �1,
�0 ¼ �1) and (� ¼ �1, 0). In (13), j ~pj denotes the abso-
lute value of the 3-momentum in the c.m. of the final VH
pair.
The generic set of the 1loop EW diagrams for gg ! VH

in MSSM and SM is presented in Fig. 2; where solid,
broken, and wavy lines again describe, respectively, the
fermionic, scalar, and vector particles. As before, the con-
tributions from interchanging the two gluons should be
added for the diagrams4 A, A0, B, B0, E, F, G, H, J; while
for C, C0, D, the gluon symmetrization is automatically
included. For the F and G boxes we should add to the
respective quark- and squark-loop contributions, the cor-
responding antiquark- and antisquark-loops. For the rest of
the graphs, only the quark- or squark-loops are needed.
The specific graphs of Fig. 2 contributing to each of the 9

processes in (7), are5:
(i) In SM, the relevant boxes F and H contribute to all

processes in (7). In MSSM, all F, G, H, J boxes
contribute to the processes in (7).

(ii) Triangle and bubble contributions in SM appear as
follows:

(a) for gg ! ZH, they come from graph A with H0 ¼
G0, and from graph A0 with V 0 ¼ Z;

(b) for gg ! ZG0, they come from graph A with H0 ¼
H;

3The diagram names are indicated in Fig. 1, as well as the
definitions of H00 and V used below.

4The names of the diagrams are defined in Fig. 2.
5The definitions of H0 and V0 for the items below are given in

Fig. 2.
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(c) for gg ! WþG�, they come from graph A with
(H0 ¼ H, G0), and from graph A0 with (V 0 ¼ �, Z).

(iii) Triangle and bubble contributions in MSSM appear
as follows:

(a) for gg ! ZH0, Zh0, they come from graph A with
(H0 ¼ A0,G0), and from graphs A0, B0, C0 with V 0 ¼
Z;

(b) for gg ! ZA0, ZG0, they come from graphs A, B, C
with (H0 ¼ h0, H0);

(c) for gg ! WþH�, they come from graph A with
(H0 ¼ h0, H0, A0), from graphs B, C with (H0 ¼
h0, H0), and from graphs D, E;

(d) for gg ! WþG�, they come from graph A with
(H0 ¼ h0, H0, G0), from graphs B, C with (H0 ¼
h0,H0), from graphs A0,B0,C0 with (V 0 ¼ �, Z), and
from graphs D, E.

Finally we note that the processes in (6) and (7) which
involve final Goldstone bosons, provide a useful test of the
validity of our calculations at high energies. This comes
from the equivalence theorem which states that at high
energies we should have [20]

F��00ðgg ! W�H�Þ ’ ��WF��0 ðgg ! G�H�Þ;
� iF��00ðgg ! ZH0

a;bÞ ’ �ZF��0 ðgg ! G0H0
a;bÞ:

(14)

We have checked that these relations are satisfied by the
results of our codes, where �W ¼ �Z ¼ 1 is always used.

Similarly, the processes in (6) involving two final
Goldstones, determine the high energy behavior of gg !
V1V2, for two longitudinal vector bosons [20].

III. HIGH ENERGY PROPERTIES

A. Analytical results for gg ! HH0 in MSSM

The high energy behavior of the amplitudes for the
gg ! HH0 processes in (6), may be analytically obtained
from the diagrams in Fig. 1 and the asymptotic expressions
given e.g. in [21].

The only diagrams of Fig. 1, which are not suppressed at
high energies, are B00, C00, F,H. Considered separately, the
B00 and C00 contributions go to constants while the F and H
boxes have linear lnðsÞ behaviors, which cancel out in their
sum. Thus, the complete contribution behaves like an
angle-dependent, but energy-independent ‘‘constant,’’ for
all gg ! HH0 processes. Subtleties arise in specific pro-
cesses though, depending on the relative importance of
these diagrams.

Thus, in SM, where the squark diagrams are absent, the
available processes HH, G0G0, G0H, GþG� receive their
complete asymptotic constant contribution solely from the
F and H boxes.

For MSSM, we first concentrate on theG0G0 andGþG�
processes, where the constants from the Fþ H boxes are
canceled in F��, by opposite constants coming from the
squark diagrams ðB00; C00Þ, leaving mass-suppressed contri-
butions that vanish at high energies and fixed angles. Only

the HC amplitudes F�� survive asymptotically, character-
ized by energy-independent, but angle-dependent con-
stants. Similar situations arise also for all other MSSM
processes, in agreement with HCns [4].
To describe in more detail the HC asymptotic ampli-

tudes, it is convenient to divide these MSSM processes into
three classes, as follows:
(i) Class a: It contains the 6 processes (k ¼ 1; 6)

G0G0; G0A0; A0A0; H0H0; h0h0; H0h0;

characterized by neutral final bosons carrying iden-
tical CP eigenvalues. The corresponding asymptotic
limits for Fk�� may then be expressed as6

Fk�� ! RakC
I��ð�Þ;

with Ra1 ¼ m2
t þm2

b;

Ra2 ¼ m2
t cot��m2

b tan�;

Ra3 ¼ m2
t cot

2�þm2
btan

2�;

Ra4 ¼ m2
t sin

2�

sin2�
þm2

bcos
2�

cos2�
;

Ra5 ¼ m2
t cos

2�

sin2�
þm2

bsin
2�

cos2�
;

Ra6 ¼ m2
t sin� cos�

sin2�
�m2

b cos� sin�

cos2�
; (15)

where CI��ð�Þ describe the process-independent part
of these limits, while the real quantities Rak describe
the process-dependent part. The latter solely depend
on the MSSM angles � (describing the standard two-
Higgs-doublet mixing angle) and � (related to the
ratio of the Higgs vacuum expectation values) [22].

(ii) Class b: It contains the 4 processes (k ¼ 1; 4)

G0H0; G0h0; A0H0; A0h0;

characterized by neutral final bosons carrying oppo-
site CP eigenvalues. The corresponding asymptotic
limits for Fk�� then become

Fk�� ! RbkC
J��ð�Þ;

with Rb1 ¼ m2
t sin�

sin�
�m2

b cos�

cos�
;

Rb2 ¼ m2
t cos�

sin�
þm2

b sin�

cos�
;

Rb3 ¼ m2
t sin� cot�

sin�
þm2

b cos� tan�

cos�
;

Rb4 ¼ m2
t cos� cot�

sin�
�m2

b sin� tan�

cos�
; (16)

where CJ��ð�Þ describe the process-independent part

6We use the same conventions as in [22].
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of these limits, while Rbk are again real and depend
on the process.
It is important to remark that the relative phase of
CI��ð�Þ and CJ��ð�Þ, defined by the asymptotic lim-
its in (15) and (16), is always 	=2. This is due to CP
invariance in our model, and the fact that the product
of the CP eigenvalues in each pair of the final
neutrals is alwaysþ1 for class a, and�1 for class b.

(iii) Class c: It contains the 3 charged boson processes
(k ¼ 1; 3)

GþG�; GþH�; HþH�:

The corresponding HC amplitudes Fk�� at high en-
ergies may then be expressed as

Fk�� ! RI
ckC

I��ð�Þ þ RJ
ckC

J��ð�Þ; (17)

using the same angular-dependent functions as in
(15) and (16). The corresponding couplings in (17)
are again real and given by

RI
c1 ¼ m2

t þm2
b ¼ Ra1;

RJ
c1 ¼ m2

t �m2
b ’ Ra1;

RI
c2 ¼ m2

t cot��m2
b tan� ¼ Ra2;

RJ
c2 ¼ m2

t cot�þm2
b tan�;

RI
c3 ¼ m2

t cot
2�þm2

btan
2� ¼ Ra3;

RJ
c3 ¼ m2

t cot
2��m2

btan
2�:

(18)

Since the relative phase of the two terms in (17) is
always 	=2, there is never any interference between
them, in the differential cross sections.

To recapitulate on the gg ! HH0 processes in MSSM,
we note that the high energy limits of the dominant HC
amplitudes F�� in (15)–(18) are determined by the quark
boxes in Fig. 1. As the energy decreases to intermediate
values, the relative magnitudes of the HC amplitudes for
the various processes are changed, due to squark contribu-
tions that start becoming important. In addition to it, the
HV amplitudes F�� also become important, at intermedi-
ate energies.

B. Analytical results for gg ! VH in MSSM

The helicity structure [shown in (12)] is now richer than
for the gg ! HH0 case. But the HCns rule greatly sim-
plifies its asymptotic structure in MSSM, predicting that
F��0 dominates, while all other amplitudes must be
vanishing.

Again, it is possible to understand analytically many of
the high energy properties of these amplitudes, by looking
at the diagrams of Fig. 2 [21]. Using the names for the
diagrams indicated in this figure, we find that:

(i) The HC amplitudes F��0, which satisfy �þ�0 �
� ¼ 0, are the only ones that do not vanish asymp-
totically, and tend instead to constants. This comes

from combining the contributions of the various
diagrams in Fig. 2. The high energy values of these
amplitudes may most easily be obtained by using the
equivalence theorem [20] which, respectively, re-
lates F��0 for

gg ! Z�¼0G
0; Z�¼0A

0; Z�¼0H
0;

Z�¼0h
0; Wþ

�¼0G
�; Wþ

�¼0H
�;

to the F�� amplitudes for

gg ! G0G0; G0A0; G0H0;

G0h0; GþG�; GþH�;

determined in (15)–(18).
A constant asymptotic behavior for F��0 in gg !
VH turns out to be true in SM also; but in this later
case, some of the HV amplitudes may also tend
asymptotically to comparable constants.

(ii) For amplitudes with (� ¼ �0, � ¼ 0), we always
have j�þ�0 � �j ¼ 2. In this case, nonvanishing
asymptotic contributions may only come from the
diagrams F, H, and A. Their sum is always strongly
suppressed, though, forcing these amplitudes to van-
ish quickly at high energies.

(iii) For amplitudes with � ¼ �0 ¼ ��, which always
satisfy j�þ�0 � �j ¼ 3, nonvanishing asymptotic
contributions only come from the F and H boxes.
These boxes are very small in this case, and strongly
canceling each other. Therefore, F��� are very
small and quickly vanishing at high energies. In
fact, these amplitudes are vanishing at high energies
faster than those of the previous item.

(iv) We next turn to amplitudes satisfying j�þ�0 �
�j ¼ 1, for processes involving neutral final parti-
cles. These HV amplitudes receive their asymptotic
contributions from the F and H diagrams of Fig. 2;
with their sum often behaving like�m=

ffiffiffi
s

p
, and thus

being strongly suppressed.
Occasionally though, this suppression is reduced by
a ln2ðsÞ factor, which makes their vanishing very
slow. Below we list only these slowly vanishing
amplitudes, for the relevant MSSM processes.
Their high energy structure is determined by7

F��0� �
X
q¼t;b

�s�ð2Iq3 Þm2
q

ffiffiffi
s

p
sin�

8
ffiffiffi
2

p
s2WcWmW

~F��0�; (19)

with

7As already stated above, a color factor 
ab is always removed
from the amplitudes. Moreover Iq3 in (19) describe the third
isospin component of the t and b quarks.
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~Fþþþ ’
�
1

t
� 1

u

�
ln2

��s

m2
q

�

þ
�
1

t
þ 1

u

��
ln2

��t

m2
q

�
� ln2

��u

m2
q

��
;

~Fþ�þ ’ � 1

t

�
ln2

��s

m2
q

�
� ln2

��t

m2
q

�
� ln2

��u

m2
q

��
;

~Fþ�� ’ 1

u

�
ln2

��s

m2
q

�
� ln2

��t

m2
q

�
� ln2

��u

m2
q

��
: (20)

Corresponding expressions for the amplitudes re-
lated to them by Bose statistics and CP invariance
may be obtained from (11) for neutral final bosons.
Note that the nonvanishing contributions in (19) and
(20) solely arise from the t and b quarks; and that
they indeed have an ðm=

ffiffiffi
s

p Þln2s behavior.8

Depending on the neutral final state, the correspond-
ing slowly vanishing amplitudes for the various
MSSM processes are:
Process gg ! ZH0: The slowly vanishing HV am-
plitudes are given by (19) and (20), provided we
include the extra factors ( sin�= sin�) in the top
contribution, and ( cos�= cos�) in the bottom
contribution.

Process gg ! Zh0: The slowly vanishing HVampli-
tudes are given by (19) and (20), provided we in-
clude the extra factors ( cos�= sin�) in the top
contribution, and �ðsin�= cos�Þ in the bottom one.
Process gg ! ZA0: The slowly vanishing HV am-
plitudes may again be obtained from (19) and (20),
provided we include the extra factors �i cot� in the
top contribution, and �i tan� in the bottom contri-
bution, and a sign change is made to Fþ�þ.
Process gg ! ZG0: The slowly vanishing HV am-
plitudes are again given by (19) and (20), provided
an extra factor�i is included for the top, andþi for
the bottom contributions, and an additional sign
change is made to Fþ�þ.

(v) Finally we consider the amplitudes satisfying j�þ
�0 � �j ¼ 1, for the charged final state processes
gg ! WþfH�; G�g. Their dominant contribution
again come from the F, H boxes. In this case the
constraints from Bose statistics and CP invariance
are different though; see (11). Now, Fþþþ and F���
receive no logarithmic enhancement and vanish
quickly at high energies. Thus, the only slowly van-
ishing HV amplitudes, behaving like �ðm=

ffiffiffi
s

p Þln2s,
are

Fþ�þ ’ �s�m
2
t

ffiffiffi
s

p
sin�

4
ffiffiffi
2

p
s2WmW

�
ln2

��s

m2
t

�
� ln2

��t

m2
t

�
� ln2

��u

m2
t

�� fcot�; 1g
t

;

F�þþ ’ ��s�m
2
t

ffiffiffi
s

p
sin�

4
ffiffiffi
2

p
s2WmW

�
ln2

��s

m2
t

�
� ln2

��t

m2
t

�
� ln2

��u

m2
t

�� fcot�; 1g
u

;

Fþ�� ’ ��s�m
2
b

ffiffiffi
s

p
sin�

4
ffiffiffi
2

p
s2WmW

�
ln2

��s

m2
b

�
� ln2

��t

m2
b

�
� ln2

��u

m2
b

�� ftan�;�1g
u

;

F�þ� ’ �s�m
2
b

ffiffiffi
s

p
sin�

4
ffiffiffi
2

p
s2WmW

�
ln2

��s

m2
b

�
� ln2

��t

m2
b

�
� ln2

��u

m2
b

�� ftan�;�1g
t

;

(21)

for H� and G� production, respectively. Note that
the magnitudes of the first two amplitudes in (21) are
determined by the top mass, while those of the later
two are determined by the bottom.
As the energy decreases, squark contributions will
also start affecting the HC amplitudes F��0. In
addition to it, other amplitudes will also start con-
tributing to these processes; most notably the purely
transverse amplitudes discussed in (19)–(21).

C. Asymptotic Ri relations in MSSM

We next turn to the so called ~� quantities

~�ðgg ! HH0Þ � 512	

�2�2
s

s3=2

p

d�ðgg ! HH0Þ
d cos�

;

~�ðgg ! VHÞ � 512	

�2�2
s

s3=2

p

d�ðgg ! VHÞ
d cos�

;

(22)

which should be measurable at a hadronic collider; see (10)
and (13). In MSSM, where HCns is satisfied, the dimen-
sionless ~� quantities behave asymptotically like angle-
dependent constants, solely determined by the HC ampli-
tudes; while in SM some HVamplitudes may also contrib-
ute at high energies. From here on, all other results in this
section are valid in MSSM only.

8In fact (19) and (20) describe these slowly vanishing ampli-
tudes for gg ! ZH in SM which, as observed in Sec. IV,
‘‘accidentally’’ also obeys HCns.
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Using (22) and the results in (15) and (16), we get asymptotically

R1 ) ~�ðgg ! G0G0Þ ’ ~�ðgg ! G0A0Þ
�
Ra1

Ra2

�
2 ’ ~�ðgg ! A0A0Þ

�
Ra1

Ra3

�
2

’ ~�ðgg ! H0H0Þ
�
Ra1

Ra4

�
2 ’ ~�ðgg ! h0h0Þ

�
Ra1

Ra5

�
2 ’ ~�ðgg ! H0h0Þ

�
Ra1

Ra6

�
2

’ ~�ðgg ! Z0G0Þ ’ ~�ðgg ! Z0A0Þ
�
Ra1

Ra2

�
2
; (23)

and

R2 ) ~�ðgg ! G0H0Þ ’ ~�ðgg ! G0h0Þ
�
Rb1

Rb2

�
2 ’ ~�ðgg ! A0H0Þ

�
Rb1

Rb3

�
2

’ ~�ðgg ! A0h0Þ
�
Rb1

Rb4

�
2

’ ~�ðgg ! ZH0Þ ’ ~�ðgg ! Zh0Þ
�
Rb1

Rb2

�
2
: (24)

Note that the last lines in (23) and (24) receive at non-
asymptotic energies also contributions from the slowly
vanishing amplitudes involving transverse final vector bo-
sons; see the discussion around (19) and (20).

We can also relate the cross sections of the charged
sector, to those of the neutral sector, classes a, b, and c
above. Thus, combining (15)–(18) and (22), we obtain

R3 ) ~�ðgg ! GþG�Þ ’ ~�ðgg ! G0G0Þ

þ
�
RJ
c1

Rb2

�
2
~�ðgg ! G0h0Þ;

(25)

R4 ) ~�ðgg ! GþH�Þ ’
�
RI
c2

Ra1

�
2
~�ðgg ! G0G0Þ

þ
�
RJ
c2

Rb2

�
2
~�ðgg ! G0h0Þ; (26)

R5 ) ~�ðgg ! HþH�Þ ’
�
RI
c3

Ra1

�
2
~�ðgg ! G0G0Þ

þ
�
RJ
c3

Rb2

�
2
~�ðgg ! G0h0Þ; (27)

connecting charged and neutral final states.
Eliminating the neutral channels from (25)–(27), we

obtain

~�ðgg ! HþH�Þ

’ 1

ð m4
t

tan2�
þm4

bÞ
��

m4
t

tan4�
þm4

btan
2�

�
~�ðgg ! GþG�

�

þ
�

m4
t

tan4�
�m4

b

�
ð1� tan2�Þ~�ðgg ! GþH�Þ

�
;

(28)

which in fact is a relation among R3, R4, R5, that could
have also been obtained directly from (17) and (18).
Concerning gg ! VH, with charged final sates, we get

two more relations,

R6 ) ~�ðgg ! GþG�Þ ’ ~�ðgg ! WþG�Þ; (29)

R7 ) ~�ðgg ! GþH�Þ ’ ~�ðgg ! WþH�Þ; (30)

using (22). In deriving these relations, the high energy
equivalences theorem was used, and the slowly vanishing
transverse amplitudes discussed in (21) were neglected.
Since these relations constrain theW production processes,
they should be considered in conjunction with the last two
parts of (23) and (24), affecting corresponding Z cross
sections.
The relations Ri of (23)–(30) are analogous, in spirit, to

those concerning the cross sections for ug ! dW and

ug ! ~dL ~�
þ
i , derived in [12]. At asymptotic energies,

they should be very accurate, depending only on the
MSSM angles � and �; see (15), (16), and (18).
Provided the SUSY particles are sufficiently light, or the
hadronic collider sufficiently energetic, � and � could be
determined from such relations.
As the energy decreases to intermediate values, devia-

tions appear in Ri, which are due to 2 types of contribu-
tions. The first comes from the subdominant HV
amplitudes which are slowly vanishing, like m=

ffiffiffi
s

p
times

logarithmic terms. The second one comes from the squark
boxes. Thus, at intermediate energies, further model de-
pendence is introduced, whose investigation should offer a
deeper insight to the MSSM picture. At such energies, we
also expect on general grounds that Ri become better in the
central angular region, away from the forward and back-
ward angles [21].
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IV. NUMERICAL RESULTS

As already said, the helicity amplitudes for all the gluon-
gluon fusion processes in (6) and (7) are calculated in
terms of Passarino-Veltman (PV) functions [23], using
[24] and the FORTRAN codes GGHHCODE and GGVHCODE

[13]. The resulting helicity amplitudes are expressed as
functions of the c.m. energy and angle, in either the SM or
the MSSM models. Input couplings and masses are always
assumed to be real and at the electroweak scale, while the
quark masses of the first two generations are neglected.

The output files generated after running the various codes,
are specified as ‘‘.dat’’ for the gg ! HH0 case and as
‘‘.dat1, .dat2’’ for the gg ! VH case. An accompanying
readme file, fully explains the compilation of the codes.
In the figures presented here, we can only give examples

of the helicity amplitudes for the various processes. Thus,
for gg ! HH0, we just plot the two independent ampli-
tudes Fþþ, Fþ�; see (6), (8), and (9). Correspondingly, for
gg ! VH, the figures contain the six independent ampli-
tudes Fþþþ, Fþþ�, Fþþ0, Fþ�þ, Fþ��, Fþ�0, for neutral
final particles; while in the charged case, the amplitudes

FIG. 3. Amplitudes for gg ! h0h0 in SPS1a0 (a) and (b) [9], and for gg ! HH in SM (c) and (d).

FIG. 4. Amplitudes for gg ! G0G0 in SM (a) and in SPS1a0 (b).
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FIG. 5. Amplitudes for gg ! WþG� in SM (a) and (b), and SPS1a0 (c) and (d).

FIG. 6. Amplitudes for gg ! ZH in SM: (a) and (c) describe the high energy behavior while (b) and (d) emphasize the LHC range.
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F���, F��0, and F��þ are also included; see (7), (11),
and (12).

As a first example, Fig. 3 shows the HC and HV ampli-
tudes for gg ! h0h0, in both the MSSM benchmark
SPS1a0 [9] and in the SM cases. Figure 3(a) addresses
the MSSM amplitudes ðFþ�; FþþÞ, in a sufficiently high
energy region elucidating the asymptotic behavior; while
Fig. 3(b) is restricted to a more LHC-type energy range.
Figures 3(c) and 3(d) give the corresponding amplitudes
for gg ! HH in SM.

As shown in Fig. 3, above 6 TeV, the HC amplitude for
this process strongly dominates in MSSM, but not in SM.

In fact, the SM process gg ! HH, constitutes an
example where HCns is strongly violated in SM. Similar
violations of HCns in SM may also been seen for
gg!G0G0 in Fig. 4(a); and for gg ! WþG� in
Fig. 5(a) and 5(b). Because of these and the equivalence
theorem, a clear violation of HCns for the SM processes
gg ! ZG0 and gg ! GþG� is also true. These are the
only known examples where HCns is not even approxi-
mately obeyed in SM.

Contrary to them, the corresponding MSSM results in
Figs. 4(b), 5(c), and 5(d) satisfy helicity conservation.

A peculiarity arises for the SM process gg ! ZH pre-
sented in Fig. 6, and the corresponding MSSM process
gg ! Zh0 shown in Fig. 7. The validity of HCns in both

cases seems equally good. A similar situation arises also
for the SM process gg ! G0H and the MSSM process
gg ! G0h0, related to the previous ones by the equiva-
lence theorem. Such an ‘‘accidental’’ validity of helicity
conservation for e.g. gg ! G0H in SM, must be related to
the absence of a squark contribution in the corresponding
MSSM process gg ! G0h0, which makes the SM and
MSSM amplitudes very similar.
We next focus on the MSSM helicity amplitudes, always

using the SPS1a0 benchmark [9]. As it can been seen from
Fig. 3(b), the HV amplitude for gg ! h0h0 vanishes very
quickly with energy. But for gg ! H0h0, HþH�, A0h0,
this vanishing seems slower, apparently due to a larger
squark contribution; see Figs. 8, which suggest that a
minimum energy of �10 TeV is required, for HCns to be
approximately realized.
In Figs. 9 and 10 we show the amplitudes for gg ! ZA0

and gg ! WþH�. These results, together with those for
gg ! Zh0 (see Figs. 7), indicate that the high energy
vanishing of the HV amplitudes in the gg ! VH cases is
generally slower than in the gg ! HH0 cases. Particularly
for WþH�, center of mass energies of * 20 TeV are
required in SPS1a0, for helicity conservation to approxi-
mately establish itself. Such a slow approach to the HCns
regime should be partly due to the slow vanishing of the
transverse amplitudes in (21), (19), and (20).

FIG. 7. Amplitudes for gg ! Zh0 in SPS1a0: (a) and (c) describe the high energy behavior while (b) and (d) emphasize the LHC
range.
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Finally, in Figs. 11–14, we compare the energy- and
angle-dependence of the various parts of the cross section
relations Ri, defined in (23)–(30). These Ri parts should
always become identical at high energies; while their
deviations at intermediate energies give a measure of the
violations in Ri.

In the SPS1a0 benchmark we are using, which belongs
to the so-called decoupling MSSM regime, the h0 self-
couplings, as well as its couplings to the quarks, leptons,
and the gauge bosons, are very close to the SM ones,
implying � ’ �� 	=2 [25]. Through (15)–(18), this leads
to

Ra4 ’ Ra3; Ra5 ’ Ra1; Ra6 ’ �Ra2;

Rb1 ’ �Rb4 ’ �RJ
c2; Rb2 ’ RJ

c1; Rb3 ’ �RJ
c3;

which explain many features in Figs. 11–14.
Concentrating on R1 defined in (23), we compare in

Figs. 11 the magnitudes of its various parts; here 11(a)
and 11(b) describe the energy dependencies at (� ¼ 30�,
60�) while 11(c) gives the angular dependence at a c.m.
energy

ffiffiffi
s

p ¼ 8 TeV. As seen from 11(a) and 11(b), five of
the R1 parts reach their common asymptotic value already
at �6 TeV, for the above angles. Deviations persist only

FIG. 8. Amplitudes describing the high energy and the LHC-type energies (see previous caption) for gg ! H0h0 (a) and (b),
gg ! HþH� (c) and (d), and gg ! A0h0 (e) and (f) in SPS1a0.
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FIG. 9. Amplitudes for gg ! ZA0 in SPS1a0: (a) and (c) describe the high energy behavior while (b) and (d) emphasize the LHC
range.

FIG. 10. Amplitudes for gg ! WþH� in SPS1a0: (a) and (c) describe the high energy behavior while (b) and (d) emphasize the
LHC range.
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for the gg ! H0H0,H0h0 parts, which seem to come from
squark boxes9; and for the gg ! ZG0 part (related through
the equivalence theorem to gg ! ZZlongitudinal), which is

due to the slowly vanishing contributions discussed in (19)
and (20). Energies of* 20 TeV are needed for all these R1

deviations to fall below the 10% level.
These deviations are also reflected in Fig. 11(c), present-

ing the angular distributions of the various R1-parts at
8 TeV.

In Figs. 12, the corresponding results for R2 defined in
(24), are presented. At an energy of�8 TeV and angles in
the central region, R2 is much better satisfied than R1.

In Figs. 13, the left and right parts of ðR3; R4; R5Þ defined
in (25)–(27) are compared; panels 13(a) and 13(b) gives the

energy- and angle-dependence for R3, 13(c) and 13(d)
correspondingly for R4, and 13(e) and 13(f) for R5. The
agreement between the left and right parts in the central
region is rather poor, at an energy of �8 TeV. In fact for
R4, even the shapes of the two parts are different at 8 TeV.
As the energy increases, these relations gradually improve;
the deviations reducing to the 20% level at 20 TeV, and to
the per mill level at 400 TeV.
Finally in Figs. 14, we compare the left and right parts of

R6, R7 defined in (29) and (30); again 14(a) and 14(b) give
the energy- and angle-dependencies for R6, and 14(c) and
14(d) the corresponding results for R7. At an energy scale
of * 12 TeV, these relations are satisfied for angles in the
central region. It appears, that the squark boxes and the HV
amplitudes for the WG, WH channels, are responsible for
most of the deviations at & 12 TeV.
At least as far as the contribution from the gg ! VH

processes is concerned, we could in principle extend the

FIG. 11. Magnitudes of the various parts of the asymptotic relation R1 defined in (23): (a) and (b) describe the energy dependence at
� ¼ 30� and � ¼ 60� respectively while (c) gives the angular dependence at

ffiffiffi
s

p ¼ 8 TeV.

FIG. 12. Magnitudes of the various parts of the asymptotic relation R2 defined in (24): (a) and (b) describe the energy dependence at
� ¼ 30� and � ¼ 60� respectively while (c) gives the angular dependence at

ffiffiffi
s

p ¼ 8 TeV.

9For gg ! G0G0, G0A0, A0A0, the approach to asymptopia is
faster because the squark plus antisquark box contributions
vanish identically.
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validity of the relations R1, R2, R6, R7 to lower energies, by
subtracting the contributions from the slowly vanishing
transverse amplitudes discussed in Secs. III B. This will
of course make these relations considerably more
complicated.

Of course, the appearance of helicity conservation, as
well as the validity of the asymptotic Ri relations discussed
above, will be further delayed, if the SUSY masses are
higher than those at SPS1a0.

In any case, using the codes [13] which give the exact
1loop EW predictions for the above amplitudes, the exact

values of all separate parts of the Ri relations in (23)–(30)
may be calculated, and its validity checked, for any MSSM
model at any energy.

V. SUMMARYAND OUTLOOK

The helicity conservation theorem, proved to all orders,
for any 2-to-2 process at asymptotic energies and fixed
angles, is a really impressive property of any supersym-
metric extension of SM [4].
It not only greatly simplifies the structure of the asymp-

totic amplitudes, but it may also have important implica-

FIG. 13. Magnitudes of the left and right parts of the asymptotic relation R3, R4, R5 defined in (25)–(27): (a), (c), and (e) describe the
energy dependencies while (b), (d), and (f) give the angular dependencies at

ffiffiffi
s

p ¼ 8 TeV.
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tions at realistic LHC energies, provided the SUSY scale is
not too high. This has been realized for a considerable
range of MSSM benchmarks, by studying the complete
1loop EW contributions to ug ! dW [7]; as well as by
constructing asymptotic cross section relations between

ug ! dW and ug ! ~dL ~�
þ
j , which were seen to remain

approximately correct even close to the LHC range [12].
In all examples studied previously, which were all done

at the 1loop EW order in MSSM, the dominant helicity
conserving amplitudes were always increasing logarithmi-
cally, while the helicity violating ones were tending to
zero.

Comparing to corresponding 1loop SM results for pro-
cesses with standard external particles, it appeared that
HCns is approximately correct in SM also; in the sense
that the helicity conserving amplitudes were again found to
increase logarithmically with energy, while the HV ones
were going to much smaller constants. In fact, in such
cases, the dominance of the logarithmically increasing
HC amplitudes is often so overwhelming that it should
be impossible to experimentally discriminate a constant
asymptotic value of an HV SM amplitude, from a strictly
vanishing one; see e.g. the example of �� ! ��, Z�, ZZ
in [6].

In the present work we looked at processes where the
dominant HC amplitudes cannot be very large, so as to
obtain a more stringent view of the way HCns is realized.
Thus, we looked at the 1loop EW predictions for processes
where there are no gauge (or gaugino) contributions within
1loop; and thus, no large logarithmic enhancements. In this
spirit, we have studied the 13 processes gg ! HH0 and the
6 processes gg ! VH, within any CP conserving MSSM
framework; see (6) and (7).
Correspondingly in SM, we have calculated the 1loop

EW predictions for the 4gg ! HH0 processes, and the
3gg ! VH processes; see again (6) and (7). And for the
first time, we indeed saw examples where helicity conser-
vation is strongly violated in SM.
In MSSM, of course, HCns is always obeyed. These

detail examples confirm that helicity conservation indeed
is a genuine SUSY property; in accordance with the gen-
eral, rather formal, all-order proof in [4].
The most striking example of the difference between SM

and MSSM is in the process gg ! h0h0, as one can see in
Fig. 3. In SM, the HVamplitude for this process tends to a
constant value, which is about half the value of the helicity
conserving one. Contrary to it, in MSSM an opposite
contribution from the squark-loop arises, which exactly

FIG. 14. Magnitudes of the left and right parts of the asymptotic relation R6, R7, defined in (29) and (30): (a) and (c) describe the
energy dependencies while (b) and (d) give the angular dependencies at

ffiffiffi
s

p ¼ 8 TeV.
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cancels the HVamplitude at energies much larger than the
squark masses. The unpolarized cross sections in the two
cases should then differ by about 20% at sufficiently high
energies, which could be observable, particularly if squark
candidates are also observed in the TeV range.

FORTRAN codes calculating the helicity amplitudes of all

processes in (3), (6), and (7), as functions of the center of
mass energy and angle, are released in [13]. The input
parameters in these codes are always at the electroweak
scale, while the quark masses of the first two generations
are neglected.

In this work, we have also derived the R1 � R7 asymp-
totic relations among various cross sections, within the
MSSM framework. Strictly speaking these relations should
be exact (to the 1loop EW order of course) at asymptotic
energies and fixed angles. The only MSSM parameters
they depend on are the � and � MSSM angles. Testing
such relations (at sufficiently high energies) would con-
stitute a genuine check of the MSSM structure.

As the energy decreases though, deviations in the R1 �
R7 relations appear, like those shown in Figs. 11–14 for
SPS1a0 [9]. We have studied in detail these relations in
SPS1a0; and as a general statement we could say that at an
energy of * 8 TeV, they are satisfied to an accuracy of
�50% or better. Of course the accuracy of these relations
would become better or worse, depending on whether the
SUSY scale is lower or higher than in this benchmark.

The energies needed for Ri to acquire a certain accuracy
are generally larger than those required for the relation
connecting the ug ! dW and ug ! dL ~�

þ
i cross sections

[12]. This is probably due to the presence of important
Born contributions to these later processes, which makes

them less sensitive to higher scale-effects than the purely
1loop processes entering the Ri’s.
We also note that the departures from the asymptotic

predictions R1 � R7 arise from global SUSY-scale effects.
Measuring such effects could define a strategy of SUSY
analysis, starting from the high energy range where the
basic SUSY properties can be established, and then going
down in energy, progressively becoming more sensitive to
specific SUSY masses. Such a strategy is to be opposed to
the usual one starting from the low energy with more than
100 free parameters in MSSM, and then going up in
energy. If the SUSY scale is not too high, such a strategy
may be feasible.
In the near future we hope to look at the 1loop EW

predictions for the gluon-gluon fusion producing two vec-
tor bosons, or two charginos or neutralinos [26]. We expect
that the combination of these processes, with those studied
here, will supply many more asymptotic relations among
various, in principle measurable, cross sections.
In conclusion, we dare to say that the SUSY best moti-

vated candidacy for describing the physics beyond SM is
not only due to its smooth ultraviolet properties, its inclu-
sion of dark matter candidates, and its invitation to uni-
fication. Its exact helicity conservation property for any 2-
to-2 process, which so strongly simplifies its asymptotic
amplitudes, also deserves to be added to this list.
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