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It is shown that the wave function for a three-particle system outside the range of forces may be
uniquely determined by imposing a suitable set of boundary conditions. This result is expressed in
terms of a one-variable integral equation with a square-integrable kernel, the solutions of which specify
the three-body t matrix. The input to this equation consists of the two-particle phase shifts and two
independent real-valued functions which characterize the three-body wave function in specific regions.
The formalism yields an exactly unitary three-particle t matrix for arbitrary values af this input, and
thus provides a practical scheme for the analysis of three-body final states.

I. INTRODUCTION

Some time ago, Feshbach and Lomon' demon-
strated the power of the boundary-condition ap-
proach Rs R means of correlating a broad spectrum
of R-Ã scattering data. . This approach is based on
the mell-known fact that, for interactions of finite
range r„ the wave function takes on a particularly
simple form at intexparticle distances r &ro, and
may be compLetely characterized by stating the co-
efficient of the outgoing wave. This coefficient is
uniquely determined in each partial wave if one
specifies a, value for the logarithmic derivative of
g, at r =a ~ r„since this value must be energy-
dependent, imposing such R condition is merely an
alternative to the usual description in terms of
scattering phase shifts. The power of this ap-
proach lies in the empirical fact that, for the N-N
system, ' the logarithmic-derivative parameters
are Rt most weakly dependent on the energy, Rnd

hence R few parameters Rx'8 RdequRte to describe
the scattering in the range 0-300 MeV. ' A corre-
sponding statement may be made for other sys-
tems of strongly interacting particles. ' In com-
parison to R potential description, the computa-
tional advantages of this approach are obvious„
one replaces a one-dimensional integral equation
(e.g. , the Lippmann-Schwinger equation') by quad-
rature.

An analogous simplification of the three-body
wave function occurs in the exterior regions, de-
fined by the requirement that no pair of particles
is within the range of forces. Therefore, one

might hope that a suitably generalized boundary
condition on the exterior wave function would
uniquely specify the outgoing component (i.e., de-
termine the three-particle t matrix), resulting in
a highly efficient description of three-particle fi-
nal states with comparable computational advan-
tages. Below we propose a set of boundary condi-
tions for this purpose which determine the three-
body t matrix via the solution of a one-variable in-
tegral equation. The input for this equation is
cleanly separated into two-particle phase shifts
and real-valued functions characterizing the three-
body wave function in distinct physical regions.
For any arbitrary selection of this input the for-
malism produces an exactly unitary three-particle
t matrix. This is to be compared with an earlier
approach with essentially the same motivation by
Noyes. ' In Noyes's work a one-variable equation
was derived with a kernel specified in terms of
the half-on-shell two-body t matrix, Rnd a driving
term involving an arbitrary expansion of the in-
terior wave function. The difficulty with this for-
mulation is that the expansion coefficients are in-
timately connected to the two-body phase shifts
via the unitarity relation, and hence are not truly
independent; selecting them arbitrarily will in
general violate-unitarity. In order to achieve an
effective "phase shift" analysis of three-particle
final states, one must require real and independent
parameters; our approach satisfies this condition.

We begin in Sec. II with a brief review of the
boundary-condition approach to two-particle sys-
tems, and introduce a new statement of the bound-
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ary condition in Eq. (5) which is suitable for the
generalization we have in mind. The three-body
theory is presented in Sec. III, where we attempt
to stress the basic ideas of the approach while
suppressing the more complicated details. The
latter are provided in Sec. IV along with back-
ground material designed to make the paper self-
contained. In Sec. V we discuss the application of
the resulting formalism to data analysis, and com-
ment on some broader implications of this ap-
proach.

II. TYCHO-PARTICLE BOUNDARY CONDITIONS

2 c/2

y,', (r ) = -iwkM „— i '
k( kr);

(2)

0 is the c.m. momentum. The coefficient t, is de-
termined by requiring that

e 0 kt a+~

This implies that

X, (k)
t, (k)= '( ),

= d'&+~, (k')

N, (k) = (aA., —l)j, (ak) +akj „,(ak),

D, (k) = ivkM„[(aA. , —l)k, (ak) +akk „,(ak)].

In mhat follows we will denote by t,', N,', D,' the
corresponding expressions in the special case 4&

=0. For purposes of comparison with the three-
particle formulation, we note the equivalent bound-
ary condition

In order to avoid unnecessary complication of
the subsequent discussion we will neglect spin and
isospin dependence, and mill assume that in each
two-body channel e there is a characteristic inter-
action radius a„beyond which particles P and y do
not interact (o.Py cyclic). It will be helpful to first
consider the boundary-condition approach in a two-
body system. If g',",'(r) represents the partial-
mave function for that system outside its interac-
tion radius a, then

04'(r) = 4.i(r) + ti (k)0:i(r)
with

1/2

Q„(r) = — i'j, (kr),

B,(k) = vM, ~, (k')X, -'(k) (5)

establishes the equivalence; on the other hand, any
real function B, (k) =(-1)'B,(-k) via Eq. (5) uniquely
predicts a unitary two-particle t matrix (t, ).

III. BOUNDARY CONDITIONS FOR A
THREE-PARTICLE SYSTEM

The wave function for a three-body system may
be expressed as a function of the relative position
x„of particles P and y, and the position y of par-
ticle a relative to the Py c.m. There are clearly
three ways to so label the system; unless we wish
to indicate a specific choice we will drop the sub-
scripts and simply write 4(x, y). It is convenient
to make the usual channel decomposition and write

%(x, y) = Q i)~(xs, yg),
B=x

where the channel wave function g" corresponds to
that part of 0 for which, in the limit y -~, parti-
cle a is merely a spectator to the two-particle
scattering of P and y. ' In what follows we take
momenta p, q conjugate to x, y, respectively„and
define S' to be the total energy in the three-parti-
cle c.m. system.

%e now observe that 4 may be characterized in

terms of an initial state of definite momentum

~p„q„); the on-shell condition is that
ap ap

p„~ =k '=—2p„(W- q„,'/2M ),

where p, , I are the reduced masses correspond-
ing to the momenta p„,q, respectively. However,
it is more convenient to couple the angular mo-
menta 1,(p„,) and A,,(q„,) to form the state
~
IMl, A. ,P„q„). Correspondingly, we expand 40 0 ap ap

and the g in terms of the two-direction spherical
harmonics defined by Blatt and %eisskopf, ' viz. ,

+"'"'(x y) =»~ »(~ X)'I'"'(~ ~)

For x &a„, g" is that solution of the t~:ee
Schrodinger equation (Il,g-:= WP ) satisfying the
boundary condition noted above as y - ~. Thus,
exterior to the domain in which P and y interact,
g" takes the simple form'

I/2 gl
g'"''(a+) —A.,' g' ( «)a=+— —B,(k)t, (k).a

+ ~9' 9' q) Ja

(10)

Clearly the definition

(5) for comparison we recall Eq. (1). The unknown

quantity in Eq. (10) is the channel t matrix Tf, „(q),



D. D. BHAYSHA%

which depends parametrically. on L„)r,q„. In

particular,

Ap 5(q- q, )'- t„,r(k„,)

ao, I.
+~&rr. ;r 1 (qrqn)~

where M arises from multiple-scattering terms.
The T suffice to construct the total three-body t
matrix T = QBT, and hence provide sufficient in-
formation to determine all scattering amplitudes
of physical interest. '

In order to determine the T" we will constrain
4 at the boundary of the exte~io~ region. An ob-
vlolls generallsatlon of E(I. (5) is 'to re(lulre that

+I.r1(& + y ) —)rr @i~r) (rr + 3' )

where

3

8-,
(13)

P'"'(x, y) = 8(x„-a„)8(xs —arr)8(x~ —a„).
It is convenient (and involves no loss in generality)
to take I3 in the form

'I dqq Br )..'r ), '(yn& q)Tl, r 1 (q) (12)
g~

t
))

I

where 8 describes the dependence of the logarith-
mic derivative on the distance y„of the third par-
ticle, and 4 '"' represents the exterior projection
of 4." Explicitly,

ns;L ~ ext I. es;LBr&'l r ,b, q)= Z Prl. ,'l &, -(s +, y )~r-)r ~
&, ,(S, q)

Pl yN

I/2

&r1",r'14» q) = — —l 5.( 5rr 511 4,14 n)B .r(k.)+&r 1",r'1b. q)DN'r' (ks)~,
~n

(15)

where P'r"lr. ~r 1 (a„+,y) is a polynomial in y which can be determined explicitly from the appropriate angu-
lar momentum projection of E(I. (14), and B r (k ) is the function defined in Eq. (6) with a channel index
appended. By re(luiring that 8/Q, l(y„)- 0 in the limit y„-~, we embed the two-particle boundary condi-
tion in E(I. (12) as a special case, and guarantee the correct two-body phase shifts. The (real) function 8
is otherwise arbitrary and represents our dynamical input. Here we have also defined k8' = 2p, r)(W, —q'/
2M 8), where W, is a negative energy parameter, and taken the (nonvanishing) function D(80r) (k8) as an ex-
plicit factor for reasons explained below.

The explicit appearance of P'"' in E(ls. (13) and (15) ensures that our boundary condition [E(I. (12)j is on-
ly applied to that part of 0 which can be constructed from the exterior representation of the (8; this is in
fact necessary since we have no equivalent representation in the interior. As a consequence, however,
we observe that there will in general be some minimal distance y'„such that both sides of E(I. (12) vanish
identically for y y'. That is, for x„=a„+, y'„corresponds to particle o. being close enough to P or y to
interact; Q'"' vanishes for y less than this value. The geometry for the special case of equal masses and
radii is shown in Fig. 1; in this case y'„=-,'v 3a. As a result, Eq. (12) is without content for y &y'. Un-
fortunately, such a constraint is not adequate to specify the T uniquely, and we thus require an auxiliary
boundary condition for this purpose.

The form of this auxiliary constraint is essentially determined by the requirements of unitarity, and was
derived by the present author in the context of a particular case of this formalism (singular cores)"; this
corresponds to setting b, , and the input functions defined below identically equal to zero. If we denote the
second (integral) term of E(I. (10) by rjrz l ),"'(x„,y„), this condition can be expressed in the form

1/2 00

4ri ) ((ra+~ 3'n) —
~rn kr i), (&n+~ y ) = 2 qq Cl ), r '1'(T q)Tl, r 1 (q)

~n 6~' &' o

for y &y", where we take C in the form

C, z.'r ~
&, (y„, q) =5„()5rr 51&, rtr, &, ()r„)Rnr(q)D„'I(k„)+Cll.'r 1 (y, q)D(t, .(ks),

D(0) (k
Rnl (q) D(0) (knl n

(17)

Here C is an arbitrary real function.
The appearance of the explicit factor Dr)Or (ks) in

E(ls. (15) and (17) serves two purposes. In the
first place, it provides sufficient convergence to
the resulting integral equation to guarantee a
square-integrable (I.,) kernel, provided only that

B and C are also I-,. Secondly, the dependence on
Wp as a parameter has a useful physical interpre-
tation. For example, if the three-body system has
a bound state of energy W~ and we choose W, = W~,
then the energy-independent parts of 8 and C could
in principle be determined from a knowledge of the
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FIG. 1. Geometry defining the exterior and interior regions in the special case of equal masses and radii. The inte-
rior region is cross-hatched and separated from the exterior by curve B. Curve A bounds the domain y~(y~ for which
particle 0. is close enough to P and//' or y to interact, while curve C corresponds to the minimal distance y ~'" such that
0. is in the exterior independent of the angle X y.

bound-state wave function through Eqs. (12) and
(16); i.e., in this case the P's would be known.

The consequences of our boundary conditions
can be expressed as a set of coupled one-variable
integral equations, which for brevity we express
as an operator equation in terms of the states
(o.lkq), defined (for fixed L) such that

ered in SCI, while B, C, B correspond in an obvi-
ous way to the functions defined above. The oper-
ator 8 corresponds to the projection operator
8(y„—y„) in this basis, while p is diagonal with
the value

(21)

(18)

It is useful to define an operator X such that

X=A +KX,

K=8+K "p +[(1- 8)8 +8(C —1)j(1-R)p.
(20)

Here K ' and 0 are the kernel and driving term,
respectively, obtained for the special case consid-

Thus p contains the two-body bound-state poles (if
any). The real input functions B and C may have
arbitrary matrix elements in this basis; provided
they are I-„ the kernel K is also L„and hence X
is well defined. We note that the poles of (1 —K) '
for negative values of W determine the energies of
the three-particle bound states. The only infor-
mation our approach cannot provide is the internal
structure of these states, but if this information is
somehow available to us (deduced from electron
scattering experiments, for example), it can be
used as indicated above to determine some of our
parameters.

IV. DETAILS OF THE FORMALISM

In this section we present the requisite detail for application of our formalism to the analysis of three-
particle final states. In particular, we give the matrix elements of K ' and 0 in the above basis, and dis-
cuss the relation of X to the physical observables. As in the preceding discussion, we restrict ourselves
to the absence of spin and isospin for simplicity. %e first note that if m denotes the mass of particle n,
the reduced masses p, M„are given by

p„'=ms '+my 'p M~ '=m„'+(my+my) ', (22)
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where (nPy) are permutations of (123).
In what follows we will refer to q, k simply as q„kp; no confusion should arise from this practice

since the index np always appears explicitly. It is also convenient to introduce the function"

Q C(hlL;Om)C(A. 'l'L;m-m', m')y'i*„($„0)y'~ „($„0)1'q„„($„0),
mf 7$

(23)

where the sum ranges over the values of m, m' allowed by l, l', respectively. The (total) three-particle t
matrix T,"zP; (q, qo; W) may then be expressed in terms of the channel t matrices via the relation"l Xtplp

Tt xl Ok
(0q& qo& W) TZ 1 x(q) + 2 ds Gj kl ' x'(e& 4(xs Pn8)Tjl 'k (Qn8) &

Br' X' ~-x
(24)

where cos8 =z and $„8,g 8, Q 8 are defined by the expressions below for the on-shell value P =k„:

2p. 2 1/2
P B=P 8(P q 8)= p 5 Pqz+

m
y

m
y OL

(25)

eos&„& =
(

— &a+ P. 8

m

Here the upper (lower) sign corresponds to nPy (Pay) cyclic. Thus, for example, Q 6=@„8(k,q, z).
In order to illustrate the relation between T and the physical amplitudes, we will assume for simplicity

that there is but a single bound state in each two-body channel of definite l corresponding to the binding
energy -v, . As the energy s„=k /2V, of the two-body subsystem tends to v „

2

(k )
g&&l

So. V
(28)

where g, is the on-shell value of the form factor associated with the bound state. The three-body t ma-
trix may then be expressed in the form

nTn ( .W} gz& nn LD(W} g»&0&0 g»& n»
( W} 5

P',I&»(&W} g»'P&0
l kl pXp ~& ~0&

p g kl pkp p p l X.l pi.p ~0& l X,l pX,p&Oti Sp ~&p' 0 S~ —V„& RP "a010

(27)

Here e is the amplitude for scattering from the initial (n„ l,) bound state to the final (n, l) bound state (re-
arrangement amplitude); in the special case o. =n„ f =/, it is the elastic amplitude for scattering of parti-
cle n, from that bound state. The amplitude c corresponds to the capture of P by y (o.Py cyclic} to form
the outgoing (o. , f) bound state, while b is the amplitude for breakup of the initial (o.„l, ) bound state to a
state of three outgoing particles. Finally, f is the amplitude for scattering from an initial state of three
free particles to a final state of three free particles. In the absence of experiments involving three-parti-
cle initial states, e and b are the quantities of greatest interest. We note that in Eqs. (24) and (27), q (q,}
takes on either the continuous range of values for which k (k,) are real, or the discrete values corre-
sponding to vanishing of the bound-state denominators. Given the trivial relation between T~» and X
stated in Eg. (19), the determination of X by Eq. (20) leads in a straightforward manner to the physical
amplitudes via the above relations.

By employing standard methods involving rotation functions analogous to those of Ref. 13, one may easi-
ly deduce an expression for the P,'&"., ~ & (x„,y„) representation of the P'"' operator defined in Eq. (14).
Taking the limit x -a„+, we obtain

2I.'+1
P,'~II „.(a„+,y ) = (-) ~" '~ [(2X'+1)(2l'+1)]'I'C(L'l'l; 00)C(L'A. 'X; 00)

x W(lh. l'A. '; LL')gf (y„), (28)
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where W(IA. l 'A. '; LL') is the Racah coefficient as
defined in Ref. 12, and

~,"(y.)= 2L, 1[P „(z)-P,(z)l,-. (28)

Here P~(z) is the usual Legendre polynomial (with
the convention P, =—1}, and

this follows quite trivially from the nature of
I""' ' It is useful to introduce a length b &y„'",
and to represent the matrix elements of K ' in the
form

Nn8;L /

( t~ (Z'"~PI'z' ')-
D«&,(k', )

(38)

=min 1, 2a '+y '-a, ' a„y

z„=z„(y„)
(30)

= max -1) 2 Q +yn —Q~ gnyn

and noe are cyclic.
The value y' discussed in Sec. III corresponds

to that value of y for which z' =z:
2 1/2

O Wn 2 &n 2 Wn 2y„= a, + a~ — a

providing the expression in parentheses is positive
(y~ =0 otherwise). For y„&y'„, P'"' vanishes iden-
tically. Similarly, there is a value y for which
z' =+1 for y &y,' it follows that

&n

+ dyy'f. (yq)N, ,"'(y, q').
~n0

The point here is simply that if we took b —~, the
integral term would contribute all of ¹ However,
the numerical evaluation of the integral in that
limit would be quite difficult. This problem is
avoided by the explicit form for N given below.

Although the derivation of K" from Eq. (12) and
the representation for tjI

""' given in Eq. (10}is
straightforward, the mechanics of this procedure
are quite tedious and we shall merely quote the
result. One finds that N ' vanishes, while for
Px ,o

Nru' ~ (q q')ne;L

„,t' „,Q.B N".l(~.,)f,(q, &., Q.8)8J, 8 8 q' —Q„8' —ic
e,"(y„)=4~~, .„

ext;LPi~ i ~ (a +, y )=&it &~~
(32)

where

L&«&Gu z (r.s & 8 &) (37)

for y &y„. For example, in the special case of
equal masses and radii, y'„=-,' v 3 a, y„=za. If
we specialize still further to only /= 0 channels,
the relevant quantity is

3
1q y~~ 2~p

2 3 2

P~"g'. Og (a, y) =5q~&q I, ( ', 2 &3a -y & 2a;

2 1/2
jJ, g

n6 8 ~ ~ 2

Q„6 ——— zq'+ A„a,
—p. g

m&

Z„,=[2q„(W —Q„,2/2M„)J'~',

cosy 8=+ q'z+- -R 8 K 8,n ~ m n

(38)

0, y &-,'W3a.
E.

(33) cos5 8
= kA g/kg,

cosa =z.

For subsequent use below we shall introduce the
function

~ 1'+ X' t
QP~'i ~(y )=&' " ' 'Pi"~"i ~ ~(a +, y.), (34)

which is also a real polynomial in y by virtue of
the Clebsch-Gordan coefficients in Eq. (28).

We now consider the operator K ' required in
Eq. (20). We first note that an operator Q exists
such that

& QP~'i- x-(y )QP'~-i i (y ) =&ii &~~ e(y. -y');
Jl ytl

(35)

Here (and in what follows) square roots are to be
taken with the cut along the positive real axis so
that Im(x)"' ~ 0, and the upper (lower) sign is tak-
en for o.Py (Pny) cyclic. As in SCI,

f, (P, a, k) =iak[akh„, (ak)j, (aP)
—h, (ak)aPj, „,(aP)j. (39)

We note that for W&0, the integrand of Eq. (37}
levaluated at z is (-1)' times the complex conju-

gate of its value at -z; combined with the proper-
ties of D~z~. (kz) this implies that the N contribution
to the kernel is real for negative W."

The remainder of the kernel can be evaluated
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via the function

nBL r M aI a8;L
) II ) tl

where

N,"~,' „(y q') =»@~a~&„'&, (a "„')(X,'!„—4,'„)Q() ( ~
) (y)j q (yq').

(40)

(4l)

For Pen,
„~+ a

)q, «o"«(y q')=qia asq'si' ' ' " qz — —«", )(j«(y„sq'))«, (X,sq's)G'«, «(q q s ( s)I,Ba

where

&n 2 2Pn 1/2 2 1/2

cosa„s = a„z ay X s, cosy s = s,„a„z—
y) y„s, cosa =a .

P. B P, s

my
"

Oy

(42)

(43)

Since the functions in the square brackets are elementary, the indicated differentiation can be performed
explicitly. However, the resulting expression is rather unwieldy in comparison with the above.

Finally, we consider the driving term Q of our integral equation. In analogy to E(ls. (36) and (40) we
write

aa
(&lkqlQ laol(&X(&q(&) =Q~, ) (q)+ dyy'j q(yq)Ql. , q(y),

'n

Qf&~(y)= Z QP~' ~)(y)Q;(xb).
I

(44)

One then finds that

Q,"„(q)=-6„„5„6,„X„,(l,), —8,(q, q„b.)(0) 5(q —qo)

(45)

where P, Q„,(p,„,(!)„,„are as in E(I. (25) with p=k, and q=q„and cos8=z. Here we have also em-
ployed the (partial-wave) momentum-space representation of the unit step function 8(b„-y„):

qi ~„(&q)i.(Itq') —q'i ~„(&q')i.(&q)
(9) ie 0'~) =

q -g2 /2

The remaining information required is the explicit form of Q, which can be expressed as

(46)

(47)
«n

~n CK

Here X„,I' „,q„„,f,„„,are given by E(I. (43), cos8=z, and the indicated differentiation can again be
performed explicitly.

The above expressions provide sufficient information to construct the kernel K of E(I. (20), and to use
its solution (X) in order to calculate actual cross sections. It should be pointed out that the apparent
complexity of some of the formulas is a general affliction of the three-body problem, and not a particular
consequence of our approach, In essence all of our expressions involve only linear combinations of ele-
mentary functions.

V. DISCUSSION

It is generally accepted that reactions such as
(d, np) or (p, 2p) are a potential source of new in-
formation concerning aspects of the basic nuclear

interaction not manifested in nP or pp elastic scat-
tering. The prospect of investigating such "off-
energy-shell" effects has stimulated a number of
exact three-body calculations employing simple
models for the nuclear force. These calculations
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indicate that, while on-shell effects apparently
dominate to the extent that even simple off-shell
mechanisms provide reasonable agreement with
the bulk of the data, a number of experimental pa-
rameters appear sufficiently sensitive to the de-
tails to lend encouragement to this general
program. " However, this particular line of ap-
proach has several major drawbacks. In the first
place, the computations involved are sufficiently
formidable to restrict one in practice to unre-
alistically simple potential models. As a conse-
quence, such calculations are best suited to tell
us the extent to which the data are pggt sensitive to
the details of the interaction; repeating the calcu-
lation with different potentials can provide only
crude insight at best given our limited possibility
of choice.

Moreover, even granting that improved numeri-
cal techniques may eliminate this difficulty, the
nature of this approach is such that the on-shell
and off-shell effects are inextricably linked in the
parameters characterizing the potential; in order
to test some aspect of the off-shell behavior it is
necessary to choose a new shape for the potential,
refit its parameters to maintain agreement with the
two-body data, and then solve the new three-body
problem presented. On a more fundamental level,
one may question the extent to which a potential
description is adequate in characterizing the short-
range behavior of any strongly interacting sys-
tem. Belated assumptions such as the neglect of
relativistic effects and three-body forces may al-
so prejudice the conclusions gleaned from this
approach.

On the other hand, the boundary-condition ap-
proach described in the preceding sections affords
an alternative mode of analysis which is particu-
larly well suited for the extraction of off™shellin-
formation from experiment. By separating the on-
shell information (two-body phase shifts) from the
off-shell behavior characterized by the J3, C, input
functions, one is in a position to investigate the
relative sensitivity of the available phase space to
either on- or off-shell effects. A systematic and
efficient procedure for this purpose would be to
expand B and C in some reasonable complete set
which is separable in the variables q, q'. We could
then represent Eq. (20) in the form

K= K~+AK2,
K, = K ' p+8 —8(1 -A}p,
K, =(1-ll}p,

It follows that

X= 1+Z, Z lg„)(x„lK, Z,Q,
n

where Z, =(1-K,) ', and (X„l satisfies

(50)

K„.=(q„lK,Z, l y.).
We note that the operators Q, K„E,are com-

pletely specified by the two-body on-shell param-
eters, and hence one can construct Z, numerically
by solving an integral equation with only on-shell
input. Given a specific choice for the sets
lQ„), (f l, one can then tabulate Z, lp„) and the
set of complex numbers (g„ lK, Z, l P ). With this
information any choice of the real numbers A„
specifies a value for X via the solution of the cou-
pled algebraic equations represented by Eq. (50).
That is, one need solve an integral equation only
once for each value Wof the total energy; analysis
of the off-shell parameters then reduces to linear
algebra.

By requiring the A„ to provide a detailed fit to
the data, it should thus be possible to characterize
the off-shell content of the experiment in terms of
this set of real numbers; this constitutes the
equivalent of a "phase shift" analysis for the three-
particle final state. Specific choices for the sets
l P„),(g l

will ultimately depend on the experience
gained through numerical studies with our formal-
ism, but qualitatively we would expect 13~e "'+
for large y„, for example, suggesting a choice of
the form ( q l Q„) = (q'+ p.„') ' for X = 0, with appro-
priate generalizations for higher A, .

A more ambitious approach wouM be to con-
struct models for I3 and C. The former, for ex-
ample, would attempt to characterize the behavior
of the logarithmic derivative as the third particle
is brought in from infinity (but outside the range
of forces). Viewing such a program as an alterna-
tive to potential theory, one should keep in mind
that potential models capable of fitting data are at
most weakly connected to an understanding of the
underlying dynamics. Such an approach, of
course, would be immensely easier to calculate
with one-variable instead of two-variable integral
equations. Finally, we note that this formulation
can be easily extended to take into account relativ-
istic kinematics, and can be generalized in a
straightforward fashion to systems of four or
more particles. Numerical investigations of the
formalism are now under way and will be dis-
cussed in subsequent articles.
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The problem is posed of exhibiting a mechanism that avoids 4F= 1 neutral currents with-
out invoking experimentally unknown types of particles. The proposed solution rejects the
Cabibbo rotation in favor of a mixing, between two types of unit-spin mesons, that is pro-
duced by the SU&-symmetry-breaking interaction. One quantitative prediction that is well
satisfied is the identity of the strong-interaction coupling constants appearing in & decay and
inp'-e'+e .

tes a more conservative attempt. Can
t a mechanism for avoiding unwanted
rrents that refers only to experimental-
zed types of particles? This note

one exhibi
neutral c4
ly recogn
sketches an affirmative answer.

Unified theories of electromagnetic and weak
interactions generally face a problem with ha-
dronic neutral currents that change hypercharge.
Such currents are strikingly suppressed in nature,
but are usually implied by the Cabibbo rotation
that introduces the sY =1 charged currents. This
has led to several suggestions, of varying de-
grees of charm, which are uniformly couched in
the language of hypothetical subnuclear constitu-
ents. ' The number of the latter has thereby been
increased, from three, to four, five, seven, . . . .
The phenomenological orientation of source the-
ory inv)

First we must review the archetypal treatment
of the leptons. ' These particles are grouped into
leptonic charge triplets, ~ L =+1: p,', v, e, and
the chiral charge-bearing currents represented
by

j"„=,'gyoyl'T, ~(, —ab=12, 21.
Here we have introduced the antisymmetrical ma-
trices

T,„=—,
' (t„+iy,(t, t,~)), ab = 12, 21

&2 t„=t, +i t„v2 t„=t, it„-
and the t„a=1, 2, 3 are the 3 ~ 3 imaginary, anti-
symmetrical matrices of unit isotopic spin. The
T matrices obey the commutation relations of the


