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The models of Blankenbecler, Brodsky, and Gunion for inclusive and exclusive reactions at large
transverse momentum are examined in a covariant framework. The discussion of inclusive reactions is
much less model-dependent than that of exclusive reactions, but it is argued that for both the rather
specific assumptions of Blankenbecler, Brodsky, and Gunion should probably be relaxed. One can argue
that, for inclusive reactions, there may be a connection between the power-law falloff in transverse
momentum and the behavior of the structure functions for electroproduction and electron-positron
annihilation at co= 1 and go=0. The relation of large transverse-momentum inclusive amplitudes to Regge
amplitudes at small transverse momentum is also discussed. For the exclusive process it is shown that
a more detailed calculation suggests that the angular dependence is different from that calculated by
Blankenbecler, Brodsky, and Gunion.

I. INTRODUCTION

The assumption that hadrons are in some sense
composed of quarks appears to account success-
fully for existing experimental data on electro-
production, deep-inelastic neutrino scattering,
and muon pair production. ' For these processes,
suitable mell-defined mathematical assumptions
enable one to make a precise identification of the
dominant contributions at high energy. ' We have
applied similar ideas to elastic hadronic inter-
actions at small momentum transfer and to total
hadronic cross sections. ' There we found it
necessary to use physical rather than mathemat-
ical arguments to identify the dominant contribu-
tion. The main justification for this procedure
is its results: We find a natural connection be-
tween the quark-counting rule for total cross sec-
tions, the Wu-Yang formula for the differential
cross section near f =0, and s-channel helicity
conservation for the coupling of the Pomeranchuk-
on to the nucleon. (It is argued that each of these
properties should have no more than approximate
validity. )

Blankenbecler, Brodsky, and Gunion' (BBG)
have recently extended the analysis to elastic in-
teractions at large momentum transfer, and to
inclusive reactions at large transverse momentum.
These authors have again found it necessary to
identify the dominant contributions by physical
rather than mathematical arguments. Their cal-
culation and assumptions are in a noncovariant
formalism, and in this paper we redevelop the
analysis covariantly. In doing so, we shall find
it natural to use slightly different basic assump-
tions, and we shall also suggest that one should
probably not confine oneself to so specific a mod-
el as they use.

As is by now well known„ the dominant contri-

butions to the leptonic processes mentioned above
are taken to be" those having the structure shown
in Fig. f. In each case the internal lines repre-
sent off-shell quarks or antiquarks, and T is the
amplitude for the hadron to emit a quark or an
antiquark. Each diagram has to be cut down the
middle and a complete set of intermediate states
must be inserted; in the case of Fig. 1(a) this
corresponds to taking the imaginary part [In .the
case of muon. -pair production there is a term
additional to Fig. 1(b), where a Pomeranchukon is
exchanged between the two bubbles. Apart from
a possible logarithmic factor, this term is of the
same power in the energy, but the numerical co-
efficient multiplying this is believed to be smal-
ler. ''] For hadronic elastic scattering at small
momentum transfer t, which at t =0 yields also
the total cross section, we supposed' that the
main contribution comes from terms having the
structure of Fig. 2. Here each hadron emits
either a quark or an antiquark, moving slowly in
the rest frame of its parent hadron; the relevant
emission amplitudes in these circumstances are
essentially the same amplitudes T as in Fig. 1.
The quarks then scatter in the central amplitude,
by Pomeranchukon exchange. Terms like Fig. 2
are expected to dominate only for small t, be-
cause unlike Horn and Moshe, ' we suppose that
the central amplitude goes to zero rather rapidly
outside the Regge region.

BBQ assume' that at large t the dominant con-
tribution to elastic scattering corresponds to
terms of the structure of Fig. 3, that is, one had-
ron emits either a quark or an antiquark and this
is received directly by the other. The internal
amplitudes M in Fig. 3 cannot literally be com-
plete amplitudes T, because this would corre-
spond to overcounting; for example, it would re-
sult in double poles in the t channel. BBG take
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(a)

FIG. 1. Dominant contributions to deep-inelastic l.ep-
tonic processes, (a) to electroproduction or neutrino

scattering, and (b) to muon-pair production in pp colli-
sions.

a specific and simple model for these amplitudes.
We discuss the evaluation of the contributions
from Fig. 3 in Sec. III. Little can be said about
why Fig. 3 should represent the dominant contri-
butions, except that, with not unreasonable as-
sumptions, they do dominate in the large-t region
over other particular terms that one might study,
such as Fig. 2. The main justification, or other-
wise, will come from confrontation with data;
BBG show that so far the position is very encour-
aging. [¹teadded in Proof For a r. eassessment
of the data see P. V. Landshoff and J. C. Polking-
horne, Cambridge Report No. DAMTP VS/4 (un-
published). ] However, we note that the analysis
of See. III raises a question about the angular de-
pendence that BBG calculate.

In this paper we consider also the inclusive
reaction

where par. icle c is a pion that emerges at large
transverse momentum. We discuss this in the
usual way, in terms of the discontinuity of a to-
tally-forward six-point amplitude. Qur initial
guess is that, in the large-transverse-momentum
region, the dominant contribution corresponds to

FIG. 3. Model for elastic scattering of hadrons at
large momentum transfer.

terms having the structure of Fig. 4, though as
we discuss at the end of Sec. II, there is reason
to suppose that it may be necessary to modify
this guess and to consider a more general struc-
ture. In Fig. 4 the two central bubbles are cou-
pling functions that couple the pion c to the quark
and antiquark, while the upper and lower bubbles
are the complete emission amplitudes 7.'; here
there are no double-counting problems.

Vfith a suitable choice of pion coupling function,
and a particular simple structure for 7.', Fig. 4
corresponds to the term that BBG assume to be
dominant. Vfe show that if one makes assumptions
similar to theirs, and carries through a covariant
calculation, one obtains a simple connection be-
tween this term and the structure functions of
deep-inelastic lepton scattering. However, our
results differ in detai1. from those that they obtain
from old-fashioned perturbation theory in the in-
finite-momentum frame', this is in contrast with
the elastic process of Fig. 3, where the two cal-
culations give identical results if proper account
is taken of logarithmic factors.

As we shall discuss, it is quite likely that the
particularly simple structure that BBG assume
for 7 is in fact too simple, and even that a struc-
ture more general than Fig. 4 must be considered. ~

Then the connection with deep-inelastic lepton
scattering is lost. There remains, however, the
qualitative conclusion of BBG that at large trans-

FIG. 2. Model for elastic scattering of hadrons at
small momentum trans fer,

FIG. 4. Model for inclusive process ab cX at large
transverse momentum. The amplitude must be cut down
the middle and intermediate states inserted. The nota-
tion for four-momenta is indicated.
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verse momentum p~ one may expect to see a pow-
er-law falloff (pr} "taking over from the expo-
nential decrease found at small p~. It is possible
that this has recently been observed at the CERN
Intersecting Storage Rings. '

sponds to

V= g+P S,

(2.6)

II. INCLUSIVE PROCESSES

We consider first Fig. 4, in the region where
all scalar products are large: (u = (1 —x,)/x, ,

2a b=s,
2b c =x,s,
2a' c=x2sq

Then

py —X~X2S ~
2=

cot'(-, 8) = x, /x, ,

(2.2)

with g, y, and u finite. In terms of these new
variables

(2.7)

k QJ g+(d M —()( +K )

(k —a)' - (cu ' —l)y+ (~ ' —1)'M' —(X'+ «'),

(k+b —c)'-a+

(k —C) —X2(d S
q

with

k =ua+ vb+mc+ a,
where I( is a one-dimensional spacelike vector
orthogonal to a, b, and c. Then in the limit (2.1)

~td'k- (X,X,)"'s'"Jt du dv dred« (2.4)

k s(av+x~vN +x2Q'w) +M (Q + v ) + p, K —K

(2.5)

where I is the nucleon mass and p. the pion mass.
According to usual ideas, ' both T and the pion

coupling function go fairly rapidly to zero when
the mass variables k' and (k —c)' become large.
Thus, as s-~ one expects the dominant contribu-
tion to the integral to arise from the region of
integration where these variables remain finite.
This is indeed so for the amPlitude in Fig. 4, but
it turns out that this leading term in the asymp-
totic behavior of the amplitude does not have the
necessary discontinuity to describe the inclusive
reae tion.

Instead it is necessary to consider a region
where one of the mass variables, k' or (k- c)',
is finite and the other is large. In the first in-
stance we shall suppose that both bubble energies,
(k- a)' and (k+b —c)', are finite in the important
region of the integration.

The region where k' is kept finite then eorre-

where 8 is the angle at which c emerges in the
center-of-mass frame.

For simplicity, we first suppose that the ex-
changed particles have zero spin, and pretend that
the pion is scalar. We write the loop momentum
in the form

(-k") »2f(s'). (2.9)

Then altogether we have, up to a constant factor,

s ~»1 W ~~X ~(x ~ ~)»l »2 E(&} ds' f(s' }

where E(co) is the contribution from the quark or
antiquark k to the electroproduction structure
function E,(&u). The result (2.10) can only be valid
if the integral fds'f(s') is convergent, as it is in
the particular model of BBQ. Our result then is
similar to that of BBQ, except that in the third

1
~l d k l~ dadoed«dK.

J X,(ds

In fact the integral over u will conveniently be re-
placed by an integral over s' = (k+ b —c)', the only
variable in which u appears. The first two of
Eqs. (2.7) are exactly the same as appear in the
analysis of Fig. 1(a,), with ~ playing the role of
the usual deep-inelastic scattering variable
-2v/q'. This is the basis for the comparison
made by BBG between deep-inelastic hadron scat-
tering and deep-inelastic lepton scattering, though
of course the relationship could be upset by a
dependence of the pion coupling function on k .

As we outline in the Appendix, in Bethe-Salpeter
models for the coupling function there is no such
dependence when k"= (k —c)' is large, so suppose
in fact that at large k" the pion coupling function
has the asymptotic form

(2.8)

where C and y, are independent of k'. Suppose
also that for large k" the imaginary part of the
lower bubble 7 has the asymptotic form
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factor they have x,(~ —1) ' instead of x,&u '. We
must add to (2.10) a term obtained by interchang-
ing x, and x„coming from the region where
(k —c)' is finite instead of k'.

However, in a realistic model it is likely that
in fact the integral fds'f(s') diverges. Then (2.10)
is not correct, the reason evidently being that the
initial assumption, that only finite values of s'
matter, is not correct. Thus, we must abandon
the last constraint in (2.6), and instead of (2.7) we
have

- co~' ' 5& 0. (2.14)

Further, y, can be measured" from the behavior
of either F2(v) or E2(e) near ur =1,

k ug+u M —(l( +K )~

(k —a)' - (u —1}y + (u —I)'M' —(g'+ K'),
(2.11)

(k+ b —c)' - (1 —x,)(u —co ')s,
(k —c)'--x,us.

When k" and s' are both large, simple models
suggest that a reasonable assumption for the be-
havior of ImT corresponds to a generalized sca-
ling relation

ImT(s', k")- (-k") Y' s'~ 'P(-s'/k") (2.12)

with 5& 0 and P a finite function such that P(0) s0.
[The case 5& 0 then corresponds to the previous
calculation leading to (2.10).] In this case (2.10)
is replaced by

s x, x,-2&j -&2+ ~- &-~ -2'-y2

x i" duu-»i-a 2(uu —1)~ ~E(u ~)y x, (u(u -1)
u) & x2Q

(2.13)

We must again add to this a term obtained by in-
terchanging x, and x, .

We have shown in a recent paper' that the con-
stants y, and 5 can be measured in high-energy
electron-positron annihilation. Let E,(&u) be the
structure function for

e'e -pX.
Then, near ~=0

F,(&u) -&u&' ' 5& 0

little else about the value of 5, and in particular
we cannot predict whether 5&0, with the result
(2.10), or 5& 0, with the result (2.13).

Notice that, whatever the value of 5, we may
expect that both the terms (2.10) and (2.13) are
present. The value of 5 merely determines which
of the two is the leading term. If 6&0 the coeffi-
cient of the term (2.10) is no longer represented
by the integral fds' f(s'), but rather by the ana-
lytic continuation in 5 of this integral from the
region 5& 0 where it is defined. Similarly, the
representation given in (2.13) for the coefficient
of the other term is well defined only for 5&0,
and for 5& 0 it must be obtained by analytic con-
tinuation.

It is of interest to consider the behavior of
(2.10) and (2.13) for small values of x, or x,. The
limits x, =O(1/s) or x, =O(1/s) correspond to
finite p~ fragmentation limits with the pion c a
fragment of a or of b, respectively, while the
limit x, =O(s ), x, =O(s '), 0&A&1, corre-
sponds to the finite P~ pionization limit. Hence,
for these limits one might expect to obtain the
powers of s that correspond to Hegge limits. How-
ever, this does not have to be so, since if one
considers any of the finite p~ limits directly, in-
stead of first going to the large p~ limit, terms
additional to Fig. 4 also contribute. The situation
is analogous to the relation between the large cu

behavior of inelastic structure functions and Regge
theory.

The limit x,= O(1/s) automatically gives the pow-
er s"p " in both (2.10) and (2.13), since then
u = O(s) and we know' that, for large e, F(e)

In the case of (2.13) a small calcula-
tion is involved since the dominant contribution
to the integral comes from the lower end point,
g -co ', and this must be exhibited by the change
of variable

u=(u '+u/s.

For (2.10) the other fragmentation limit, x, =

O(1/s), gives the power s, and the pionization
limit does not correspond to Regge behavior in this
case either. In the case of (2.13) the behavior in
these limits depends on the behavior of g(-s'/k")
as -s'/k"-~. This is the Regge limit for ImT,
so that it is reasonable to assume the behavior

F,(~) or E,(~)-(e —I)» ' (2.15) y( st/kz2) (—s /k 2)ap 0 +1 (2.17)

so that present electroproduction data suggest'
that y, =4. There are no data yet from which we
can determine the value of 5, though we have
shown9 that, in order that E,(v) and E,(&u} exist,

(2.16)

Until there are data from annihilation we can say

to give Regge behavior in (2.12}. This then leads
to the behavior s"P&o~ for (2.13} in both fragmenta-
tion limits and in the pionization limit also.

We must now consider the realistic case of spin-
—,
' constituents and also take into account the pseu-
doscalar character of the pion. The amplitudes
T now become Dirac matrices. For example, the
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upper amplitude can be expanded in the form

T= T, + T,y ~ a+ T,y k+ T,o„,k"a" . (2.18}

The simplest way of taking account of the pseudo-
scalar nature of the pion is to include a y5 factor
with its coupling function. A trace around the quark
loop must also be taken. This produces an extra
factor of s from the terms T„T„and T, in

(2.18). The general direct connection with electro-
production is then lost since E(~) involves only

T, and T,. [This is to be contrasted with the ap-
parently similar case of Fig. 1(b), where in fact
neither To nor T, terms contribute. J The Regge
properties of T„T„and T, are such that the
small-x limits retain their Regge form.

Further complications are provided by the fact
that y y k and y y k' terms should also be in-
cluded in the general covariant expansion of the
pion coupling function. Further factors propor-
tional to s then arise in the trace, though again
the Regge behavior is obtained in the appropriate
limits of small x, or small x,.

Even in the spinless-constituent case the con-
nection with electroproduction is not a necessary
general property, for it proceeds only from our
choice of the amplitude of Fig. 4. Consideration
of the kinematic arguments given above shows
that one should in fact consider the more general
contribution Fig. 5, where the masses and sub-
energies indicated by arrows are large. Figure
4 corresponds to a particular disconnected con-
tribution to the eight-point amplitude of Fig. 5.
It requires a dynamical theory if one is to say
that this disconnected contribution is the dominant
part of the amplitude.

III. ELASTIC SCATTERING

The case of elastic scattering at large trans-
verse momentum is even more model-dependent.
This is no surprise, since a similar situation
exists in electroproduction, where the discussion
of exclusive processes" involves many more as-
sumptions than that of inclusive processes.

As we have said in Sec. I, we suppose that the
central bubble in Fig. 2 goes to zero rapidly out-
side the Regge region, so that it may be natural
to assume that the diagrams of Fig. 3, where the
quarks are exchanged directly, are the dominant
terms in the large-momentum-transfer limit.
We have explained that the two internal ampli-
tudes M in Fig. 3 must be reduced amplitudes,
to avoid double counting. It is natural to suppose
that they are the same reduced amplitudes as the
outer bubbles of Fig. 2, but this identification is
not very helpful because in Fig. 3 the amplitudes
M are evaluated in a completely different kine-

C C

FIG. 5. A more general contribution to the inclusive
process, which is also likely to be important. The ar-
rows denote the variables that are large.

matic region. Here we content ourselves with
assuming that in the kinematic region where they
are needed they have a structure closely similar
to that assumed by BBG; our object is to show
that in a covariant calculation one can obtain the
same result as they derive from old-fashioned
perturbation theory, though the result must be
modified to take account of logarithmic factors.

BBG suppose that, in the region of their vari-
ables that matters, the amplitudes Af are well
represented by contributions that resemble either
s-channel or u-channel Born terms. The internal
"particle, " represented by broken lines in Fig.
6, does not have to have an associated pole, but
its "propagator" is supposed to behave like s '
at large s. It is called the "core" of its parent
hadron. The coupling functions that describe the
breakup of the hadron into core plus quark (or
antiquark) are supposed to have the asymptotic
form (discussed in the Appendix)

(3.1)

2pi ' p2 vg

2pi'ps v

2pz. p4 vc,

v- , a+b+ c=o.

(3.2)

when both the quark momentum variable )P and
the core momentum variable A" are large. When

just one of these is large, the behavior is (k }
or (k") r. The form of (3.1) seems to be the co-
variant counterpart of the assumption made by
BBG about the dependence of infinite-momentum-
frame wave functions on a single variable.

Notice that the assumption that the reduced
amplitude M has a simple core structure does not
necessarily require a similar assumption con-
cerning the complete amplitude T, so that the re-
sults of the calculations below need bear no re-
lation at all to those of Sec. D.

The two diagrams in Fig. 6 are re1ated by cross-
ing symmetry, so we concentrate on Fig. 6(a).
We are concerned with the asymptotic limit
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For simplicity we suppose that the quarks and the
cores have zero spin. The calculation goes
through in much the same way as that of Sec. II,
beginning with an expansion of k as a linear com-
bination of p„P„p, and a transverse momentum,
as in (2.3). It turns out that the dominant contri-
bution arises from regions of integration where
one of the quark masses k' or (k+P, +P,)' is finite
and the other is large, and where also one of the
core masses (k —p, )' or (k+p, )' is finite and the
other is large. For the region where k' and

k =QP&+ g+, P2 — gP& + g
&

and one obtains

v 3r '(-ac) r 'F(a, c),
with

(3.3)

(3 4)

(k —p, )' are finite, the appropriate expansion of
kis

1

u(a, c) = du f dyudu dd(ad))dd )(&(d &C(k &c)( u)fu'(1-u)l 'I aaua((-u)c(1-u)l
0

k' =uy+u'M' —(y'+)('), k" = (u —1)y+ (u —I)'M' —(y'+ I(') .
(3.5)

Here Q and C are the propagators for quark and core, respectively; for large k' it is supposed that
Q(k )- I/O', and for large k", C(k") -1jk". If the constants I' associated with the vertices are not all the
same, the necessary change in (3.4) and (3.5) is straightforward to make.

According to usual ideas, the functions g, Q, C are such that their singularities are all just below the
real axis in the k' and k" planes, so that the y integration vanishes unless 0& u& 1. Thus, we may write

1

E(a, c) = dp q( p, ) du[u(1 —u)J '[l(.au+(I - p, )c(1 —u)J rf(u),
0 0

(3.6)

which corresponds to the result of BBG. When
the quarks and the core have spin, there are extra
factors in the integral, but the results of the co-
variant calculation again agree with those ob-
tained by BBG using their time-ordered formal-
1sm.

Actually, the form of f(u) is such that the inte-
gral (3.6) diverges logarithmically at its upper
and lower end points. This is because the other
significant regions of integration, corresponding
to other possible choices of invariants kept large
or small, overlap with the region corresponding
to (3.4). This means that the contributions of
these different regions are not additively related,
as BBG seem to suggest, but combine to produce
a lnv factor modifying the straight power of v in
(3.4). Since the divergencies occur at u =0 and
u = 1 in (3.6), one would expect that the resulting
angular dependence corresponds to a sum of two
terms with dependences

IV. DISCUSSION

We have seen that the covariant analysis, when

applied to the BBG model, confirms the char-
acter of their results, though with some differ-
ences of detailed consequences. However, the
covariant analysis also suggests that, if one con-
siders kinematic arguments alone, one should
consider a less specific model for large trans-
verse-momentum processes. This is made clear
by the analysis of the inclusive process in Sec.
II, where not only are certain problems encoun-
tered in the general analysis of Fig. 4 in the case
of constituents with spin, but also there is no
general reason for excluding the connected con-
tribution of Fig. 5.

Our discussion has also shown that it is possi-
ble in a natural way to make a smooth transition
from the large-transverse-momentum region
into the fragmentation and pionization regions

a c-I -1 -21-1 -2I -1 -I -j.a c (3.V)

respectively, arising from the sum of the behav-
iors of the integral at its two end points. These
conclusions can all be verified by straightforward
calculation using the Fourier-transform type of
argument we have used elsewhere. " It is how-
ever the behavior (3.4), with E(a, c) taken as a
slowly varying function of a and c, that BBG use
in their successful comparison with experiment.

P, k'= p, k P4

(a) (b)

FIG. 6. The result of replacing the amplitudes M in
Fig. 3 by simple core structures.
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TATE

FIG. 7. Feynman-graph model for Fig. 6(a).

which are Regge dominated. Of course not all the
contributions important in these latter regions
come from terms which dominate at large p~,
as we have already remarked. Indeed, it is pos-
sible that large and small p~ are not closely re-
lated. This would be the case if constituent had-
ron amplitudes consisted of two types of terms:
(a) Regge exchanges, or more generally dual am-
plitudes, whose off-shell behavior was strongly
(perhaps exponentially} damped; (b) core terms
which were not important at large energies, but
which had less rapidly decreasing off-shell power-
law behavior. In the fragmentation and pioniza-
tion regions (a} would dominate, while at very
large transverse momentum (b) would play the
leading role. Such a picture might well provide
the dynamical model which would lead to the BBQ
structure, even though this appears oversimpli-
fied if one considers kinematic arguments alone.

It is instructive to compare the results of the
BBQ model for elastic processes with other cal-
culations of the behavior at high energy and fixed
angle, in particular, with perturbation-theory
models. " The simplest such contributions corre-
spond to "end-point" terms, '4 in which a set of
Feynman parameters are set equal to zero, the
set being chosen so that contracting out the corre-
sponding lines gives a diagram independent of s,
f, and u. The difficulty of assessing the signifi-
cance of such contributions has always been that
they are highly model-dependent. The BBQ terms
are contributions of just this end-point type. In
Feynman integral terms Fig. 6 can be rewritten
in the form of Fig. 7. The term we calculated in
Sec. III is just an end-point contribution associ-

(a)

ated with contracting out the lines marked with
arrows in Fig. 7. The novelty of the BBQ term
is that it is framed in terms of a model having
connections with other phenomena (form factors
and deep-inelastic scattering), though as we have
remarked, this need not be so if the simple core
structure applies only to the reduced amplitude
M and not to the complete quark-hadron amplitude
T in Fig. 1.

In addition to these end-point terms there may
be "pinch" terms" associated with more compli-
cated nonplanar diagrams. These are little under-
stood at present, and it is not possible to say if
they should be expected to modify the simple BBQ
picture in some significant way. This matter is
under investigation.

V(o., s)
1+E(n, s)/(++1)' (A1)

where the functions V and I are defined by inte-
gral equations schematically represented in Fig.
8. There the loop integrations are in a Euclidean
space of dimension 2++4. The exchanged wavy
line is a function of the momentum k, derived
from the interaction potential; for large k' it is
supposed to have the behavior (k ) &, where y de-
pends on e and on the short-distance behavior of

APPENDIX

We here discuss the assumption (2.8) that the
asymptotic form of the pion coupling function at
large k" is independent of the finite variable )P
and also the assumption (3.1) on the asymptotic
form of the function that couples a hadron to
quark and core. Both of these functions arise
from a picture of the hadron as a composite sys-
tem, so it is natural to consider a Bethe-Salpeter
model, and consider the hadron as being a parti-
cle on the Regge trajectory provided by the model.
A very convenient formalism for this purpose is
provided by the work of Swift and Tucker, "who
showed that expressions for the residues and tra-
jectories of Regge poles in the Bethe-Salpeter
model are equivalent to those derived originally
from an analysis of Feynman integrals. "' The
formalism is somewhat complicated at first sight,
but the general picture is in fact rather simple.

The function that couples the Reggeon to the two
constituent particles is given by

k,

(b)

FIG. 8. Integral equations for the functions V and E
in (A1).

k2

FIG. 9. Integral equation for the residue V of the pole
in V.
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the potential.
The Regge trajectory a(s) satisfies the equation

E(a, s)
1+F(a, s)/( a+ 1) (A2)

(a+1}V(a,s)
E(a, s) (As)

with E the residue of the pole in E, and where the
residue V of the pole in V satisfies the homoge-
neous integral equation in Fig. 9. The function E

Evidently this equation requires F(a, s) to have
a pole at a = a(s}. In order that (A1) shall not
vanish, V(a, s) must also have this pole; this may
be confirmed by analysis of the integral equations
in Fig. 8. The pole is to be factored out of the
numerator and the denominator in (A1), with the
result

depends only on the squared mass s of the Reg-
geon, but Vdepends also on the squared masses
k,' and k,' of the constituents. Analysis of the
diagram on the right-hand side of Fig. 9 shows
that when both k, ' and k2' are large,

(A4)

where p, is a certain Sudakov parameter associ-
ated with the loop integration, and q( p. ) is a dy-
namically determined weight function. This re-
sult corresponds to (3.1). Consideration of the
case with k, ' only large leads to (2.8). These re-
sults have been established for the case of spin-
less constituents. There are considerable tech-
nical difficulties in extending the discussion to
include spin, though this is not expected to change
the picture in any radical way.
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