
LIGHT CONE, REQGE BEHAVIOR, AND SINGLE-PARTICLE. . .

Science Press, Jerusalem, 1971).
~A. Mueller, Phys. Rev. D 2, 2963 (1970).
'S. D. Drell and T.-M. Yan, Phys. Rev. Letters 24,

855 f1970).

H. D. I. Abarbanel and D. Gross, Phys. Rev. Letters
26, 732 (1971).

R. ¹ Cahn, J. W. Cleymans, and E. %". Colglazier,
Phys. Letters 438, 323 f1973).

PHYSICAL REVIEW D VOLUME 8, NUMBER 3 AUGUST 1973
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The inclusive two-body correlation function for particles produced in high-energy hadronic
collisions is calculated in a multiperipheral-like model, and compared with experiment.
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It has been recognized lately that different mod-
els of particle production processes at high energy
that may agree with each other and with the data
on single-particle inclusive spectra may greatly
differ in their predictions for two-particle spectra,
and that studies of two-particle spectra could
therefore be useful in distinguishing between these
models. ' One class of model which is often con-
sidered is the class of multiperipheral-like or
short-range-correlation models. It is the purpose
of this note to report a calculation of the two-par-
ticle spectrum at high energy in a simple yet hope-
fully representative model of this class which had
been proposed earlier by Peccei and myself' g,nd

by Krzywicki and Petersson. '
In this model, particle production is described

by distinguishing one particle (called the "leading
particle" ) from the rest (the "fireball" ); the dis-
tribution of particles in the fireball is assumed to
be, in the proper Lorentz frame, the same as the
distribution of all the particles in a typical event.
Let f,(x) be the scaling limit of the normalized
inclusive single-particle distribution:

f ( ) l. x tkT(x, s)
s ~~ stot (s)

In the model described in Refs. 2 and 3, f,(x) is
related to g(x), which is the distribution function
for leading particles, by the integral equation

f,(xl=g(x)+ ~ t'(y)f, (t ) .

Once the function g(x) is known, then the two- (and
in fact the many-) particle distribution can be cal-
culated. In particular, the two-particle distribu-
tion with both particles in the central (x=0) region
can be expressed rather simply in terms of g and

f, . Let f,(x» x,) be the scaling limit of the two-
particle inclusive distribution, defined analogously
with Etl. (I), and let

f,(R) =- lim f,(x,Rx).

Then, according to the model,

+g(Rx)f(t )
The reader is referred to Ref. 2 for a derivation
and discussion of this equation. The variable R is
closely related to the relative rapidity of the two
particles:

lnR =y, -y, ((y, -y, )large).

In the central region, the tmo-particle distribution
is independent of the sum of the two rapidities.

We adopt the following strategy to calculate
f,(R): First, we use data on the single-particle dis-
tribution to guess at the form of f,(x); second, we
make use of this f,(x) to obtain g(x) through Etl.
(2); finally, we calculate f,(R) through Etl. (4).
The model as originally formulated makes no ref-
erence to any internal quantum numbers; thus the
distributions f, and f, should be understood to be
the distribution of particles of all types, neutral
as mell as charged. The model can be generalized
to recognize the existence of several types of par-
ticles however, for the present purpose of illus-
trating the kind of distribution one obtains in mul-
tiperipheral-like models, this extra complication
is probably not warranted, and so mill not be con-
sidered here.

A more serious limitation of this type of model
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stems from the fact that, as pointed out by Le
Bellac, ' no model with only short-range correla-
tions can be entirely correct if total cross sections
are asymptotically constant, since such models
can never describe diffraction. We thus have to be
able to ignore diffraction; for example, if individ-
ual events can be classified as diffractive or non-
diffractive, then the quantities f, and f~ must be
understood to represent the distributions of par-
ticles from nondiffractive events, and the quantity
o„, in Eq. (1) should be understood to be the total
nondiffractive cross section, which is presumably
somewhat less than the inelastic cross sectioi. .

In order to determine the shape of f,(x), we use
data on particles produced in proton-proton col-
lisions. At small values of x, most of the parti-
cles produced are pions. The w' and m distribu-
tions are reasonably well determined' at the
CERN Intersecting Storage Rings (ISR), where they
are seen to scale. Because the Pomeron has iso-
spin zero, the limiting m' distribution should be
the average of m' and m; thus the total pion distri-
bution is three times the average of m+ and w . At
large values of x, protons dominate. The proton
distribution is seen' to have a peak near x = I;
since this peak is presumably a diffractive effect,
it should not be included in our nondiffractive dis-
tribution function f,(x). A detailed (and t-depen-
dent) triple-Regge analysis near x=1 would pre-
sumably enable us to subtract the diffractive from
the measured distribution; otherwise, we can use
data on pp- pX for x outside the peak (x &0.9) and
then extrapolate to a constant value at & =1. In
fact, since scaling is seen to be reasonably well
obeyed in this region, we can use data at lower
energy. ' Finally, although not quite all of the pro-
duced particles are protons or pions, we assume
in what follows that the distribution of all particles
has the same shape as the sum of the proton and
the pion distributions.

Some further constraints on f,(x), which are
valid for the type of model we consider, are:

(i) The energy-conservation sum rule, applied
to nondiffractive events, reads

1

dx f,(x) = 1 .

f(x) =f(0)+~x'~', (s)

If the form given in (9) is valid down to conven-
tional accelerator energies, then the value of A.

can be seen' to be about -3.3.
A parametrization of f,(x), which respects these

three constraints and which has the shape suggest-
ed by the sum of the proton and pion spectra, is

f,(x) =3.0-3.3x'~'- x+ I.V5xat2. (10)

This function is displayed in Fig. 1, together with
data points from Refs. 6 and 8 representing
—,'(f~++ f~& )+ff; the data points have been normal-
ized to make f,(x= 0) = 3.

Using f~(x) as given in (10), it is straightforward
to comyute numerically g(x) from (2), and then to
compute f2(R) from (4). The two-body correlation
function C,(R) is defined by

C.(R) -=f.(R) —[f,(0)]'.
The calculated values of C, (R) are displayed in
Fig. 2; I have checked that these values are rea-
sonably insensitive to the precise form of f,(x) as-
sumed. The predicted values for the fractional
correlation, which is defined as (f, —f,')/f, ', can
be obtained by dividing C~(R) by nine.

In models which exhibit short-range correla-

3i

f (x)

where the parameter A also appears in the expres-
sion for the approach to sca1ing in the central re-
gion

x do' -X/4f(0)+~. . . s-~ .
+t()f dX ~ «p m +P~

Thus the normalization of f,(x) is determined
once its shape is known.

(ii) If (n) is the average number of produced
particles of all types, then, as s- ~, 0 0.2

I

0.4
I

0.6
I

0.8 1.0

(n)- f(0)lns .
An estimate of f(0) which is consistent with the
observed energy dependence of multiplicities is
f(0) =3.

(iii) For small x,

FIG. 1. The single-particle distribution from p-p
scattering. The data points (Refs. 6 and 8) represent
the proton distribution plus three times the average of
the n+ and n distribution, normalized to the value 3
at x =0. The solid line is the parametrization used in
the calculation of the two-particle distribution.
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tions, the integrated two-particle correlation func-
tion (Cg grows logarithmically with s:

(C,)- C, lns. (12)

The constant C, is given in terms of C,(R) by

IO

CR(R)

C =2 (13)

and, in the calculation reported here, has a num-
erical value of about 7.6; thus we predict that

(C,) =2.5(n).
At large values of R, C,(R) behaves as

C,(R)- (const)xR '~' (15)

O. I

The form given in (15) corresponds to a correla-
tion length of —,'; the calculated value of the con-
stant in (15) is about 2.2. In the approximation
suggested by Frazer et a/. ,"which is to use the
asymptotic form given in (15) for all R in order to
calculate C, through Eq (13)., we would have ob-
tained C, = 8.8, which is about 16% higher than the
actual value of the integral in (13).

Data on the two-particle correlation in the cen-
tral region are now becoming available from the
ISR; we consider in particular the preliminary
data of the Pisa-Stony Brook collaboration. '2

These data show a fractional correlation" which
is consistent with the parametrization 0.6'

xexp(- —,'~y, —y, (). This is somewhat larger than
the correlation predicted by our calculation; from
Eqs. (5) and (15), we would say that the coefficient
of exp(- —,')y, -y, ~) should be about 2.2-:9=0.24.
On the other hand, the fractional correlation as
reported in Ref. 12 is defined with o„, [e.g., in Eq.
(I)] replaced by o,„,„„while for the purpose of
the present discussion we want it replaced by

o„,„«„„„;,,' thus the reported correlation is ex-
pected to be larger than the one which we predict.
In other words, the presence of diffractive inelas-
tic events produces a positive long-range correla-
tion which adds to the short-range correlation we

1 I I I I I I I
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FIG. 2. The calculated two-particle correlation in the
central region, as a function of R =exp()y2-yql)

Conversations with Roberto Peccei are gratefully
acknowledged.

have been discussing.
Although our calculation was done within a spe-

cific model, we suspect that the general features
of the calculated correlation would be common to
almost any multiperipheral-like model; in partic-
ular, we think it would be difficult for a model of
this type which fits the single-particle spectrum to
produce a fractional correlation as large as 60%.
If the preliminary data" are correct in their sug-
gestion that correlations are in fact this large, we
should consider this to indicate a failure of this
type of model as applied to all inelastic events.
The question of whether or not these models can
be reprieved by being applied to a subset of inelas-
tic events is left for future investigation.
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A Veneziano-type expression is proposed for the magnetic-transition form factor of the 5(1236). The
agreement with present experimental data up to —t = 2.34 (GeV/c)' is found to be quite satisfactory.

In the past few years many efforts have been de-
voted to the study of Veneziano three-point func-
tions. As a result of this it is now established
that for a photon-hadron-hadron vertex a typical
form factor can be represented by

F & G
r(I —c(,(t))
I (n - o. p (t)) '

where c(,(t) -0.5+k is the p-meson Regge trajecto-
ry, C a normalization factor, and n ahalf-integer
number that determines the correct asymptotic
behavior of F(t). Very satisfactory agreement
with the experimental data has been obtained in
the case of the pion, ' nucleon, ' K» decay, ' and ka-
on form factors. Moreover, it has been shown
recently' that a Veneziano-type NNm vertex func-
tion can account, in order of magnitude, for the
corrections to the Goldberger- Treiman relation.
Finally, we mention that an expression like Eq. (1)
has been obtained for the pion electromagnetic
form factor as a possible solution of the Omnds
equation when the Veneziano formula for m7t scat-
tering is used as an input. '

The physical picture behind Eq. (1) is indeed
quite simple and appealing, i.e., the form factor
is built up from the contribution of an infinite
number of equally spaced poles. In other words
the photon couples not only to the p meson but to
all its (infinite) daughters. In a way this is like a
generalization of the vector -meson-dominance
model (p dominance). The recent discovery of the
p' meson' lends further support to the above-men-
tioned picture.

The purpose of the present paper is to show that
an expression like Eq. (1) can also represent quite
well the b, (1236) magnetic-transition form factor
G+(t).

The available data' "for G„*(t) go up to & = -2.34
(GeV/c)' and there are more than 30 points The.
most popular expression that fits the data well is
the Qutbrod-Simon formula"

G„*(t) G"„(t) 1
G "(0) G"(D) ( - t/G ')

(2)

where G~(t) is the magnetic form factor of the nu-
cleon, F,(t) is the pion form factor, and y„, y„,
0 y and 02' are ad&ustable parameters. Using the
dipole fit for G„(f), and for F„(t) the expression

F.(t) = 1
2tm,

and y„=0.85, y„=0.15, 0,'=2.72 (GeV/c)~, and
0,' =0.97 (GeV/c)', a quite good agreement with
experiment is obtained. As can be seen from Eq.
(2), G„*(t) falls faster than G"„(t) and F„(t) by one
power of t.

The starting point of our model is the Veneziano-
type expression for' G„(t)

&
I'(I —o' (t))r('-, (t)) '

which fits the present data very well up to t = -25
(Gev/c)'.


