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We introduce a new class of models describing the quark mass hierarchy. In this class, the dynamics

primarily responsible for electroweak symmetry breaking (EWSB) leads to the mass spectrum of quarks

with no (or weak) isospin violation. Moreover, the values of these masses are of the order of the observed

masses of the down-type quarks. Then, strong (although subcritical) horizontal diagonal interactions for

the t quark plus horizontal flavor-changing neutral interactions between different families lead (with no

fine-tuning) to a realistic quark mass spectrum. In this scenario, many composite Higgs bosons occur. A

concrete model with the dynamical EWSB with the fourth family is described in detail.
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I. INTRODUCTION: SCENARIO

The masses of quarks are [1]:

mt ¼ 171:2� 2:1 GeV; mb ¼ 4:20þ0:17
�0:07 GeV; (1)

mc ¼ 1:27þ0:07
�0:11 GeV; ms ¼ 104þ26

�34 MeV; (2)

and

mu ¼ 1:5–3:3 MeV; md ¼ 3:5–6:0 MeV: (3)

The quark spectrum is characterized by the following
striking features: (1) There is a large hierarchy between
quark masses from different families,

mu=mt � 10�5; mu=mc � 10�3; mc=mt � 10�2;

(4)

md=mb � 10�3; md=ms � 10�2; ms=mb � 10�1:

(5)

(2) The isospin violation is also hierarchical: It is very
strong in the third family, strong (although essentially
weaker) in the second family, and mild in the first one:

mt

mb
’ 40:8;

mc

ms

’ 11:5;
mu

md

¼ 0:35� 0:60: (6)

The origin of these features is still mysterious: In the
standard model (SM), it is required to introduce hierarch-
ical Yukawa couplings by hand, e.g., yu=yt ¼ mu=mt �
10�5.

In this paper, we will introduce a new class of models
describing the quark mass hierarchy. One of our basic
assumptions is the separation of the dynamics triggering
the strong isospin violation in the third and second families
from that responsible for the generation of the W and Z
masses, i.e., electroweak symmetry breaking (EWSB). The
latter could be provided by one of the following known

mechanisms: (a) An elementary Higgs field (or fields).
(b) A modern version of the technicolor (TC) scenario
(for recent reviews, see Ref. [2]). (c) At last, it could be a
dynamical Higgs mechanism with a Higgs doublet (or
doublets) composed of t0 and b0 quarks of the fourth family
[3,4].
We assume that the dynamics primarily responsible for

the EWSB leads to the mass spectrum of quarks with no (or
weak) isospin violation. Moreover, we assume that the
values of these masses are of the order of the observed
masses of the down-type quarks. In the case of an elemen-
tary Higgs field (or fields), they are provided by the con-
ventional Yukawa interactions. In the case of the
dynamical Higgs mechanism, in order to generate these
masses, one should use flavor-changing-neutral (FCN)
interactions: the extended technicolor (ETC) [5] in the
case of the TC scenario, and the horizontal interactions
between the 4th family and the first three ones in the case
of the scenario with the fourth family (see Fig. 1).
Of course, such interactions are restricted by the K0- �K0

mixing, for example, and thus for light quarks it is required
to introduce heavy exchange vector particles, say, with the
masses of order 1000 TeV. Such heavy particles can be a
natural source for producing small Yukawa coupling con-

FIG. 1. FCN interactions of the up- and down-quark sectors.
Here uð1;2;3Þ ¼ u, c, t and dð1;2;3Þ ¼ d, s, b, respectively. �ði4Þ are
masses of exchange vector particles.
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stants for light quarks. For heavier quarks, we introduce
lighter vector particles.

The second (central) stage is introducing the horizontal
interactions for the quarks in the first three families (this
stage is essentially the same for the three EWSB mecha-
nisms mentioned above.) First, following the idea in the
model of Mendel et al. [6,7], we utilize strong (although
subcritical) diagonal horizontal interactions for the top
quark which lead to the observed ratio mt

mb
’ 40:8. The

second step is introducing the equal strengths horizontal
FCN interactions between the t and c quarks and the b and
s ones in order to get the observed ratio mc=ms ’ 11:5 in
the second family (see Fig. 2). As will be shown in
Sec. II B, these interactions can naturally provide such a
ratio indeed.

Because of a smallness of the mixing angles for quarks
from the different families, neglecting the family mixing in
the dynamics responsible for generating the quark masses
in the second and third families is a reasonable approxi-
mation. Concerning the mild isospin violation in the first
family, it should be studied together with the effects of the
family mixing, reflected in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix. The latter will be considered in
Sec. II C.

Thus, in the present scenario, beside the EWSB inter-
actions, the dominant dynamics responsible for the form of
the mass spectrum of quarks is connected with the diagonal
horizontal interactions for the third family and the hori-
zontal FCN interactions between the second and third ones.
The signature of this scenario is the appearance of com-
posite Higgs bosons (resonances) composed of the quarks
and antiquarks of the 3rd family (see Sec. II D)

The main source of the isospin violation in this approach
is the strong top quark interactions. On the other hand,
because these interactions are subcritical, the top quark
plays a minor role in electroweak symmetry breaking. This
point distinguishes this scenario from the top quark con-
densate model [8–11].

Two comments are in order. (i) As will be shown below,
the characteristic feature in this class of the models is the
absence of fine-tuning: What could be called fine-tuning
for the near-critical coupling of the t quark (1 part in 102) is

just a reflection of a ‘‘unnaturally’’ large isospin violation
in the third family, mb=mt ’ 2:5� 10�2. (ii) In this paper,
we will concentrate on studying the mass spectrum of
quarks. For a discussion concerning the extension of the
present approach for the description of lepton masses, see
Sec. IV below.

II. MODEL

In this section, the dynamics for generating the quark
mass hierarchy will be described in detail. Henceforth we
will concentrate on a model of the dynamical EWSB with
the fourth family [3]. However, we will also comment on
the modifications (if any) for both the scenario with ele-
mentary Higgs fields responsible for the EWSB and the TC
scenario.

A. Electroweak symmetry breaking dynamics and
isospin symmetric quark masses

The first stage is generating the masses with no (or
weak) isospin violation and of the order of the observed
masses of the down-type quarks. As was pointed in the
Introduction, in the present approach, the EWSB dynamics
is responsible for that. It is straightforward to produce such
masses both in the case of the scenario with elementary
Higgs fields (through Yukawa interactions) and in the TC
one (through ETC interactions).
Let us now describe this stage in the scenario of the

dynamical EWSB with the fourth family [3]. The masses
of the 4th family quarks are constrained as [1]

mb0 > 199 GeV; mt0 > 256 GeV: (7)

Note that if the mixing angles between the 4th family and
the rest ones are extremely small, b0 and t0 quarks behave
like long-lived charged massive particles. In this case the
constraints are mb0 > 190 GeV and mt0 > 220 GeV [12].

At the composite scale �ð4Þ, the 4th family quarks t0 and
b0 condense and thereby they break the electroweak sym-
metry. By using the Pagels-Stokar (PS) formula [7,13], we
can estimate the corresponding decay constants,

v2
t0 ¼

N

8�2
m2

t0 ln

�
1þ ð�ð4ÞÞ2

m2
t0

�
; (8a)

v2
b0 ¼

N

8�2
m2

b0 ln

�
1þ ð�ð4ÞÞ2

m2
b0

�
; (8b)

with

v2
t0 þ v2

b0 ¼ v2; (9)

where N ¼ 3 and v ¼ 246 GeV. The constraint of the
T-parameter suggests that mt0 ’ mb0 is favorable and
thereby vt0 ’ vb0 follows. Note that the masses of t0 and
b0 are essentially determined through the PS formula (8)

when the value of �ð4Þ is fixed.FIG. 2. FCN interactions for the second family.
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In order to obtain almost correct masses for the down-
type quarks,

mð3Þ
0 � 1 GeV; mð2Þ

0 � 100 MeV; mð1Þ
0 � 1 MeV;

(10)

we introduce the following horizontal FCN interactions
(see Fig. 1):

t0 � uðiÞ ��ði4Þ; b0 � dðiÞ ��ði4Þ; (11)

where i ¼ 1, 2, 3 and uð1;2;3Þ ¼ u, c, t and dð1;2;3Þ ¼ d, s, b,
respectively. These one-loop contributions yield

mðiÞ
0 ’ C2g

2
t0uðiÞ

4�2

ð�ð4ÞÞ2
ð�ði4ÞÞ2 mt0 ’

C2g
2
b0dðiÞ

4�2

ð�ð4ÞÞ2
ð�ði4ÞÞ2 mb0 ; (12)

whereC2 represents the quadratic Casimir invariant and we
took into account that the dynamical running mt0 and mb0

masses rapidly decrease above the scale �ð4Þ (if these

masses are not sharply cutoff at �ð4Þ, there can appear

logð�ð4ÞÞ factors in Eq. (12), as in QCD [14,15]).

In order to obtain the hierarchical masses mð1;2;3Þ
0 , we

assume

ð�ð14ÞÞ2 � ð�ð24ÞÞ2 � ð�ð34ÞÞ2 � ð�ð4ÞÞ2: (13)

We may expect C2g
2
t0uðiÞ ’ C2g

2
b0dðiÞ �Oð1Þ. Then, at this

stage, the mass spectrum of quarks is isospin symmetric.
The running masses are essentially equal to the constants

mðiÞ
0 up to the scale of �ði4Þ (i ¼ 1, 2, 3). Above �ði4Þ, they

rapidly, as 1=q2, decrease (q is the momentum of the
running masses).

In order to get the appropriate numbers, the scales
should be determined by

�ðiÞ
t0ðb0Þ �

C2g
2
t0uðiÞðb0dðiÞÞ
4�2

ð�ð4ÞÞ2
ð�ði4ÞÞ2 ’

mðiÞ
0

mt0ðb0Þ
: (14)

B. Horizontal interactions as the source of the isospin
violation in the quark masses

The second (central) stage in the present scenario is
introducing the horizontal interactions for the three known
fermion families. Note that this stage is essentially identi-
cal for the scenarios with the different EWSB dynamics:
elementary Higgs fields, TC, and the fourth family.

Let us start from the description of the dynamics gen-
erating the large top quark mass. At energy scales less than

the mass of a horizontal vector boson �ð3Þ ��ð34Þ, the
corresponding horizontal interactions can be presented by
the four-fermion Nambu-Jona-Lasinio (NJL) ones. We
apply strong (although subcritical) dynamics for the hori-
zontal diagonal interactions for the t quark. The isospin

symmetric massmð3Þ
0 , introduced in Sec. II A, plays the role

of a bare mass with respect to these interactions. The
solution of the Schwinger-Dyson equation for the t quark

propagator leads to the following mass mt [6,7]:

mt ’ 1

�gt
mð3Þ

0 ; (15)

where �gq denotes the difference of the critical coupling

and the (normalized) dimensionless NJL one for a q quark,
so that

�gt ’ mð3Þ
0

mt

� 6� 10�3; (16)

where we used mt ¼ 171:2 GeV and mð3Þ
0 ¼ 1 GeV. For

the bottom quark, it should be �gb �Oð1Þ. In any case, it
is required,

�gb ��gt ’ mð3Þ
0

mb

; (17)

where we ignored mð3Þ
0 =mt because of mt � mb. Concrete

models for obtaining such a isospin symmetry breakdown
in the third family are described in Appendix A.
Let us now turn to the generation of the realistic masses

for the second family. We assume that there exist FCN
interactions between the t and c quarks and similarly
between the b and s ones (see Fig. 2),

t� c��ð23Þ; b� s��ð23Þ: (18)

These one-loop diagrams yield the following masses for
charm and strange quarks:

mc ¼ mð2Þ
0 þ �ð23Þ

t mt; ms ¼ mð2Þ
0 þ �ð23Þ

b mb; (19)

where mð2Þ
0 � 100 MeV is the isospin symmetric mass for

the second family (see Sec. II A), and �ð23Þ
t;b are

�ð23Þ
tðbÞ �

C2g
2
tcðbsÞ

4�2

ð�ð34ÞÞ2
ð�ð23ÞÞ2 (20)

for �ð23Þ � �ð34Þ.
As described above, the ratio mb=mt ’ 1=40 is obtained

via the near-critical dynamics in this model. Now, taking

mð2Þ
0 ¼ 100 MeV and �ð23Þ

t ¼ �ð23Þ
b ¼ 1=100, we get

mc ¼ 100 MeVþmt=100� 1 GeV; (21)

ms ¼ 100 MeVþmb=100� 140 MeV: (22)

In this way, we can obtain the correct mass enhancement
for the charm quark via the large mt. Let us emphasize that

the presence of the isospin symmetric mass mð2Þ
0 �

100 MeV�ms is crucial here: with mð2Þ
0 � 100 MeV,

the ratio ms=mc would be close to mb=mt.
As to the horizontal FCN gauge bosons which couple to

the quarks of the 1st and 2nd families, we assume that they
are very heavy,

c� u��ð12Þ; s� d��ð12Þ; (23)
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with�ð12Þ * Oð1000 TeVÞ. As a result, their contributions
to the masses of the u and d quarks are very small.

C. The CKM mass matrix

So far we have neglected the family mixing effects.
Because the mixing angles between quarks from the differ-
ent families are small, such an approach can be considered
as a reasonable approximation for the description of gen-
erating quark masses in the second and third quark fami-
lies. Here we will turn to the structure of the CKM mass
matrix.

Recall that the number of the CP phases is three in the
4th family quark model, whereas the three generation
model has only one CP phase [16]. This can offer richer
phenomenology, for example, in the B physics. In this
paper, however, we ignore the CP violation and concen-
trate on the family mixing effects.

There are several approaches to this problem: (1) Mass
texture ansätze (for example, the Fritzsch-type mass matrix
[17], the democratic family mixing, etc.). (2) The Froggatt-
Nielsen mechanism [18]. (3) Dynamical approaches, e.g.,
ETC models [19], the top loops mechanism [20], etc. We
will employ a modification of the dynamical approach in
Ref. [19] that is appropriate for the model with the 4th
family.

Let us start from the down-type quark masses. We
assume that

(1) There exist horizontal FCN interactions with a mix-

ing of Vð1Þ
i and Vð1Þ

j gauge bosons related to two

different families i and j, one of which is the first
one (see Fig. 3). We further assume that the values of

all the relevant parameters (the masses of Vð1Þ
i and

Vð1Þ
j , and the gauge boson mixing parameters) are

around the scale �ð14Þ. In this case, we obtain natu-

rally a universal mass mð1Þ
off with mð1Þ

off �md.

(2) Similarly, when neither i nor j are 1, there exist
horizontal FCN interactions with a mixing for an-

other set of Vð2Þ
i and Vð2Þ

j gauge bosons. In this case,

the values of all the relevant parameters are assumed

to be around �ð24Þ. This leads to a universal mass

mð2Þ
off �ms.

We can then explicitly write the mass matrixMD for the
down-type quark as

MD ¼
md �1md �1md �1md

�1md ms �2ms �2ms

�1md �2ms mb �2ms

�1md �2ms �2ms mb0

0
BBB@

1
CCCA: (24)

The parameters �1;2 will be determined by jVusj and jVcbj
later. As to the diagonal mass terms, the values of ms, mb,
and mb0 are almost the same as the mass eigenvalues,
whereas it is required to adjust numerically the value of
md in order to obtain the correct mass eigenvalue for the
down quark.
For the up-type quarks, the mass matrix has a similar

structure with the replacement of md, ms, mb, mb0 by mu,
mc, mt, mt0 , respectively.
Since the mass matrix MD is symmetric, it can be

diagonalized by a single orthogonal matrix DL. Similarly,
the up-type quark mass matrix can be diagonalized by an
orthogonal matrix UL. The 4� 4 CKM matrix V4�4

CKM is

given by

V4�4
CKM ¼ Uy

LDL: (25)

Noting that md � ms � mb � mb0 , we approximately
obtain the matrix DL as

DL ’

1� �2
1

2 ðmd

ms
Þ2 �1

md

ms
�1

md

mb
�1

md

mb0

��1
md

ms
1� �2

1

2 ðmd

ms
Þ2 �2

ms

mb
�2

ms

mb0��1
md

mb
��2

ms

mb
1 �2

ms

mb0��1
md

mb0
��2

ms

mb0
��2

ms

mb0
1

0
BBBBBB@

1
CCCCCCA
;

(26)

where we took into account that the quadratic term
m2

d=m
2
s �Oð0:01Þ.

On the other hand, since numericallymu=mc � md=ms,
mu=mt � md=mb, and mc=mt � ms=mb, we can neglect
the off-diagonal entries ofUL in the 3� 3 part of the CKM
matrix. Then we get:

jVudj ’ jVcsj ’ 1� �2
1

2

�
md

ms

�
2
; (27)

jVtbj ’ 1; (28)

jVusj ’ jVcdj ’ �1

md

ms

; (29)

jVubj ’ jVtdj ’ �1

md

mb

; (30)

jVcbj ’ jVtsj ’ �2

ms

mb

: (31)

The relation jVub=Vusj ¼ ms=mb ¼ 0:02 is noticeable.
Note that the PDG value is jVub=Vusj ¼ 3:93�
10�3=0:2255 ¼ 0:0174 [1].

FIG. 3. FCN interactions with a gauge boson mixing. The
parameter � ¼ 1, 2 is described in text.
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By using jVusj ¼ 0:23 and jVcbj ¼ 0:04 [1], we fix the
values of �1;2,

�1 ¼ 23

md ðMeVÞ ; �2 ¼ 0:04�mb

ms

¼ 2: (32)

With these values of �1 and �2, and the masses of quarks
for DL and UL, we thereby obtain the 4� 4 CKM matrix:

V4�4
CKM ¼

0:97 0:23 �0:006 0:00009
�0:23 0:97 �0:04 �0:008
�0:003 0:04 1:0 0:02
�0:002 0:007 �0:02 1:0

0
BBB@

1
CCCA; (33)

where we used mt0 ¼ mb0 ¼ 300 GeV, which is respon-
sible only for the 4th column and row. Actually, the values
of jVudj, jVcsj, jVtbj, jVcdj, and jVtsj are ‘‘correct’’ [1].
Although our jVubj ¼ 0:006 and jVtdj ¼ 0:003 are a bit
different from the PDG values [1], the orders, jVubj �
jVtdj �Oð0:001Þ, are correct.

The 4th generation mixing terms are approximately
given by

jVt0dj ’ �1

md

ms

� �2

mc

mt0
� 0:23� �2

mc

mt0
�Oð10�3Þ; (34)

and

jVt0sj ’ jVt0bj ’ �2

mc

mt0
�Oð10�2Þ: (35)

Thus the contributions of t0 to the B0 � �B0 mixing are
roughly proportional to m2

t0 jV	
t0dVt0bj2 �m4

c=m
2
t0 � 10�2

for Bd and m2
t0 jV	

t0sVt0bj2 �m4
c=m

2
t0 for Bs. On the other

hand, the corresponding SM contributions are proportional
to m2

t jV	
tdVtbj2 ’ 6:410�5m2

t and m2
t jV	

tsVtbj2 ’
1:610�3m2

t , respectively. Therefore the 4th generation con-
tributions are negligible. Similarly, the processes b ! s�
and Z ! b �b are also suppressed.

Although the dynamics underlying the CKM matrix is
still far from being completely understood, it is noticeable
that by using a simple extension of the mechanism for
producing the quark masses used in Secs. II A and II B,
the essential features of the CKM matrix can be extracted.

D. Composite Higgs bosons

In this scenario, there potentially appear many compos-
ite Higgs bosons (compare with Refs. [6,7,21]). In the
scenario with the 4th family quarks, the masses of the
bound states of the t0 and b0 quarks should be of the order
of the EWSB scale. Since we consider the condensation
both of the t0 and b0, there appear at least two composite
Higgs doublets. For the 3rd family, we may estimate the
mass of the top-Higgs doublet (resonance) �t via the NJL
relation [6,7,22]:

M�t
��ð3Þ

�
2�gt
ln 1

2�gt

�
1=2 � 0:05�ð3Þ; (36)

where we used �gt � 6� 10�3. For the bottom-Higgs

resonance�b, it should beM�b
��ð3Þ, i.e., it is very heavy

and unstable. Note that the quark structures of the compo-

sites �t and �b are �t � ð�ð3ÞÞ�2tRðt; bÞL and �b �
ð�ð3ÞÞ�2bRðb;�tÞL, respectively.
Note that in the case of the scenario with elementary

Higgs fields responsible for the EWSB, there should ap-
pear (beside the elementary Higgs fields) at least one
composite Higgs resonance �t. In the TC scenario, such
a Higgs resonance exists in addition to technihadrons.

Since we assume that the scales �ð1Þ and �ð2Þ (related to
the 1st and 2nd families) are very large, the corresponding
Higgs composites should be very heavy and unstable, and
therefore they are irrelevant for the electroweak dynamics.

III. PHENOMENOLOGICAL ANALYSIS

In this section, we describe a phenomenology in the
simplest model with the 4th family of the class described

in Sec. II. In this model, the scale �ð3Þ is assumed to be
sufficiently large, such that the mass M�t

(36) is much

heavier than the masses of the Higgs doublets composed of
the t0 and b0. Otherwise, the mass of the top-Higgs field �t

would be also of the order of the EWSB scale. In that case,
there appear three relevant Higgs doublets. This interesting
possibility will be considered elsewhere.
For vt0 ¼ vb0 , the PS formula (8) yields mt0 ¼ mb0 �

0:3 TeV with�ð4Þ ¼ 10 TeV. More precisely, by using the
RGE’s [23] with the compositeness conditions [11,24], we
obtain

mt0 ¼ 0:292 TeV; mb0 ¼ 0:291 TeV; (37)

which gives the T-parameter contribution Tf ¼ 10�5.

Smaller �ð4Þ provides larger mt0 and mb0 with relaxing
the cost of the fine-tuning, due to a combination of the
gap equation and the PS formula,

v2

ð�ð4ÞÞ2 ¼ N

8�2

�
2� 1

gefft0
� 1

geffb0

�
’ N

4�2

�
1� 1

gefft0

�
; (38)

where we used near-equality for the effective dimension-
less NJL couplings: geffb0 ’ gefft0 , because mt0 ’ mb0 .

As to the masses of the Higgs bosons composed of t0 and
b0, we take the mass MA of the CP odd Higgs as a free
parameter. The rest masses are determined through the
RGE’s [23,24]. For example, we may take

MA ¼ 0:30; 0:40; 0:50; 0:60 TeV; (39)

and in this case, we obtain the charged and CP even Higgs
masses,

MH� ¼ 0:43; 0:50; 0:59; 0:67 TeV; (40)

Mh ¼ 0:42; 0:44; 0:46; 0:47 TeV; (41)

MH ¼ 0:43; 0:50; 0:59; 0:67 TeV; (42)
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respectively. Note that tan� � vt0=vb0 ¼ 1 in our model.
The HZZ-, h�t0t0- and H�t0t0- couplings are proportional to
[25]

cosð�� �Þ ¼ �0:02;�0:002;�0:0009;�0:0005; (43)

cos�= sin� ¼ 0:98; 1:0; 1:0; 1:0; (44)

sin�= sin� ¼ �1:0;�1:0;�1:0;�1:0; (45)

respectively, where � denotes the mixing angle of the two
CP even Higgs bosons. We can immediately read the
relative h �b0b0- and H �b0b0-couplings, � sin�= cos� and
cos�= cos�, from above, because of tan� ¼ 1 in our
model. Because of MH� ’ MH in this parameter regime,
the contributions of the Higgs bosons to the S- and
T-parameters are small, at most SH ¼ 0:03 and TH ¼
�0:05 for the reference value of the SM Higgs boson
Mref

h ¼ 300 GeV.

Let us fix mð3Þ
0 ¼ 1:0 GeV and thereby obtain

�gt ¼ mð3Þ
0

mt

¼ ð5:8� 0:1Þ � 10�3; (46)

�gb ¼ mð3Þ
0

mb

¼ 0:24þ0:00
�0:01; (47)

with the error bars. The Higgs masses are estimated as

M�t
’ �ð3Þ

�
2�gt
ln 1

2�gt

�
1=2 ¼ 0:051�ð3Þ; (48)

M�b
’ �ð3Þ

�
2�gb
ln 1

2�gb

�
1=2 ¼ 0:80�ð3Þ; (49)

where we used only the central value. Recall that it is
assumed in the present model that the top-Higgs �t is

decoupled. It requires, say, M�t
* 1 TeV, i.e., �ð3Þ *

20 TeV. We also find

�ð34Þ ’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
t0t

4�2

mt0

mð3Þ
0

vuut ¼ 2:7
ffiffiffiffiffiffi
C2

p
gt0t�

ð4Þ; (50)

’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
b0b

4�2

mb0

mð3Þ
0

vuut ¼ 2:7
ffiffiffiffiffiffi
C2

p
gb0b�

ð4Þ: (51)

For the masses of the 2nd family, assuming �ð23Þ
t ¼

�ð23Þ
b � �ð23Þ, the following relation is crucial;

�ð23Þ ¼ mc �ms

mt �mb

¼ ð7:0þ0:7
�0:9Þ � 10�3; (52)

so that we obtain

mð2Þ
0 ¼ ms � �ð23Þmb ¼ 75þ30

�39 MeV; (53)

C2g
2
tcðbsÞ

ð�ð34ÞÞ2
ð�ð23ÞÞ2 ’ 0:28þ0:03

�0:04; (54)

i.e.,

�ð23Þ ¼ ð1:9� 0:1Þ ffiffiffiffiffiffi
C2

p
gtc�

ð34Þ; (55)

¼ ð1:9� 0:1Þ ffiffiffiffiffiffi
C2

p
gbs�

ð34Þ: (56)

The mass mð2Þ
0 yields

�ð24Þ ’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
t0c

4�2

mt0

mð2Þ
0

vuut ¼ ð10þ4
�2Þ

ffiffiffiffiffiffi
C2

p
gt0c�

ð4Þ; (57)

’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
b0s

4�2

mb0

mð2Þ
0

vuut ¼ ð10þ4
�2Þ

ffiffiffiffiffiffi
C2

p
gb0s�

ð4Þ: (58)

Finally, for the 1st family, we directly get

�ð14Þ ’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
t0u

4�2

mt0

mð1Þ
0

vuut ¼ 61
ffiffiffiffiffiffi
C2

p
gt0u�

ð4Þ; (59)

’ �ð4Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2g

2
b0d

4�2

mb0

mð1Þ
0

vuut ¼ 61
ffiffiffiffiffiffi
C2

p
gb0d�

ð4Þ; (60)

where we used

mð1Þ
0 ¼ 2:0 MeV: (61)

Note that in order to get a more realistic ratio,

mu

md
¼ 0:35–0:60; (62)

one may tune g2t0u=g
2
b0d to the latter. One should however

remember that the eigenvalues mu and md are determined
after diagonalizing the quark mass matrices discussed in
Sec. II C. In general, the numerical calculations of mu and
md beyond the order-estimates are highly sensitive to the
fine-structure of the mass matrices.
In summary, the suppression factors for getting the

masses mð3Þ
0 ¼ 1:0 GeV, mð2Þ

0 ¼ 75 MeV and mð1Þ
0 ¼

2:0 MeV should be equal to

�ð3Þ
t0 ¼ mð3Þ

0

mt0
¼ 3:4� 10�3;

�ð3Þ
b0 ¼ mð3Þ

0

mb0
¼ 3:4� 10�3;

(63)

�ð2Þ
t0 ¼ mð2Þ

0

mt0
¼ 2:6� 10�4;

�ð2Þ
b0 ¼ mð2Þ

0

mb0
¼ 2:6� 10�4;

(64)
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�ð1Þ
t0 ¼ mð1Þ

0

mt0
¼ 6:8� 10�6;

�ð1Þ
b0 ¼ mð1Þ

0

mb0
¼ 6:9� 10�6:

(65)

They are obtained by taking appropriate values for the

ratios �ði4Þ=�ð4Þ as above.
Roughly speaking, in our scenario, the masses of t0 and

b0 are

mt0 ’ 300 GeV; mb0 ’ 300 GeV; (66)

the cutoff scale is

�ð4Þ � 10 TeV; (67)

and the other FCN scales are estimated as

�ð14Þ � 100�ð4Þ; �ð24Þ � 10�ð4Þ; (68)

�ð34Þ � 3�ð4Þ; �ð23Þ � 5�ð4Þ: (69)

Although the exchange of�ð34Þ contributes to Rb, it is tiny,

	Rb=Rb � 10�6 for �ð34Þ ¼ 30 TeV with C2g
2
b0b � 1. The

constraint from the B0
s- �B

0
s mixing suggests �ð23Þ *

100 TeV, so that the above estimate �ð23Þ � 5�ð4Þ is a bit
dangerous. (If we take a smaller mð3Þ

0 or a bigger �ð4Þ, we
can evade this problem.)
As we discussed in Sec. II C, the constraints from the

B0- �B0 mixing, b ! s� and Rb via the t0 loop are sup-
pressed, because the relevant mixing angles are tiny,
jVt0dj � jVcdjmc=mt0 � 10�3, and jVt0sj ’ jVt0bj �
mc=mt0 � 10�2. The contributions of the charged Higgs
are also suppressed.
The numerical estimates of all the relevant parameters of

the model for the values �ð4Þ ¼ 30 TeV, �ð4Þ ¼ 20 TeV,

and �ð4Þ ¼ 10 TeV, �ð4Þ ¼ 5 TeV are presented in
Tables I and II, respectively.

TABLE I. Numerical estimates for �ð4Þ ¼ 20, 30 TeV.

�ð4Þ (TeV) 30 30 20 20

mt0 (TeV) 0.26 0.26 0.27 0.27

mb0 (TeV) 0.26 0.26 0.27 0.27

mð3Þ
0 (GeV) 1.0 2.0 1.0 2.0

�gt 5:8� 10�3 0.012 5:8� 10�3 0.012

�gb 0.24 0.48 0.24 0.48

M�t
=�ð3Þ 0.051 0.079 0.051 0.079

M�b
=�ð3Þ 0.80 4.4 0.80 4.4

ð�ð34ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 6.8 3.2 6.8 3.6

mð2Þ
0 (MeV) 75þ30

�39 75þ30
�39 75þ30

�39 75þ30
�39

�ð23Þ ð7:0þ0:7
�0:9Þ � 10�3 ð7:0þ0:7

�0:9Þ � 10�3 ð7:0þ0:7
�0:9Þ � 10�3 ð7:0þ0:7

�0:9Þ � 10�3

ð�ð24ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 88þ96

�25 88þ96
�25 92þ99

�27 92þ99
�27

ð�ð23ÞÞ2=½C2g
2
qqð�ð34ÞÞ2
 3:6þ0:5

�0:3 3:6þ0:5
�0:3 3:6þ0:5

�0:3 3:6þ0:5
�0:3

mð1Þ
0 (MeV) 1 2 1 2

ð�ð14ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 6:6� 103 3:2� 103 6:9� 103 3:5� 103

TABLE II. Numerical estimates for �ð4Þ ¼ 5,10 TeV.

�ð4Þ (TeV) 10 10 5 5

mt0 (TeV) 0.29 0.29 0.32 0.32

mb0 (TeV) 0.29 0.29 0.32 0.32

mð3Þ
0 (GeV) 1.0 2.0 1.0 2.0

�gt 5:8� 10�3 0.012 5:8� 10�3 0.012

�gb 0.24 0.48 0.24 0.48

M�t
=�ð3Þ 0.051 0.079 0.051 0.079

M�b
=�ð3Þ 0.80 4.4 0.80 4.4

ð�ð34ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 7.3 3.6 8.4 4.0

mð2Þ
0 (MeV) 75þ30

�39 75þ30
�39 75þ30

�39 75þ30
�39

�ð23Þ ð7:0þ0:7
�0:9Þ � 10�3 ð7:0þ0:7

�0:9Þ � 10�3 ð7:0þ0:7
�0:9Þ � 10�3 ð7:0þ0:7

�0:9Þ � 10�3

ð�ð24ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 99þ106

�29 99þ106
�29 109þ119

�31 109þ119
�31

ð�ð23ÞÞ2=½C2g
2
qqð�ð34ÞÞ2
 3:6þ0:5

�0:3 3:6þ0:5
�0:3 3:6þ0:5

�0:3 3:6þ0:5
�0:3

mð1Þ
0 (MeV) 1 2 1 2

ð�ð14ÞÞ2=½C2g
2
q0qð�ð4ÞÞ2
 7:4� 103 3:7� 103 8:3� 103 4:1� 103
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The following comments are in order. (i) While the
contribution of the particles of the 4th family to the
T-parameter is almost vanishing in the case of degenerate
masses of both the quarks and the leptons, their contribu-
tion to the S-parameter is a bit large, Sf � 0:2, if no

Majorana neutrinos are present. One can avoid this diffi-
culty by introducing a Majorana neutrino with a mass
smaller than that of the charged lepton [26,27]. At the
same time, the T-parameter can be kept small even in
this case [26,28,29]. (ii) In the present model, the maxi-

mum value for the mass of t0 and b0 is realized for �ð4Þ ¼
mt0ðb0Þ. The PS formula (8) yields mðmaxÞ

t0ðb0Þ ’ 1 TeV for it.

The fact that mt0 ’ mb0 < 1 TeV in this model is notice-
able: the 4th family quarks with masses of 1 TeVor lighter
can be discovered at LHC [30].

IV. DISCUSSION

The two crucial ingredients in the class of models de-
scribed in this paper are (i) the assumption that the EWSB
dynamics leads to the isospin symmetric quark mass spec-
trum, with the masses of the order of the down-type quarks,
and (ii) the existence of strong (although subcritical) hori-
zontal diagonal interactions for the t quark plus horizontal
flavor-changing neutral interactions between different fam-
ilies. The signature of such dynamics is the presence of
composite Higgs bosons. It is noticeable that this dynamics
can be build into the scenarios with different EWSB
mechanisms.

The concrete model with the 4th family considered
above shows that these two ingredients quite naturally
lead to the realistic masses for quarks. Moreover, as was
pointed out in Sec. II, in the present approach it is neces-

sary to choose the mass mð2Þ
0 (generated by the EWSB

dynamics) to be of the order of the mass of the s quark:
only in this case one can obtain the correct mc=ms ratio.
We also demonstrated that by using a simple extension of
the present mechanism for producing the quark masses, the
essential features of the CKM matrix can be extracted.
Another noticeable feature in the model is the absence of
fine-tuning: the near criticality (1 part in 102) of the cou-
pling of the t quark is determined by the small ratio
mb=mt ’ 2:5� 10�2.

As the next steps, it would be important to include
leptons and to study the dynamics underlying the CKM
matrix in more detail. As to the leptons, the fact that the
masses of the charged leptons are of the order of the masses
of the corresponding down-type quarks suggests that it is
not unreasonable to assume that the origin of the former is
similar to that of the latter. The main specific issues for
leptons are of course connected with neutrinos, in particu-
lar, with a large mixing between the muon and tau neu-
trinos and a possible existence of Majorana neutrinos. Note
that the latter occur quite naturally in the 4th family models

[3]. Last but not least, it would be interesting to embed the
present scenario into an extra dimensional one [4,31].
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APPENDIX A: MORE ABOUT ISOSPIN
SYMMETRY BREAKING IN THE THIRD FAMILY

In this section, we will briefly describe several models
which could provide strong isospin symmetry breaking in
the third family.
For example, we here employ the first version of the

topcolor model [32,33]. In this case, the QCD sector in the
SM is extended to a SUð3Þ1 � SUð3Þ2 one, with a stronger
coupling for the SUð3Þ1. The SUð3Þ1 and SUð3Þ2 charges
are assigned as

ðu; dÞL ! ð1; 3Þ; uR ! ð1; 3Þ; dR ! ð1; 3Þ;
(A1)

ðc; sÞL ! ð1; 3Þ; cR ! ð1; 3Þ; sR ! ð1; 3Þ; (A2)

ðt; bÞL ! ð3; 1Þ; tR ! ð3; 1Þ; bR ! ð1; 3Þ; (A3)

ðt0; b0ÞL ! ð3; 1Þ; t0R ! ð3; 1Þ; b0R ! ð3; 1Þ;
(A4)

while their SUð2ÞL �Uð1ÞY charges are conventional.
Recall also that for the anomaly cancellation, SUð2ÞL
singlet fermions are required,

QL ! ð1; 3Þ; QR ! ð3; 1Þ; (A5)

with the same hypercharge as bR [32]. Besides this top-
color scheme, we also introduce an additional Uð1Þ4F
gauge boson which couples (with the same strength) only
to the fourth family. We may assign the Uð1Þ4F charge as
the Uð1ÞB�L one, for example.
Then, after the spontaneous breakdown of SUð3Þ1 �

SUð3Þ2 down to SUð3Þc at the scale �ð3Þ ( ¼ �ð4Þ in this
case), the NJL couplings for the top and bottom are

g2ccot
2
=ð�ð3ÞÞ2 and g2c=ð�ð3ÞÞ2, respectively, where gc

represents the QCD coupling constant and 
 is the mixing
angle of the SUð3Þ1;2 gauge bosons. Since, unlike the top-
color model, we utilize the subcritical dynamics, the fol-
lowing relation holds,

3

2�
cot2
�cð�ð3ÞÞ & 1: (A6)

Therefore Eq. (17) now reads

3

2�
ðcot2
� 1Þ�cð�ð3ÞÞ ’ mð3Þ

0

mb

; (A7)
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where �cð�ð3ÞÞ ¼ g2c=ð4�Þ is the QCD coupling at the

scale �ð3Þ.
As to t0 and b0, in order to make their NJL couplings

supercritical, the contribution from Uð1Þ4F is crucial,

3

2�
cot2
�cð�ð4ÞÞ þ 3

2�
�4Fð�ð4ÞÞ * 1: (A8)

where �4Fð�ð4ÞÞ ¼ g24F=ð4�Þ is the gauge coupling of

Uð1Þ4F at the scale �ð4Þð¼ �ð3ÞÞ.
In this case, the scenario with three Higgs doublets as the

composite fields of t0, b0 and t is likely.

For a model with�ð3Þ * �ð4Þ, we may further extend the
QCD sector,

SUð3Þ1 � SUð3Þ2þb � SUð3Þt � SUð3Þ4; (A9)

with the following quark representations:

ðu;dÞL !ð3;1;1;1Þ; uR !ð3;1;1;1Þ; dR !ð3;1;1;1Þ;
(A10)

ðc;sÞL !ð1;3;1;1Þ; cR !ð1;3;1;1Þ; sR !ð1;3;1;1Þ;
(A11)

ðt;bÞL !ð1;1;3;1Þ; tR !ð1;1;3;1Þ; bR !ð1;3;1;1Þ;
(A12)

ðt0;b0ÞL !ð1;1;1;3Þ; t0R !ð1;1;1;3Þ; b0R !ð1;1;1;3Þ:
(A13)

The charges of the SM gauge group SUð2ÞL �Uð1ÞY are
conventional. For anomaly cancellation, we also introduce
SUð2ÞL-singlet quarks,

QL ! ð1; 3; 1; 1Þ; QR ! ð1; 1; 3; 1Þ; (A14)

with the same hypercharge as bR.

At the scale �ð3Þ, a part of the gauge symmetry is
spontaneously broken down to a diagonal subgroup,

SUð3Þ2þb � SUð3Þt ! SUð3Þ0; (A15)

and also, at the scale �ð4Þ, the rest part is broken down to

SUð3Þ1 � SUð3Þ4 ! SUð3Þ00: (A16)

The two gauge groups are broken down to the conventional

QCD at some scale �c (��ð4Þ),

SUð3Þ0 � SUð3Þ00 ! SUð3Þc: (A17)

The gauge coupling constants then satisfy the following
relations,

1

g22c
þ 1

g2tc
¼ 1

g02c
;

1

g21c
þ 1

g24c
¼ 1

g002c
; (A18)

and

1

g02c
þ 1

g002c
¼ 1

g2c
; (A19)

where gic (i ¼ 1, 2, t, 4), g0c and g00c denote the gauge
couplings for SUð3Þ1;ð2þbÞ;t;4, SUð3Þ0 and SUð3Þ00, respec-
tively. Let us introduce the mixing angles 
0c, 
00c and 
c
between SUð3Þ2þb and SUð3Þt, between SUð3Þ1 and
SUð3Þ4, and between SUð3Þ0 and SUð3Þ00, respectively. At
the scale�ð3Þ, the four-top interaction is generated with the
strength

Gt � g02c cot2
0c=ð�ð3ÞÞ2; (A20)

whereas the strengths of the NJL interactions for t0 and b0
are

G4 � g002c cot2
00c=ð�ð4ÞÞ2; (A21)

provided at the scale �ð4Þ. When g0c � g00c � gc, i.e.,
tan
c � 1, the four-fermion interactions generated at the
scale �c are irrelevant. In our scenario, we require that Gt

and G4 are subcritical and supercritical, respectively, so
that

3

2�

cot2
0c
sin2
c

�cð�ð3ÞÞ & 1; (A22)

at �ð3Þ, and

3

2�

cot2
00c
cos2
c

�cð�ð4ÞÞ * 1; (A23)

at �ð4Þ, where we expressed the gauge couplings g0c and g00c
through gc and the mixing angle 
c, i.e., g

0
c ¼ gc= sin
c

and g00c ¼ gc= cos
c. Note that the NJL couplings for the
3rd family are restricted by the current mass enhancement
relations. Equation (17) then reads

3

2�

cot2
0c � 1

sin2
c
�cð�ð3ÞÞ ’ mð3Þ

0

mb

: (A24)

Another possibility for the isospin symmetry breaking is
to use theUð1Þ-tilting mechanism, which can be realized in
the model with extended QCD and hypercharge sectors,
SUð3Þ1 � SUð3Þ2 �Uð1Þ1 �Uð1Þ2 [21,34].
In this paper, we did not discuss the origin of the FCN

interactions. For such a purpose, concrete ETC models
could provide a useful hint [19,27,35].
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