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We calculate the total cross section for e+e —e+e W+ 8', a process which proceeds via
two virtual photons. If the intermediate boson (W') has no anomalous magnetic moment
and pointlike vertices, this process can yield a larger cross section than the one-photon
process 8+e W+ W at sufficiently high energies. Otherwise, the one-photon mechanism
is dominant. Numerical results for several values of mz, and the magnetic moment are
presented. The effect of Z exchange in a Weinberg-type model is shown to be negligible in
these results.

l. 1NTRODUCTiON

In this note we consider the problem of colliding-
electron-beam production of intermediate-boson
(W') pairs if such bosons exist. This is an exam-
ple of a fundamental process which can be studied

for the first time by colliding-beam machines with
high energies and luminosities that now exist or
are under construction. ' The lowest-order pro-
cess which proceeds via annihilation into one vir-
tual photon (e+e - W+W ) has been well studied. '
Here we examine the higher-order mechanism
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(ee- y*y*ee- eelV" W ) which employs two virtual
photons. Several groups' ' have studied such two-
photon processes in other cases (e.g., pion-pair
production) and found that their cross sections
exceeded the one-photon processes at reasonable
colliding-beam energies (at E-1 GeV for pions).
It is reasonable to ask whether such a circum-
stance of a large ratio of the two-photon to the one-
photon process also happens in the case of vector
bosons. Our result is that it can if the S'boson
has no anomalous magnetic moment, but not for
nonzero moment. The 8' boson is assumed to have
pointlike form factors. The effects of the %ein-
berg theory' of weak and electromagnetic inter-
actions on this process are shown to be negligible.
In Sec. II the two-photon cross section is calcu-
lated, and the results are displayed numerically
for different values of m~ and the anomalous mag-
netic moment and are compared to the one-photon
process. The modifications to the calculation due
to the Weinberg theory are discussed in Sec. III.

(a)

II. TWO-PHOTON CROSS SECTION
FOR W - PAIR PRODUCTION

In Fig. 1 are shown the diagrams which contrib-
ute to ee- eel" 8' to order n~ in the cross sec-
tion. One contrasts them with the lowest-order
diagrams for e'8 —8'+W, shown in Fig. 2, which
proceeds via one virtual photon. Very simple
considerations reveal the striking difference be-
tween these two processes. In Fig. 2 the photon
has k ' = 4E' ~ 4m ' & 0, which is large and timelike;
however, in Fig. I for either photon

—k =—2EE'(1 —cos8') + m, '(E E') /E—E',
where 0' is the angle between the initial and final
electrons, and E (E') is the initial (final) electron
energy in the lab. If the electrons are detected
very close to the forward direction, cos0' =1
and k' = -m, -", which is small and spacelike. In
fact, the photons are essentially real (k' =0) and
one can consider the calculation of these diagrams
in two parts: (a) Study the spectrum of "almost
real" photons emitted by the electrons; (b) calcu-
late the process yy- 8"W . This general ap-
proach, clearly the Weizsgcker-%illiams' approx-
imation in the context of relativistic quantum the-
ory, has been investigated by many people. ' ' In
particular, Brodsky, Kinoshita, and Terazawa'
have given an exhaustive discussion of the general
two-photon process ee- eey*y~- eeX, and have
compared exact calculations with calculations in
this "equivalent photon" approximation (e.g. , for
ee- eel"). They have shown that the approximation
is a very good one (erring by the order of 10%) and
becomes better for a more massive final state X.
This is reasonable since the equivalent-photon
approach is, roughly speaking, an expansion in
& '/m~' =—m, '/mx'.

Here we simply draw upon the general results
of Brodsky et al. applied to the situation at hand.
Their central result is that

e

(c)

FIG. 1. Diagrams for the two-photon process ee—eeW+8': (a) direct, (b) crossed, (c) seagul1.
FIG. 2. Diagram for the one-photon process e+e

W lV
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v,. ..„(E)—=&(
—j [(n(E/m, )]' kl, ql

w+——&- ——
qg I' l

4« ds vsx —o) ), «(s)fs
th

where s,„ is the threshold value of s and

f(x) = (2+ x')' ln(1/x) - (1-x') (3 + x') . (2)

k2 q2

P
I p

k, , e,~——&-—
Y

kl, ql

q~, "gp

Our problem, then, is to determine a&& v+~-(s)
%e assume that the S'boson obeys the standard
quantum electrodynamics of massive vector bosons
as given by Lee and Yang' and has no strong inter-
actions (i.e., pointlike form factors). The Wboson
has a magnetic moment SR=1+a in units of e/2m)p;
the quadrupole moment is here not arbitrary but
given by Q= —e«/m~'. Figure 3 gives the relevant
diagrams and notation. ' Note that with the bosons
of momenta k„k„q„q, are associated polariza-
tion vectors e,", c» g» g» respectively. The pho-
ton-photon center-of-mass frame is chosen for
convenience; as usual, s=(k, +k,)'=(q, +q,)', and
8 is the angle between q, and k, in this frame. E
is the colliding-beam energy (P~O=P02=E) in the lab
frame.

The 8-matrix element is then

kp, ep

(b)

W+mql 1I

P

N ~ q&, p&

FIG. 3. Diagrams for the process yy- 8'+ 8': (a)
direct, (b) crossed, (c) seagu11.

' 2—ze (4) v a 5Ij (2ko 2ko 2~ 2 oyg/Q (2v) 6 (6 + q, - k, —,) &, e, '0, rl, »„s &

'A

where

(3)

and

~„'„„s(g( ,q+,k- q}„- g[ ,q3g( 3R 1)( ,k—-q, )],-g,„[(k,—q.)3g-(3g- )ql] ]'

2
—Q'2) —SZgr

+gsp[q, 3g+(3g-l)(k, —q,)],] (4)

is the direct term [Fig. 3(a)]. Also,

Mpvas Mpun8 (q-).—q2& («—&)

is the crossed term [Fig. 3(b)] and

~@vugg
= 28pv8as -8'ply'va -8'pg gv~

4m, ' "
v ~-(s)=

2
1—

2s s 1

where

dcose I3)in I &

is the seagull contribution [Fig. 3(c)] re(luired by
Bose statistics and gauge invariance, 4',"M&„6
= k", M» 6

= 0. This requirement is explicitly sat-
isfied by the above tensor.

Proceeding to the cross section in the standard
way, one gets

SPlllS

X ~If v at 8 ~P&v& at& g ~ (6)

has been summed over final spins and averaged
over initial spins. This can be expressed as
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IRg; i' = —.'(g""'-
V,"ei"'/mw')(g'" e-', e'/mw')

X(M44 S ~»~ ss4 —8g„8g444 S 4)
pv (7)

where M denotes that the supplementary conditions

Q1 Q1 Q2 7)2 0 have been u sed to set terms pro-
portional to q", or qs to zero, and also, for the
photons, k, c, = k2 e2 = 0 have been used to set
terms with 4," and k,' to zero. There is a subtlety
here responsible for the extra term, which is ex-
plained further in the Appendix. Essentially, the
condition k e = 0 cannot be naively applied to both
photons in a two-photon process without some care
being taken to obtain a correct and truly gauge-in-
variant result.

To obtain an explicit expression for ~gz; ~', the
algebraic computer program REDUCE by Hearn'
was used. The necessity of this is evident from
the complexity of Eq. (4). The reader is referred
to the work of Kim and Tsai' for the complete
expression for. o

y y w+w-. Here it suffices to note
that

N S
y y~1F+W 2

mw

CP
O yy W+W

mW

(z &1),

(~=1)

o„„~w-(E)=——[ln(E/m, )]'

44 (44 ) (
4ss ')'4*

x dcose igg„i', (9)

where f(x) was given in Eq. (2). This is the de-
sired result. To investigate its behavior, it is
necessary to integrate out the complicated ex-
pression for ~311&q ~' obtained earlier. However,
to get a qualitative idea, we use the leading depen-
dence given in Eq. (8). This yields (~ 41)

or, ~(E) - o.4[in(E/m, )]', I(mw/E)
mw

to illustrate the behavior of the cross section. The
full result will be used in the numerical integration
required to derive the accurate cross sections.

Now the expression for o&z w+w-(s), Eq. (5), can
be put into Eq. (1) to give the complete expression
for the cross section of ee-eeW'8' . We mould
like this answer in the lab frame for convenience.
This is not difficult, since o&& w+w-(s), even
though calculated in the photon-photon center-of-
mass frame, is a function only of s and is there-
for e Lo rentz-invariant. Thus

where v+2y is the total cross section for this two-
photon process and where

1

I(y) = x(1 —y'/x')' 'f(x) dx .

If E» mw, I(mw/E) -=f(0) -=0.4. Note that, except
for a factor of [ln(E/m, )]'/mw', this is a function
only of E/mw. This should be compared with the
one-photon prediction of

&,.-wW (E)-=(»'P'/3y'mw')

x[y~~'+ (a'+ 3m+ 1)y'+ —,'] (12)

III. EFFECT OF WEINBERG THEORY

In Fig. 7 are shown some of the diagrams con-
tributed in lowest order, in addition to those of
Fig. 1, by the Weinberg theory. ' This is a gauge
theory with spontaneously broken symmetries
which renders the weak interactions finite and
unifies them mith electromagnetic interactions,
but at the price of additional massive neutral vec-
tor (Z) and scalar (P) fields. Here only the Z
bosons contribute since the coupling of P to the
leptons is proportional to the lepton mass. A de-
tailed calculation of the cross section is not our
purpose here, but simply to show that these cor-
rections are negligible.

The point can be made with any part of the Wein-
berg corrections, say, Fig. 7(a), which contributes
a term proportional to

,' e'g'[u(P, ') y—„u(P,)] [u(P,') y, (dP +cJ', ) u(P, )]

g"" g"" —k" k",lmg'
~j"V asa1n2 ~

1 2 mz

(13)

as given by Tsai and Hearn, ' where y= E/mw- ,
P=—(1-y ')' '. Note that, if x=0, the total cross
section for this one-photon process oz,, z -mu'/3mw',
a constant at high energy, whereas if K&0 0'+1y-» E'z'/3mw~. From Eq. (10) it seems like1y
that v» y

would have no chance to overtake o» y
unless K=O. This surmise must be examined
quantitatively, of course. The integrations were
done using the multidimensional Monte Carlo
integration routine SHEP by Q. C. Sheppey. The
results are shown in Figs. 4-6 for various values
of mw and K. Note that, if K=O andmw-2 GeV,
then 0»y overtakes (TQJ y at E-30 GeV and is a
significant fraction at lomer energies. But for non-
zero K 0'z 2 y

is always a coupl e of order s of magni-
tude lomer than 0» y.

+terms of lower order in E, (10) where g'/8mw= G/W2, P, =-,'(1 + y,), and c,d are



TWO- PHOTON CROSS SECTION FOR O'-PAIR PRODUCTION

I
0-32

I I I I IIII I I I I I III~ I
0-33

I I I I I IIII ' ' ' '
I III-

Tly
m„=5 GeV,

CV

E
D

b

IO 33 — ITI

OJ

E
D

b

IO-34

IO-35

IP-35 I I I I I IIII I I I I I I II
I
p-36 I I I I I IIII I I I I I III

IO

E (GeV)

IOO IO

E (GeV)

IOO

IO-32
I I I I I IIII I I I I I IIII

rn+=IO GeV, K'=0

CV

E

I
0-33

Ip-34

IO-35
OJ
E
D

b
IO-36

IO-35 I IIIIII » I IIIIII I I I I IIII I037
IO 100 IOOO

E (GeV)

FIG. 4. Total cross sections for o&fy and 0'zt2y when ~= 0: (a) m+=2 GeV, (b) m= 5 GeV, (c) mz, ——10 GeV. Note:
In (c) the scale on the left refers to op fy and the scale on the right refers to Oz 2y.

constants Ic=2(l -R), d=1 —2R; R=mv'/mz'j. Evi-
dently, if k, '/ms'«1, this term is of order 1/m~'
compared to purely electromagnetic ones. A sim-
ple estimate of the ratio of differential cross sec-
tions of scattered electrons forward versus at
large angle shows that nearly all events involve
electron scattering forward and so I k, 'I —=m, '; also
mz &mz -40 GeV in the Weinberg theory. Thus
these additional terms. do not contribute signifi-
cantly.

The tensor M&„„6 has the same form for ZS'+W'

and ylV"S' vertices, except in the Weinbex g the-
ory a is constrained to beunity, that is, a Yang-
Mills" type vertex. We therefore expect the two-
photon process to be small compared to the one-
photon process in any gauge theory. It should be
noted that, at infinitely high energies, the addi-
tional diagrams will probably prevent the cross
section from violating the unitarity bound since

the ZW'S' and yW'W vertices have opposite
signs. In the one-photon case, Weinberg showed'
that o'r» ~1/E' eventually. To resolve this ques-
tion in the present case will not be essayed here.

IV. CONCLUSION

In the experimental guest for the elusive inter-
mediate boson the two-photon process here dis-
cussed may not be without significance. For the
special case of z = 0, we have noted its role. In
this case, a luminosity of 10" cm ' sec ' would
give -10 ' counts sec ' of these events at E-20
GeV and m& =2 GeV. Admittedly, for a particle
with such a large mass (if, that is, it exists) not
to have an anomalous moment is hard to believe.
Indeed, as Weinberg' and Kim and Tsai" have
remarked, z= I would assure that the WCompton
scattering would satisfy a Drell-Hearn" sum rule.
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This leads to an interesting point. If the 8'indeed
does have strong interactions and is described
by form factors that decrease rapidly with q', the
two-photon process might indeed dominate the one-
photon by virtue of its soft photons. On the other

10 ~
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FIG. 6. Total cross sections for ap2y when m~=2 GeV
and ~ =0, 1,2.
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ty-
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OJ

E
O

b
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. . . „„.IO-" hand, one would expect such W's to be, for in-
stance, electroproduced off protons; Kogut'~ has
shown that one could probe in this way up to mz
-5 GeV at SLAC energies. If these lV's are more
massive still, the two-photon process would play
a useful role in searching for them and in setting
limits on their mass and strong interactions.
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APPENMX

Consider, for simplicity, the case of the production of a pair of spin-0 bosons. " The amplitude is pro-
portional to Qi 6,"M„„where

(2q, —k, )„(k,—2q2)„(2q, —k, )„(k,—2q, )„

which satisfies k, 1M„„=k',M„„=0 explicitly. Now apply the subsidiary conditions k, c, = k, z, =0; then
(dropping an over-all factor of 2)

(A2)

so that

1 ~p& 2&

ftl If ~2ll & 'Q1 I/ 02ll j i
2' k

+
k ~ki~ k +k +~kl~k2fl k

+
ki' &2 2'~2 2 ~2 I ~2

M

(A3)

(A4}

which is, by itself, "pseudo-gauge-invariant" even though e,"k,'M&„= e,"k,"3f» =0. Now 3f&„M""=M„„M""
-2, so dropping bofk k» and k» (i.e., using boN subsidiary conditions) results in an error in the cross
section. It is easily verified that setting eileen k» o~ k,„ to zero will give the correct answer.

Alternatively, use the full expression for the summation

k&k" k" "+k" & k" k" k" "+k"~ll~ll ~ ~ gpss
1 1 + lq I 0 gVP 2 2 20 2 I

(k, g}' k, .q (k, q)2 k, g

where g =(I, 0, 0, 0) is a unit timelike vector. On the right-hand side, tedious calculation verifies that

l~ +kl ~ k k k2~ +k
(k .g)' k, q (km g}2 k~ q

(A5)

so that the gauge terms in ge" e" "compensate" for the "gauge terms" omitted in M. It is precisely the
conservation of the current that enforces this. No such problem exists for the massive vector field since
the gauge freedom has been removed. Precisely analogous results to the above are found for M&„„&, where
now k,"%„„6=—2k,„g 8 and k2 Mp g 2kypg & are the analogs of the "pseudo-gauge-invariance" state-
ments in Eg. (A4). Then follows

p p v pv
NPPcfaNP'P& ~' 6' —M f)f pe II&g' —egf)f g gtx& 8
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It is shown that the wave function for a three-particle system outside the range of forces may be
uniquely determined by imposing a suitable set of boundary conditions. This result is expressed in
terms of a one-variable integral equation with a square-integrable kernel, the solutions of which specify
the three-body t matrix. The input to this equation consists of the two-particle phase shifts and two
independent real-valued functions which characterize the three-body wave function in specific regions.
The formalism yields an exactly unitary three-particle t matrix for arbitrary values af this input, and
thus provides a practical scheme for the analysis of three-body final states.

I. INTRODUCTION

Some time ago, Feshbach and Lomon' demon-
strated the power of the boundary-condition ap-
proach Rs R means of correlating a broad spectrum
of R-Ã scattering data. . This approach is based on
the mell-known fact that, for interactions of finite
range r„ the wave function takes on a particularly
simple form at intexparticle distances r &ro, and
may be compLetely characterized by stating the co-
efficient of the outgoing wave. This coefficient is
uniquely determined in each partial wave if one
specifies a, value for the logarithmic derivative of
g, at r =a ~ r„since this value must be energy-
dependent, imposing such R condition is merely an
alternative to the usual description in terms of
scattering phase shifts. The power of this ap-
proach lies in the empirical fact that, for the N-N
system, ' the logarithmic-derivative parameters
are Rt most weakly dependent on the energy, Rnd

hence R few parameters Rx'8 RdequRte to describe
the scattering in the range 0-300 MeV. ' A corre-
sponding statement may be made for other sys-
tems of strongly interacting particles. ' In com-
parison to R potential description, the computa-
tional advantages of this approach are obvious„
one replaces a one-dimensional integral equation
(e.g. , the Lippmann-Schwinger equation') by quad-
rature.

An analogous simplification of the three-body
wave function occurs in the exterior regions, de-
fined by the requirement that no pair of particles
is within the range of forces. Therefore, one

might hope that a suitably generalized boundary
condition on the exterior wave function would
uniquely specify the outgoing component (i.e., de-
termine the three-particle t matrix), resulting in
a highly efficient description of three-particle fi-
nal states with comparable computational advan-
tages. Below we propose a set of boundary condi-
tions for this purpose which determine the three-
body t matrix via the solution of a one-variable in-
tegral equation. The input for this equation is
cleanly separated into two-particle phase shifts
and real-valued functions characterizing the three-
body wave function in distinct physical regions.
For any arbitrary selection of this input the for-
malism produces an exactly unitary three-particle
t matrix. This is to be compared with an earlier
approach with essentially the same motivation by
Noyes. ' In Noyes's work a one-variable equation
was derived with a kernel specified in terms of
the half-on-shell two-body t matrix, Rnd a driving
term involving an arbitrary expansion of the in-
terior wave function. The difficulty with this for-
mulation is that the expansion coefficients are in-
timately connected to the two-body phase shifts
via the unitarity relation, and hence are not truly
independent; selecting them arbitrarily will in
general violate-unitarity. In order to achieve an
effective "phase shift" analysis of three-particle
final states, one must require real and independent
parameters; our approach satisfies this condition.

We begin in Sec. II with a brief review of the
boundary-condition approach to two-particle sys-
tems, and introduce a new statement of the bound-


