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The next generation of gravitational wave (gw) detectors is expected to fully enter into the quantum

regime of force and displacement detection. With this aim, it is important to scale up the experiments on

opto-mechanical effects from the microscopic regime to large mass systems and test the schemes that

should be applied to reach the quantum regime of detection. In this work we present the experimental

characterization of a prototype of massive gw detector, composed of two oscillators with a mass of the

order of the kg, whose distance is read by a high finesse optical cavity. The mechanical response function

is measured by exciting the oscillators through modulated radiation pressure. We demonstrate two effects

crucial for the next generation of massive, cryogenic gw detectors (DUAL detectors): (a) the reduction of

the contribution of ’local’ susceptibility thanks to an average over a large interrogation area. Such effect is

measured on the photo-thermal response thanks to the first implementation of a folded-Fabry-Perot cavity;

(b) the ’backaction reduction’ due to negative interference between acoustic modes. Moreover, we obtain

the active cooling of an oscillation mode through radiation pressure, on the described mechanical device

which is several orders of magnitude heavier than previously demonstrated radiation-pressure cooled

systems.
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I. INTRODUCTION

Ground-based gravitational wave detectors are tradition-
ally classified into large baseline interferometers and reso-
nant antennas. Recently, a new class of gw detectors has
been proposed, based on huge masses kept at cryogenic
temperature and called DUAL detectors [1–6]. At differ-
ence from previous massive cryogenic antennas (such as
Weber bars), the DUAL system does not aim at reaching
the best peak sensitivity in a narrow band around a reso-
nance frequency, but it takes advantage of elastic forces to
achieve a useful sensitivity in a wide frequency range. For
this purpose, it is no longer equipped with resonant me-
chanical amplifiers, and it needs a very sensitive readout.
The goal is realizing a detector which covers the acoustic
frequency region (1–5 kHz).

A DUAL gw detector exploits two oscillation modes of a
mechanical system with a readout symmetric with respect
to the center of mass. Because of the geometry, the re-
sponses to the readout force of the two modes must be
summed, while the responses to the tidal force of the gw
are subtracted. In the frequency region between the two
resonance frequencies, the susceptibilities of the two
modes are in antiphase, giving a reduced response to the
readout force and an enhanced response to the gw [2,3]
(’backaction reduction’). Such behavior has been recently
verified and explored experimentally in Ref. [4], where the
authors study the mechanical response to radiation pres-
sure of a cm-size plano-convex mirror which is part of a

high Finesse optical cavity. The internal modes of the
mirror analyzed are in the �106 Hz frequency and
�10�3 kg mass range. It is worth pointing out that the
’backaction reduction’ mechanism is also the basis for a
proposed scheme of quantum nondemolition
measurement.
Two further important effects are considered in the

design of DUAL: (a) a clever readout geometry allows to
be blind to some low-frequency acoustic modes that would
bring thermal and back-action noise peaks in the useful
frequency range (mode selectivity); (b) a broad interrog-
ation area enables to reduce the effect of ’local’ deforma-
tions due to thermal motion and readout force, i.e., from a
different point of view, the effect of high frequency modes
(wide area readout).
Different configurations of DUAL have been proposed

and studied: two nested spheres [1], where the relevant
modes are the first quadrupolar mode of the inner and outer
sphere; two nested cylinders [3], again acting on the first
quadrupolar mode of the nested bodies; a single hollow
cylinder [5], exploiting its first and second quadrupolar
modes; a symmetric set of cylinders [6], where the first
DUAL mode is given by the elastic link between them and
the second one by their first oscillation mode.
For any configuration, the possibility of an optical read-

out is extremely useful for its potentiality to reach a
detection sensitivity at the standard quantum limit [7], or
even surpass it [8]. An optical scheme expressly conceived
for the application in a DUAL detector is proposed and
studied in Ref. [9]. The idea is ’folding’ a Fabry-Perot
cavity in order to interrogate a large detector area with a*Corresponding author: marin@fi.infn.it
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beam bouncing several times between the sensing masses,
before being reflected back on itself by the end mirror to
close the cavity. Such a kind of folded Fabry-Perot (FFP)
has never been implemented experimentally.

An interesting possibility for boosting the sensitivity of
massive detectors to short bursts is suggested by Vitali
et al. [10]. They show that, in some conditions, periodic
cycles of fast feedback cooling of the sensitive mechanical
mode, followed by a measurement period lasting a fraction
of the temperature recovery time, brings an improvement
of the sensitivity by even an order of magnitude.

Cooling of a mechanical oscillator by means of radiation
pressure [11] has been recently demonstrated on micro-
resonators using both active techniques (’cold damping’)
[12,13], with feedback acting on the optical power imping-
ing on the mirror, or passive schemes (’self-cooling’),
exploiting the mechanical effect of red-detuned laser ra-
diation [14–17]. The above results were obtained on effec-
tive oscillator masses of less than 1 g, and frequencies in
the 104–108 Hz range. A recent work [18] describes the
cooling of a gram-size mirror held by a cantilever flexure,
with a resonance frequency of �100 Hz. Here the cantile-
ver damping is obtained through a so-called hybrid
scheme, exploiting active feedback on the cavity length
which actually modifies the radiation pressure exerted by
detuned laser radiation. The cooling effect can be attrib-
uted to the optical spring originated by radiation pressure,
modified (with an added reactive component) by feedback.
A similar hybrid technique is used also by Corbitt et al.
[19] to cool a suspended �1 g mirror, with the difference
that here the detuning is modified by feedback acting on
the laser frequency instead of the cavity length. However,
the system explored in Ref. [19] is very peculiar: the
optical spring is so strong that it completely determine
the oscillation frequency (around �1 kHz) and the mirror
confinement is provided by the optical potential rather than
elastic forces.

A completely different cooling technique has been re-
cently applied to the �1 kHz fundamental mode of the
3 tons aluminum bar of the AURIGA detector [20]. In that
work the feedback is electrical and is applied to the ca-
pacitor of the mechanical readout. Starting from a cryostat
temperature of 4.2 K, the authors obtain a record tempera-
ture of 0.17 mK.

Because of the innovative DUAL concept, on the one
hand a preliminary experimental study on a small-scale
prototype is required. On the other hand, it is important to
scale up the experiments on optomechanical effects from
the microscopic to the macroscopic range of masses and in
the kHz frequencies, and test the schemes that should be
applied to reach the quantum regime of detection. In this
work we present the experimental characterization of a
prototype of DUAL detector, composed of two oscillators
with a mass of the order of the kg, whose distance is read
by a high finesse optical cavity. The mechanical response

function is measured by exciting the oscillators through
modulated radiation pressure. We demonstrate two of the
above described effects crucial for the DUAL detectors:
(a) the reduction of the contribution of ’local’ susceptibil-
ity due to average over a large interrogation area. Such
effect is measured on the photo-thermal response [21,22]
thanks to the first implementation of a folded-Fabry-Perot
cavity [9]; (b) the ’backaction reduction’ due to negative
interference between acoustic modes. Moreover, we obtain
the active cooling of an oscillation mode through radiation
pressure, on our device, which is orders of magnitude
heavier than any previously demonstrated radiation-
pressure cooled system.

II. EXPERIMENTAL SETUP

The oscillators are made with two 135 mm wide, 30 mm
high aluminum masses (test masses), fixed to frames along
their short edge by�mm thick lateral membranes. The first
mass is 30 mm thick and 0.33 kg heavy; the second one is
40 mm thick and 0.44 kg heavy. The two oscillators are
carved from single aluminum blocks, whose external parts
are kept together by INVAR spacers and represent the
external frames of the structure (see Fig. 1). Two rows of
12.7 mm diameter mirrors form the FFP: five on one mass,
including a flat, 130 ppm transmission input mirror and a
1 m radius end mirror angled by 18�, and four flat mirrors
on the opposite mass. The distance between opposite mir-
ror surfaces is D ¼ 20 mm. The input mirror is positioned
on the outer side of the 30 mm thick mass with respect to
the other mirrors of the row, for easier alignment. The FFP
cavity length is L ¼ 200 mm. Because of the non-normal
reflections, for each longitudinal mode the s-polarization
resonance frequency is detuned by 6 MHz from the
p-polarization resonance (the mirror coating is optimized
for normal incidence), with no appreciable linewidth dif-
ference. The prototype is placed on a cantilever mechanical
suspension in a thermally stabilized vacuum chamber.
The mechanical properties of the two coupled oscillators

have been characterized by positioning accelerometers on
the two frames and analyzing the response to a global
mechanical excitation. A comparison with a Finite
Element Method (FEM) model allows us to identify the
peaks corresponding to the translation and torsion modes
of the two masses (their shapes are shown in Fig. 4. In
particular, the translation modes are found at�800 Hz (for
the heavier mass) and �1200 Hz (for the lighter mass).
The same FEM analysis gives the effective masses of the
translation modes, excited and read on a small circular area
corresponding to the central mirrors. The results are, re-
spectively, 0.31 kg and 0.41 kg, not far from the physical
masses.
The experimental setup for the opto-mechanical charac-

terization of the prototype is sketched in Fig. 2. The light
source is a cw Nd:YAG laser working at 1064 nm. After a
40 dB optical isolator, the laser radiation is split into two
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beams. On the first one, a resonant electro-optic modulator
(EOM1) provides phase modulation at 13.3 MHz with a
depth of about 1 rad used for the Pound-Drever-Hall [23]
(PDH) detection scheme. The light is then transmitted by a
polarization maintaining optical fiber and a second optical
isolator (O.I.1). The second beam can be shifted in fre-
quency by means of two acousto-optic modulators (AOM)
and modulated in amplitude by an EOM (EOM2) followed
by an optical isolator (O.I.2). We use, respectively, the þ1
and �1 diffracted orders of the AOMs, so that the total
frequency displacement corresponds to the difference of
the AOM frequencies and can be tuned by several MHz
around zero. After O.I.2, part of the second beam is de-
tected by a photodiode (PD2) for monitoring its amplitude
modulation. The two beams are combined with orthogonal
polarizations in a polarizing beam-splitter and sent to the
folded optical cavity. A quarter-wave plate allows us to
optimize the matching of the polarization to the cavity
modes. The reflected first beam, on his back path, is

deviated by the input polarizer of the O.I.1 and collected
by a photodiode (PD1) for the PDH detection. This PDH
signal is used for laser frequency locking, while the second
beam is tuned across the resonance using the AOMs. Even
when both beams are resonant with respect to the respec-
tive polarization modes, their frequency splitting allows to
eliminate any spurious interference and cross talk.
The displacement noise spectrum has been obtained

directly from the Pound-Drever signal with the laser
weakly locked on the cavity, and stopping the second
beam. The signal is calibrated by modulating the laser
frequency through its internal piezoelectric crystal, with
a depth and a modulation frequency smaller than the FFP
cavity linewidth, and using a phase-sensitive detection on
the PDH signal. The laser piezoelectric crystal is itself
calibrated by observing the sidebands at 13.3 MHz on a
wide, slow enough scan. The PDH calibration procedure,
performed varying the modulation frequency, allows also
to correct the data for the servo loop.
In order to characterize the response of the FFP to

variations of the intracavity power, the laser is weakly
locked on the cavity using the first beam while the second
beam is amplitude modulated at different frequencies. The
extraction of the cavity response is obtained again from the
PDH signal. The signal from PD2 and PD1 are acquired
simultaneously with a digital oscilloscope, and succes-
sively elaborated to infer the component synchronous
with the modulation. The depth of the intracavity power
modulation is calculated from the signal of PD2 by taking

FIG. 2 (color online). Scheme of the experimental apparatus.
O.I.: optical isolator; AOM: acousto-optic modulator; EOM:
electro-optic modulator; H: half-wave plate; Q: quarter-wave
plate; PD: photodiode; PBS: polarizing beam splitter. The double
arrows indicate the translation motion of the test masses. The
servo loops shown with dashed lines are only used in the cooling
experiment, alternatively in the two configurations (with feed-
back acting in the frequency or in the amplitude of the cooling
beam).

FIG. 1. Photos of our prototype double oscillator with folded
Fabry-Perot readout. (a) The two frames, with the oscillating
masses in the center; the masses are connected to the frames by
leaving lateral membranes on the back of the frames. (b) Three
mirrors of a row of five are fixed on one mass (in Figs. a) and (c)
one mirror is left as reference). (c) The device is assembled with
INVAR spacers.
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into account the mode matching and the cavity coupling
factor. The latter is inferred from the depth of the dip in the
reflected beam when scanning on the resonance, and it is
consistent with the independent measurements of cavity
Finesse and input mirror transmission.

A first important test concerns the optical properties of
the FFP configuration, that had not been implemented
before. We could indeed obtain a mode matching of 93%
(comparable with that obtained with a simple cavity) and a
Finesse of 6000 (linewidth 125 kHz) with an intracavity
optical power of the order of 1 W, in agreement with a
calculation based on the independently measured losses of
the mirrors.

III. OPTO-MECHANICAL CHARACTERIZATION

A. Displacement noise spectrum

The cavity length noise spectrum evidences the me-
chanical modes directly coupled to the optical cavity
(i.e., modes changing the intracavity optical path).
Among them, it is possible to recognize the lower order
translation and torsion modes, previously identified in the
mechanical characterization of the cavity (Fig. 4). These
mechanical resonances emerge from a background given
by the free-running laser frequency noise (in the frequency
region of interest, it is approximately 108=f2 Hz2=Hz
where f is the frequency expressed in Hz).

The vertical scale in Fig. 4 is expressed in terms of
spectral density of variations �L of the cavity optical
length L (measured from the input mirror to the end
mirror), which are directly inferred from the measured
spectrum using the calibration procedure described in the
previous section. For an intuitive understanding, the sys-
tem can be approximated by infinitely rigid masses linked
with massless membranes to a still frame. With this
scheme, the translation modes corresponds to pure trans-
lations of the masses on the cavity plane and perpendicu-
larly to the mirror surfaces, as shown by arrows in Fig. 2. In
this case, simple geometrical considerations (illustrated in
Fig. 3) lead to the relation

�L ¼ 8 cos��D; (1)

where �D is the (small) variation of the distance between
the two masses, �L is the corresponding change in the
cavity optical length, and � is the incidence angle on the
folding mirrors (18� in our case). The expression (1),
inverted, can be used to convert the measured displacement
from �L to �D. In this way, from the measurement in
Fig. 4 we can directly deduce the displacement of ’ideal’
translation modes, while for other mechanical modes one
can only see in the spectrum the corresponding fluctuations
of the cavity length. In the approximated scheme with rigid
masses, the relevant torsion modes correspond to rotations
of the mass around an horizontal (modes a, b in Fig. 4) or a
vertical axis (mode d in the figure). In this approximation,
such modes do not change the cavity length at the first

order in the angular motion. Therefore, the system should
be completely blind to the torsion modes, that are excited
and detected only thanks to deformations in the masses and
frames.
The mechanical quality factors of the modes, measured

from their spectral width, are, respectively, 1800 (heavy
mass translation mode at 795 Hz), 850 (light mass trans-
lation mode at 1190 Hz), and 310 (heavy mass torsion
mode around a vertical axis, at 1166 Hz).

FIG. 3 (color online). Scheme of the optical length change in
the case of a mass displacement �D (left) or a photo-thermal
deformation �x (right). In the case of the folding mirror, the path
change is (considering the right panel) ðad� abcÞ ¼ 2 cos��x,
while for the end mirror it is simply �x. The incidence angle
(18� in our setup) is exaggerated for clearness.

FIG. 4 (color online). Spectral density of the cavity length
fluctuations. Some of the peaks are attributed to particular modes
by comparison with the FEM model, namely, translation modes
(c and e) and torsion modes (a, b, and d). Their structure is
shown in the upper part of figure. For the translation modes, it is
meaningful to attribute the signal to fluctuations in the distance
D between the two masses, according to Eq. (1). In this way, the
spectral density shown in the graph is reduced by a factor of
64cos2� ’ 58. In the inset, fit with thermal noise as in Eq. (3)
(dashed line) and external noise as in Eq. (4) (solid line).
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The ratio between the areas of the two peaks correspond-
ing to the first order translation mode of the two masses is
1.45, in fair agreement with the value of 1.69 calculated by
assuming a white driving force noise. A modal effective
temperature Teff can be calculated from these areas, ac-
cording to

Z
Sxd� ¼ kTeff

M!2
0

; (2)

where Sx is the displacement noise spectral density, k is the
Boltzmann constant, M is the modal mass and !0=2� its
eigenfrequency. Using the values for the mass calculated
by the FEM analysis, we obtain for the two modes effective
temperatures of about 3300 K and 3900 K,, respectively,
clearly showing that the effects of external, technical noise
is about 1 order of magnitude larger than thermal noise. We
can infer from this measurement an horizontal displace-
ment noise, at the level of the FFP frames, of about 2 �
10�33 m2=Hz. This is compatible with seismic noise
around 1 kHz, filtered by the optical table and the FFP
suspension.

The excess external noise is also confirmed by the
spectral shape around 1.2 kHz, where we find three
nearly-degenerate modes: as already mentioned the highest
frequency (� 1190 Hz) belongs to the translation mode of
the light mass, the intermediate frequency (� 1166 Hz) is
a torsion mode of the heavy mass, while the lowest fre-
quency mode (around�1142 Hz) remains unidentified. In
the case of thermal noise excitation, the contributions of all
these modes should add incoherently in the noise spectrum,
that should read [24,25]:

Sx ¼ 4kT

!

X
i

Im�i ¼ 4kT
X
i

!i

QiMi½ð!2
i �!2Þ2 þ ð!!i

Qi
Þ2� ;

(3)

where for each mode �i is the susceptibility, Mi the mass,
!i the eigenfrequency and Qi the quality factor, and T is
the thermodynamic temperature. On the other hand, an
external noise Sextx should excite them coherently, and
therefore be filtered by a superposition of modes response
functions, such as:

Sx ¼
��������
X
i

�i

��������
2

Sextx ¼
��������
X
i

1

Mi½!2
i �!2 � i !!i

Qi
�
��������

2

Sextx ;

(4)

where the effective masses do not necessarily correspond
to the previous ones.

We have fitted the experimental spectrum, in the men-
tioned region around 1.2 kHz, with the expressions (3) and
(4). We remark that the two fitting procedures uses the
same number of free parameters, namely, the set
fQi;!igi¼1;3, three amplitudes, and the coefficient of the

frequency noise background. Concerning the amplitude,
we have chosen to fix the mass of the translation mode at its

FEM value, leaving the other two masses as free and
multiplying by an overall factor that can be identified
with Sextx of expression (4) or with the temperature in
expression (3). The two fitting curves are reported in the
inset of Fig. 4. The fit with expression (4) is clearly better.
A quantitative evaluation, underlining the contribution of
the wings of the peaks where the difference between the
two fitting functions is more evident, is obtained by calcu-
lating the quadratic sum of differences between the loga-
rithm of the experimental data and of the corresponding
theoretical values (in other words, the �2 in logarithmic
scale). This indicator is a factor of 1.7 higher when using
expression (3), with respect to Eq. (4). Since the number of
free parameters is the same, the analysis gives a strong
indication in favor of the model behind Eq. (4), with a flat
external noise spectrum. Of course, this is confirmed by the
unrealistically high temperature (or low mass) that would
be required by expression (3). However, we remark here
that, in the case of multiple overlapping peaks, there is not
merely an increased spectral power due to extra-noise, but
also a change in the shape of the spectrum that can be a
stronger, calibration-independent indication.

B. Response to modulation of the intracavity power

In Fig. 5 we report the phase and amplitude response of
the FFP to a modulation of the intracavity radiation inten-
sity. The measured signal is reported in terms of changes in

FIG. 5 (color online). Amplitude (upper graph) and phase
(lower graph) of the response of the cavity length to modulation
of intracavity power. The solid line is the result of a fitting
procedure based on the expression (5).
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the cavity length L. To obtain the response, the signal is
divided by the amplitude of the modulation in the intra-
cavity radiation pressure, giving a susceptibility in m=N.

Following the discussion in the previous section, the
derived quantity has an intuitive interpretation only for
the ’ideal’ translation modes of the test masses. In this
case, the relation (1) allows to find the variations of the
mass positions and, as we will see later, to extract values of
the modal masses directly comparable with the FEMmodel
and/or the physical masses.

The mechanical resonances emerge on top of a (nearly)
constant background associated with photo-thermal effect,
i.e., to mirrors thermal expansion due to heating by the
absorbed intracavity radiation [26,27]. This effect is more
meaningfully expressed in terms of m=W, as indicated on
the left vertical axis of Fig. 5. As will be discussed later in
this section the quantitative explanation of the photo-
thermal background implies the verification of the ’wide
area readout’ effect.

The complete response, between 700 Hz and 1250 Hz, is
fitted to the coherent superposition of a constant, complex
background Cphth and four mechanical resonance, using

the following function:

Xð!Þ ¼ X
i¼1;4

A

Mi½!2
i �!2 � i !!i

Qi
� þ Cphth: (5)

The fitting procedure considers at the same time both
quadratures of the response, minimizing their distance,
respectively, from ReX and ImX. The function obtained,
expressed as amplitude and phase, is reported in Fig. 5 and
the fitting parameters are summarized in Table I. The factor
A is fixed to 32cos2�; as we will show later (in Eq. (7) and
the following discussion), this coefficient allows to attrib-
ute the modal masses Mi to vibrations of the test masses,
excited and read on the laser spots.

For the translation modes (at 795 Hz and 1190 Hz) we
infer effective masses of 0.2 kg and 0.34 kg, respectively.

While for the latter the agreement with the physical mass
and FEM simulation is good, for the former it is only
marginal. The effective mass of the torsion mode at
1166 Hz is about 1 kg, much more than the physical
mass involved in the motion, showing that, as expected,
the readout is nearly blind to this mode. Also this effect is
particularly important for DUAL, where the readout topol-
ogy is studied in order to minimize the effect of disturbing
mechanical modes within the useful detection band [5].
Concerning the mechanical quality factors, the values

obtained from the fit are, respectively, 1940 (at 795 Hz),
835 (at 1191 Hz), and 370 (at 1171 Hz), all in good
agreement with the corresponding figures given by the
displacement noise spectrum. The fourth resonance
(around 1140 Hz) is barely visible.
It is particularly interesting the region around 1.2 kHz,

shown in detail in Fig. 6, where a torsion and a translation
mode are very close. Here, between the two peaks, the
complete response falls below each single peak contribu-
tion (shown with dashed lines in the figure), due to their
interference. This effect implies a cancellation of the back-
action: the system is less sensitive to modulation of the
intracavity power, and therefore also to laser amplitude
fluctuations and radiation shot-noise, which are the physi-
cal origin of the back-action. On the other hand, the effect
of a force acting on both modes in the same direction
would be amplified. The same should happen between
the two gw sensitive modes of a DUAL detector. The
demonstration of this effect on our prototype would be
even clearer by exploiting the translation modes of the
two masses, for which the reaction to a gw is more in-
tuitive, but it is prevented by the photo-thermal
background.
Let us now consider the other crucial issue of DUAL: the

’wide area readout’. In the case of optical readout, it can be
implemented by the multispot configuration of the FFP. We
first summarize its working principle, in the simple scheme
of N spots on one surface and N þ 1 on the opposite one.

TABLE I. Parameters obtained by fitting the experimental
response to a modulated intracavity power with expression (5).

M1 (Kg) 0.20

M2 (Kg) 0.34

M3 (Kg) 1.07

M4 (Kg) 4.4

�1 (KHz) 0.795

�0 (KHz) 1.191

�0 (KHz) 1.171

�0 (KHz) 1.140

Q1 1940

Q2 835

Q3 370

Q3 70

jCphthj (m/W) 1:34� 10�13

Phase (Cphth) (0) 23

FIG. 6 (color online). Enlargement of the response shown in
Fig. 5, together with a complete fitting function (red, solid line),
the contributions of two peaks (respectively green dotted and
blue dashed-dotted lines) and contribution of the photo-thermal
background (gray dashed line).

M. ANDERLINI, F. MARINO, AND F. MARIN PHYSICAL REVIEW D 80, 013001 (2009)

013001-6



We suppose that the spots are far enough to neglect the
overlap between local deformations, and the beam im-
pinges with small incidence angle (more detailed studies
are reported in Ref. [9]). In this case, if the first surface
moves by �D, the change in the optical path is �L ¼
2N�D, with an increase by a factor of 2N with respect to
a simple cavity. The radiation-pressure noise, due to intra-
cavity power fluctuations, acts at the same time on all the
spots. The resulting displacement noise power in the opti-
cal path is SLrp ¼ 4N2Sxrp, where S

x
rp are the fluctuations in

the position of a single spot. It seems that the signal-to-
noise remains unchanged with respect to a simple cavity,
with both noise and signal power multiplied by 4N2.
However, we must consider that in a FFP the intracavity
power is reduced, and therefore also its fluctuations.
Indeed, the intracavity power is Pc ¼ T

ðTþAtotÞ2 Pin where T

is the input mirror transmission, Atot the other round-trip
losses, Pin the input power. For an optimally coupled cavity
(the best configuration for a PDH detection), with T ¼ Atot,
one has Pc ¼ Pin=4Atot. Now, in a FFP, Atot ¼ 2NAsingle

where Asingle are the losses in a single spot (in the round-

trip, each spot is touched twice). Therefore the intracavity
power is reduced by a factor of 2N and its power fluctua-
tions by 4N2, as well as Sxrp. As a consequence, the signal-

to-noise power ratio is improved by a factor 4N2.
The calculation of the Brownian thermal noise is even

simpler: we have uncorrelated noise fluctuations in the
different spots, therefore SLth ¼ 4NSxth (S

L
th are the fluctua-

tions in the FFP optical path, Sxth the displacement thermal

noise in a single spot) and the signal-to-noise is improved
by a factor of N.

In this work the sensitivity is not enough to see the
effects of ’local’ thermal noise and radiation-pressure ef-
fects: the former is overwhelmed by laser frequency noise,
the latter by photo-thermal background. However, for what
the ’wide area readout’ is concerned, such photo-thermal
expansion behaves exactly like a deformation due to ra-
diation pressure: phase and amplitude of the response are
different, but the effects on the different spots sum up in the
same way.

As a further difference with respect to the described
model, we cannot optimize the input mirror transmission.
However, we can measure the ratio between mechanical
modes peaks and photo-thermal background in the re-
sponse to modulated intracavity power. Thanks to the
broad area readout, the peaks emerge from background
stronger than in the case of a simple cavity. In particular,
for our configuration, if �x ¼ �phth�Pc is the photo-

thermal displacement of each single spot due to a change
�Pc in the intracavity power, the change in the FFP optical
length is

�LFFP
phth ¼ 2ð1þ 7 cos�Þ�phth�Pc: (6)

This is illustrated in Fig. 3: on the end mirrors the change
of optical length is �x, while on the seven folding mirrors it

is 2 cos��x. In the case of a simple cavity, summing the

effects on its two mirrors, we would have �L
simple
phth ¼

2�phth�Pc.

Because of a translation mode of one FFP mass, with
susceptibility at resonance �0, we have instead

�LFFP
mode ¼

2

c
ð32cos2�Þ�0�Pc; (7)

to be compared with the simple cavity expression

�Lsimple
mode ¼ 2

c
�0�Pc: (8)

Equation (7) is obtained by using Eq. (1) and the mass
displacement �D ¼ �0�F where �F ¼ 4ð2c cos��PcÞ due
to the four bounces. We finally derive

�LFFP
mode

�LFFP
phth

¼ 2

c

32cos2�

2ð1þ 7 cos�Þ
�0

�phth

(9)

for the FFP, and

�L
simple
mode

�L
simple
phth

¼ 2

c

�0

2�phth

(10)

for a simple cavity.
We have measured the photo-thermal expansion in a

simple Fabry-Perot cavity with the same mirrors used in
the FFP and roughly the same beam size (the cavity length
is 0.2 m) [22]. In the frequency range of interest (around
1 kHz) the effect has a weak dependence on the frequency,
and for each single mirror is j�phthj ¼ 10�14 m=W. Using

this value in the expression (6), we infer �LFFP
phth=�Pc ’

1:5 � 10�13 m=W, in good agreement with the value of
1:3� 10�13 m=W obtained from the fit of the experimen-
tal data (reported with a dashed line in Fig. 6).
Concerning the peak-to-background ratio, taking for

instance the first translation mode at 800 Hz with �0 ¼
3:9 � 10�4 m=N, we calculate �LFFP

mode=�L
FFP
phth ¼ 520 and

�Lsimple
mode =�L

simple
phth ¼ 130, to be compared with the experi-

mental value of 540.
The data presented here can be considered as the first

experimental verification of the ’wide area readout’ effect,
for the particular case of multispot readout.

IV. RADIATION PRESSURE COOLING

The experimental scheme for the radiation pressure
cooling of a FFP translation mode is similar to the setup
implemented for the measurement of the response to
modulated intracavity power. The measurement beam is
weakly locked to a resonance of the optical cavity, and its
PDH signal is used also for obtaining the spectrum of the
cavity length fluctuations. The calibration of the spectral
measurement is performed with the procedure described in
Sec. II, even if now we are just interested in a narrow
frequency region around the peak at �800 Hz. The same

KG-MASS PROTOTYPE DEMONSTRATOR FOR DUAL . . . PHYSICAL REVIEW D 80, 013001 (2009)

013001-7



PDH signal, amplified and integrated, is used as correction
signal acting on the second beam for the active radiation-
pressure cooling.

We have experimented two different cooling schemes. In
the first case, the second beam is tuned on resonance of its
polarization mode, and we act on its intensity (by means of
EOM2). This configuration implements a standard optical
’cold damping’, like the one firstly demonstrated in
Ref. [12] and later, i.e., in Ref. [13]. With respect to the
mentioned works, here we have a close spatial matching
between sensing and cooling beams.

In the second scheme, the cooling beam is frequency
shifted on the average by half linewidth from resonance,
and the feedback acts on the beam detuning (by means of
one AOM) which actually controls the intracavity power.
This configuration is somehow original: its working prin-
ciple is the same as in Ref. [18] (the so-called hybrid
scheme), with the difference that here we react on the
laser-to-cavity detuning by changing the laser frequency
instead of the cavity length. An important characteristics
that distinguishes our experiment from the those described
in Refs. [18,19] is the use of two separate laser beams for
measuring the mass motion and for cooling. In this way, the
measured signal (i.e., the detuning between the probe beam
and the cavity) is not directly modified by the cooling servo
loop, that only acts on the frequency of the second beam
without directly modifying the probe frequency, nor the
cavity length. This procedure eliminate the necessity to
correct the acquired data for the feedback: the probe beam
can be considered as free-running and the PDH signal gives
directly the cavity length fluctuations, thus allowing a
clearer interpretation of the results.

The physics behind active cooling is described in
Refs. [11,12] and in several subsequent articles. We sum-
marize here its main features, also in order to clarify our
experiment.

In general, a signal proportional to the detuning is
frequency filtered and transformed into a force acting on
the oscillator. The evolution equation of the oscillator
position, in the Fourier space, reads

M

�
!2

0 �!2 � i
!!0

Q

�
~x ¼ ~fth þG~x; (11)

where G is a general complex, frequency-dependent gain

function and ~fth is the noise force, that in the case of
Brownian thermal noise has spectral density [24]

Sth ¼ 4kTM!0

Q
: (12)

A general, white force noise can be included by replacing
the thermodynamic temperature T with a noise tempera-
ture. Equation (11) gives

~x ¼
~fth

Mð!2
eff �!2 � i !!eff

Qeff
Þ (13)

with !2
eff ¼ !2

0 � ReG=M and !eff

Qeff
¼ !0

Q þ ImG
M! .

Taking a feedback proportional to the oscillator velocity,
e.g., G ¼ �igM!!0, the effective eigenfrequency and
quality factor do not depend on !, and the equation of
motion is the same as the one of a free oscillator, with
modified damping (1=Qeff ¼ 1=Q� g) and temperature.
In particular, for g > 0 the quality factor is increased and
the effective temperature, obtained from the integral of the
spectrum as in Eq. (15), is increased as Teff ¼ TQeff=Q ¼
T=ð1�QgÞ. The same expressions for negative g gives
lowering quality factor and temperature (’cold damping’).
If G has a different dependence on !, the parallelism

between the modified evolution equation and a free oscil-
lator is not straightforward. Even in simple realistic
schemes the energy equipartition does not hold and a
system temperature is not well defined, as discussed, e.g.,
in Ref. [28]. However, for high quality factor, most of the
fluctuations are localized in a narrow spectral region
around resonance and we can use a Lorentzian approxima-
tion of the spectrum, so that

Sx ’ Sth
M2!2

eff½4ð!eff �!Þ2 þ ð!eff

Qeff
Þ2� ; (14)

where in !eff and Qeff we can replace Gð!Þ by its value at
!0. Even a colored external noise can be included in the
discussion, provided that it has a smooth spectrum in the
region of the peak. In this case an effective temperature can
still be defined according to Eq. (15), that gives

Teff ¼ T

1þQ ImGð!0Þ
M!2

0

; (15)

while the effective eigenfrequency is shifted by the real
part of the gain.
In the adiabatic limit, for frequencies well below the

cavity linewidth, the force exerted by radiation pressure
can be written as

Frp ¼ 2

c

Pc

1þ �2
; (16)

where Pc is the intracavity power at resonance and � the
detuning normalized to the cavity half-linewidth �.
In the standard ’cold damping’ scheme, the laser is kept

at resonance and a signal proportional to the detuning is
sent to correct the laser power. Neglecting the laser fre-
quency fluctuations and the cavity length noise (except for
the oscillating mirror position x), the loop gain can be
written as

G ¼ 2

c
PcGel; (17)

where Gel is a (complex and frequency-dependent) elec-

M. ANDERLINI, F. MARINO, AND F. MARIN PHYSICAL REVIEW D 80, 013001 (2009)

013001-8



tronic servo loop gain expressed as the ratio between the
detuning fluctuations ~x and the consequent imposed rela-
tive power fluctuations.

In the hybrid configuration, the cooling laser is detuned
and the feedback is on the detuning. We can expand
Eq. (16) around the working point �0, obtaining for the

radiation-pressure force fluctuations ~frp

~f rp ¼ � 2

c
Pc

2�0

ð1þ �0Þ2
1

�

�
~xþ ~lþ lcav

�L

~�L

�
(18)

where lcav is the average cavity length, ~l its fluctuations, �L

is the cooling laser frequency with fluctuations ~�L, and we
have neglected laser amplitude noise. The cavity and/or the
laser frequency fluctuations may contain a term propor-
tional to ~x through electronic servo loop gains that we call
respectively Gl and ðlcav=�LÞG�. This term is obtained
from a measurement of the detuning between the cavity
and a probe beam. Equation (18) can now be written in an
interesting form as

~f rp ¼ �Kos½ð1þGl þG�Þ~xþ ~n�; (19)

where

Kos ¼ 4Pc�0

�cð1þ �0Þ2
(20)

is the optical spring rigidity [29] and ~n is a general extra-
noise term. The meaning of Kos is clear when replacing
Eq. (19) in the expression for !eff: the effect of radiation
pressure is modifying the oscillator spring rigidity ðM!2

0Þ
according toM!2

eff ¼ ReKos þM!2
0. An oscillator damp-

ing is imposed by the reactive component of the optical
spring. In the passive ’self-cooling’ it is given by the delay
in the optical field buildup inside the cavity (that we have
neglected in the adiabatic approximation). In the active
scheme, it is obtained by the feedback that, as we see in
Eq. (19), ’modifies’ the optical spring rigidity.

Concerning the extra-noise, it includes (a) the cavity

length noise ~ln entering both directly in ~l and from the
measurement exploited for cooling (i.e., through the servo-
loop); (b) the cooling laser frequency noise ~�n

L; (c) the
probe beam frequency noise ~�probe. We have therefore

~n ¼ ~lnð1þGl þG�Þ þ lcav
�L

½~�n
L þ ðGl þG�Þ~�probe�:

(21)

The right-end side of Eq. (11) becomes ~fth � Kosð1þ
Gl þG�Þ~x� Kos~n and we are in the conditions of the
previous general discussion by replacing �Kosð1þGl þ
G�Þ ! G and adding to the force noise spectrum Sth the
additional term K2

osSn, where Sn is the spectral density of
~n.
In our case, the dominant term in Sn comes from the

probe beam frequency noise S� and the feedback on the
cooling beam frequency is characterized by jG�j � 1.

Therefore, we can write Sn ’ ðlcav=�LÞ2jGj2S� and, ex-
pressing the gain as G ¼ jGj expði�Þ, the equation for
the effective temperature given in Eq. (15) can be written
in the useful form

Teff

T
¼ 1þ aðPin

P0
Þ2

1þ Pin

P0

; (22)

where Pin is the input power of the cooling beam, the
normalization constant P0 is

P0 ¼ �cð1þ �0Þ2
4�0

M!2
0

Q

Pin

Pc

(23)

and the extra-noise coefficient a is

a ¼ l2cav
�2
L

S�
Sxð0Þ

1

sin2�
; (24)

where Sxð0Þ ¼ SthQ
2=ðM2!4

0Þ is the displacement noise at

resonance measured before cooling. We remark that, for
the optimal feedback phase� ¼ �=2, the value of a can be
inferred directly from the displacement noise spectrum:
Sxð0Þ is the peak value, and l2cavS�=�

2
L is the background.

The minimum effective temperature Tmin, achievable for

Pin=P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=a

p � 1, is Tmin=T ¼ 2að ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1=a

p �
1Þ ’ 2

ffiffiffi
a

p
.

We could achieve cooling of the translation mode both
with ’cold damping’ and with the hybrid scheme. An
example of the displacement noise spectra modified by
cooling is reported in Fig. 7 for the second configuration
(with frequency feedback on the cooling beam). Here we
focus on the translation mode of the heavy mass, around
800 Hz, and we have transformed the cavity length fluctu-

FIG. 7 (color online). Spectral measurement of the heavy mass
displacement noise, around the resonance of its lower translation
mode, for different values of the cooling laser power. From dark
to light lines, the corresponding laser power values measured
before the cavity are 0 (black line), 13 mW (red), 25 mW
(green), 50 mW (light grey) and 90 mW (light blue). In the
inset, the ratio between effective temperature Teff and initial
temperature T (symbols) as a function of the cooling laser power,
fitted by Eq. (22) (red line).
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ations into mass position fluctuations using the relation (1).
The effective temperature of the mode, estimated from the
area of the spectral peak, is reduced by a factor of more
than 10, as shown in the inset of the figure. The cooling
factor is limited the laser frequency noise and, with strong
cooling power, the peak of the mechanical resonance dis-
appears completely in the frequency noise background.
The measured effective temperature is fitted by Eq. (22)
fixing the extra-noise factor a at the value of 1:1 � 10�3,
measured form the spectrum shown in Fig. 4. For the
highest cooling power level, a weak instability in the
electronic feedback loop slightly enhances the background
noise. As a consequence, the uncertainty in the last tem-
perature measurement is higher and we have not included
in the fit, that gives P0 ¼ 9:7 mW and therefore a best
obtainable cooling of Tmin=T ¼ 0:064 for Pin ¼ 280 mW.

V. CONCLUSIONS

We have presented an experiment aimed at demonstrat-
ing and testing the main new concepts on which are based
the proposals of DUAL gravitational wave detector. In
particular, we show the ’backaction reduction’ and the

’wide area readout’ effects. Our prototype also contains
the first implementation of Folded Fabry-Perot cavity, an
optical scheme particularly conceived for DUAL.
We report a complete characterization of the mechanical

response of �kg mass oscillators, performed by exciting
the system with radiation-pressure force. Moreover, we
describe active optical cooling of an oscillator mode, also
exploiting an original scheme with feedback on the laser
frequency. Such experiences scale up the mass by several
orders of magnitude with respect to previous experiments
on opto-mechanical effects, and focus on the �kHz fre-
quency region, of interest for large mass gravitational wave
detectors. Therefore, they represent a significant step for
realistic planning of the next generation of massive detec-
tors, whose possible optical readout should be pushed to
the quantum regime where radiation-pressure effects are
critical [8].
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