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Direct use of crossing symmetry is made to construct the s- and p-wave amplitudes in the region
0 & s & 4 from the absorptive parts. The amplitudes constructed in this way are unique except for a
single parameter, which itself is determined by unitarity; the resulting s-wave amplitudes then
automatically have subthreshold zeros of the current-algebra type. When continued to the physical
region by the N/D method, the p-wave produces a dynamical p meson without Castillejo-Dalitz-Dyson

(CDD) poles. The I = 2 s-wave phase shifts agree well with experiment, and the I = 0 phase shifts,
though subject to more uncertainty, also are consistent with experiment. A comparison is made with
other s-wave results in the region 0 & s & 4.

I. INTRODUCTION

There has recently been a resurgence of interest
in low-energy pion-yion scattering. This interest
is in part due to the availability of new experi-
mental data, and in part to new theoretical tools
such as current algebra, the Veneziano model,
duality, and, more recently, the development and
application of rigorous constraints arising from
crossing symmetry and positivity. In particular,
the constraints which apply in the gap 0 & s & 4 be-
tween the left- and right-hand cuts have now been
used in a number of calculations to study the gen-
eral nature of the pion-pion amplitudes in the low-
energy region and to make predictions about the
s waves. ' ' Techniques and details vary consid-
erably, but the calculations generally produce s-
wave phase shifts consistent with experiment,
while linking these results to current-algebra
ones through the existence of subthreshold zeros. '

In fact, the general success of this approach
gave rise to the hoye that very minimal inputs
such as the existence of the p meson and crossing
symmetry might in themselves uniquely deter-
mine the s waves. However, new studies by a
number of authors indicate that this is not the
case, ' and that further inputs of some type are
necessary to obtain uniquely defined solutions at
any appreciable distance above threshold. Never-
theless, it is clear now that crossing symmetry
is a quite relevant and important factor in low-
energy pion-pion scattering.

In this paper, we use crossing symmetry in a
different way to calculate the s and p waves in a
completely dynamical fashion. The starting point
is the observation of Roskies ' that if the Frois-
sart-Qribov representation for the partial-wave
amplitudes, "

ff(s)= —) dtA((st)Q, )+ 4), ,
4 2t

holds for 0&s &4, l~2, then crossing symmetry
uniquely gives the s and p waves from the absorp-
tive parts A~(s, t) except for an ambiguity having
two arbitrary yarameters. It is generally be-
lieved, though, that (1.1) also holds for 3 =1, an
assumption that leads to some important modifi-
cations. The first consequence of this additional
assumption is that the absorptive parts must sat-
isfy certain constraint conditions, a circumstance
that a,ids in fixing the final choice of inputs. A
second is that if the constraint conditions are not
exactly satisfied, then the basic Froissart-Qribov
p-wave amplitude must be slightly modified in or-
der to restore crossing symmetry in 0 &s & 4.
(Questions of convergence at s =4 will be ignored
here, and all expressions are assumed valid
through the closed interval. ) Finally, the over-
all ambiguity is reduced to that of a single para, m-
eter in the s waves.

The inputs to the calculation are the absorptive
parts A~(s, t) taken basically from experiment, but
adjusted somewhat so that the constraint condi-
tions mentioned above are approximately satisfied.
These inputs determine f~(s) in the gap and are
then unitarized by the N/D method and continued
into the physical region. When unitarity is im-
posed, it is found that the remaining parameter
in the s waves is rather uniquely determined.

For the s waves, the results are of the general
type reported in Refs. 3-6. Below threshold, cur-
rent-algebra-type zeros appear automatically in
both isospin amplitudes without any use of current-
algebra results or methods being made in the cal-
culations. In the physical region, the phase shifts
are consistent with experimental determinations,
small and negative for I =2, resonant or near-reso-
nant for I =O. The I=0 phase shifts for s~ 15,
however, are rather sensitive to small changes of
the amplitude in the unphysical region 0 & s & 4.
In this respect, our results appear to corroborate
those of Ref. 8, and indicate that unique solutions
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in the p region may be difficult to obtain.
For the p waves, our chief interest is in the dy-

namical status of the p meson, which is not as-
sumed in the s channel, and in the effects of the
crossing symmetry corrections. Several recent
papers have suggested that the p may be primarily
a bound state of some higher channel and must be
inserted as a CDD (Castillejo-Dalitz-Dyson) pole
in a simple one-channel calculation. ' Our own

findings do not substantiate this conclusion, and
we find a dynamically produced p resonance
emerging quite naturally in this calculation.

In Secs. II and III, the basic equations are for-
mulated and the form of the solutions are derived.
In Secs. IV and V, numerical results are given and
discussed. We also discuss here the relation of
our s-wave solutions to amplitudes found by other
methods. A summary and conclusions are given in
Sec. VI.

II. EQUATIONS FOR s- AND p-WAVE AMPLITUDES

As was mentioned in the Introduction, it was
shown by Roskies that if the Froissart-Gribov
representation is assumed for /~ 2, 0+s &4, then
the remaining partial waves f'„ f'„ f', are deter-
mined for given At(s, t) by crossing symmetry up
to an ambiguity involving two arbitrary param-

eters. We actually will assume that (1.1) holds
also for /=1 as suggested by Regge theory, but it
is nevertheless convenient to first look at the case
where this additional assumption is not made. In
doing this, we can relate the two cases and make
it possible to provide corrections to the pure
Froissart-Gribov p-wave amplitude when the in-
puts violate certain conditions required by cross-
ing symmetry. In formulating the basic equations,
we follow closely the method of Roskies, ' and the
reader is referred there for further discussion.

Our notation is that the amplitudes with definite
s- and t-channel isospin are written, respectively,
as Af(s, t), Af(t, s) with

2

A (sf, t) = Q Pff'Af'(t, s), (2.1)
E=o

('2 8 10)
2 3 -5 (2.2)

(2-3 1j
and Af(s, t) is the imaginary part of the amplitude
in the region of interest, t&4, 0&s &4.

(a) General case, E(l. (1.1) assumed to hold only
for E +~ 2.

Expanding the s-channel isospin amplitudes in
partial waves and using (1.1), we find

(s t) g (2l+1)ft (s)Pt (1+ )
2t

l even

f'(s)+ — f =dt 'd( tt's)Q'(2 +1)t1P+t12, 1+ )
4 1 "

~ o2 2t 2t'
s-4 w l=2 s-4 ' s-4

even

d'(s, t)= Q(2l ~ l)f,'(s)P, 1+ )
2t

l odd

=2f (s)P (1+ )+ —
Ji dt'dt(s, t') tt (2t+1)Pt(1+ 2) t)t(1+ 2).

(2.3)

(2.4)

From the expansion These results can be used in (2.3) and (2.4) to
give

= Z(2t+1)Q 0)P (y)
l=O

and the symmetry property P, (-y}= (-1)'P, (y), one
obtains

A"(s, t) =f,"(s)+E, ,(s, t),

d'(s, t)=2f,'(s) 1+ )+P (s, t),2t

(2.5)

(2.8)

1 1+ =2 Z (2t+1)Q2 (&)Pg(y)
l even

=2Q(&(&)+2 Z Qg(&)P2(y)2
l= 2 even

and similarly,

= 8P, (~)Q, (y)
1 1

+2 Q (2l +1)Q, (f(')P, (y).
l =3 odd

where Ef(s, t) is expressible in terms of the ab-
sorptive parts A (s, tf2):

(2.'l)

(2.8}
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/ 1 1
I'-t t'+t+s —4

E'o (s, f) =— dt ' A' (s, t ')E"o(s, t, f '), (2.16)
1

PFG s t'+t+s —4
' (2.17)

n.,E~{s)= E~{s,f)—8

t=4-2s ~

f0=f0 f~=f~ fe=f()
these conditions become

(2.10)

(2.11)

2f, (s) —5f, (s) +9k,f, (s)

= -2E, (s}+5E,(s) —SE, (s), (2.12a)

fo '(s) + 5f, '(s) + Qk, f, '(s)- 18k2f, (s)

(2.9)

In writing (2.3) and (2.4) with only even and odd
partial waves, t -u symmetry has been assumed.
To enforce s-u symmetry, one requires the t-
channel isospin amplitudes Al(t, s) to be symmetric
in s and u for I =0, 2 and antisymmetric for I=1.
Since s + t + u = 4, the condition s = u is equivalent
to t=4 —2s, and thus

4{f,s)l, =, „=O, ,
'

A—,"{I,s) =O.
t=4-2s

Using the crossing condition (2.1) for A~~(t, s) to-
gether with (2.5) and (2.6), these give three equa-
tions for the unknown partial-wave amplitudes
f', , f'„ f,'. With the notation

Ez(s ) =El(s, 4 —2s),

E, (s, t) and E,"G(s, t) are simply related by

E, (s, t) = E,"o(s, t) — P, 1 +
12 2t 1

x ) dt'A, (s, t') ())+ )
2t'

= E,"o(s, t) —) () + f,"~ (s) .
2t

(2.18)

Equations similar to (2.12a)-(2.12c) are derived
with the terms f, (s) missing:

2f, (s) —5f, (s) = -2E, (s) + 5F, (s) —3E,"G (s),

(2.19a)

f,'(s) +5f, '(s) = -L, E,(s)+ 5L,E, (s) —SL,E," (so),

{2.19b)

2f,'(s) +f, '(s) = -2n, ,F,(s) -n.,E, (s) +Sr, E," (s) .

(2.19c)

It is easily seen that there is now only one ar-
bitrary constant, and the amplitudes f„f, are de-
termined except for the ambiguity

= -b, ,Eo(s) -5b, ,F2(s) -3b,,F, (s), (2.12b)

2f, '(s) + f, '(s) —Qk, f, '(s) +18k,f, (s)

f,(s)- f,(s) +5a,

f, (s)-f, (s)+2a.
(2.20)

=-2b, ,E,{s)—s,E, (s)+Sn.,E, (s), (2.12c)

4-Ss „{}
4-2s f f( } df, (s)

s —4 ' ' (s —4)' ' ~ ds

As shown by Roskies, Eqs. (2.12a)-(2.12c) de-
termine f„f, , f2 up to the ambiguity

f,(s)- f, (s)+5a+2b(3s —4),

Since (2.19a)-(2.19c) are three equations for the
two unknowns f„f„ there is no guarantee that
they are consistent. That is, the assumptions of
f, = f,"o and crossing symmetry together imply re-
strictions on A, (s, t). The consistency condition is
easily found by differentiating (2.19a) and substitut-
ing in the values of f,', f,' as found from (2.19b)
and (2.19c). In doing this, it is convenient to in-
troduce the quantity

f, (s)-f, (s) -b(4-s),
f, (s)- f, (s}+2a-b(3s —4),

(2.14)
n, , E,(s) = '(s, t)

aI" I
t=4 2s

(2.21)

A' (s, f) =E,"G(s, t), (2.15}

where a and b are arbitrary constants. The solu-
tion of these equations will be deferred to Sec. III.

(b) The case when the Froissart-Gribov ex-
pression is assumed also for E =1.

In (2.4), the term 3f', ( ) s(P1+2t/(s -4)}is no
longer separated out. Then proceeding as before,
one can write

d
ds ' ds s
—E (s)= F(s 4-2s)——

=s, FI(s) -2s, Ei(s) . (2.22)

Now when (2.19a) is differentiated and the expres-
sions for f,', f,' are inserted, the terms a, F, ,
cancel out and leave the condition
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8R(s) =—2b, , E,(s)+3b. ,E,"o(s)

- 56, E, (s) - 66, E,"o(s)

Using explicit expressions for 6,F„etc., in
(2.23) gives"

=0 (2.23) 6i(s) = (4-3s)R(s) =0, (2.24)

) " d{ [R4', {s,{)+SA',(s, ){-5A',{s,))){2)+s-4) 8,
jm 4 (t-4+2s)(t-s) 6(t -4+2s)(t-s) as (2.25)

The general condition that the Froissart-Gribov
expression for l =1 be consistent with crossing
symmetry is therefore that the symmetry function
R(s) vanish for 0 &s ~4, where R(s) is givenby
(2.25). This is a highly nontrivial condition and

places severe restrictions on the absorptive parts
Af(s, f). In particular, the contribution to R(s)
from the crossed-channel p meson is everywhere
positive, which means that there must be strong
contributions from higher partial waves and Regge
terms (s waves do not contribute to R) if crossing
symmetry is not to be violated. If proper account
is taken, however, of these other contributions,
it is possible to find absorptive parts, consistent
with experimental data, which approximately sat-
isfy (2.24). This has been discussed elsewhere, '4

and the reader is referred there for foll details.
In this paper, our assumption is that the Frois-
sart-Gribov expression ho1ds for i=1, but we deal
with the fact that in actual calculations, approxi-
mations lead to a small but nonvanishing symme-
try function. In this case, R(s) provides a con-
venient vehicle for enforcing crossing symmetry
in the region 0 & s & 4.

III. SOLUTIONS FOR f() fl f2

1 s —4
4 ' 18(4-3s) [

+36,
q Eq —6b, ,Ex] .

(3.3)

This equation can of course be solved directly,
but it is convenient to first rewrite the right-hand
side in such a way as to introduce E," in place of
E, . From the relation (2.18), one can verify

a, E, -2s, F, =s, F," -2s, E,"

d 1 F+6(4-3s)— f"G(s) .ds s —4

(3.4)

Then, using the definition of {R(s}, (2.23),

2a, E, -5s, E, +3a, E, -6a, E,

d 1=16(4 —») — f" (s) +6(R(s) .ds s-4
(3.5)

Equation (3.3) therefore becomes, using (2.24),

f '-, 4f =(& -4)d—,4f",' +
3

R(s),
1 d 1 FG s —4

We wish to relate the s- and p-wave amplitudes
for the cases (a) and (b) discussed in Sec. II.
This will be done be relating the p-wave solution
of (2.12a)-(2.12c) to f[o, given by (1.1), and the
s-wave solutions of (2.12a)-(2.12c) to those of
(2.19a)-(2.19c). First, consider the p waves.
From (2.12b) and (2.12c), one obtains

2f0' —5f,'+ 3 (9k,f,'- 18k,f,)

= -2S,E, +5S,E, +Qa, E„(3.1)

and from (2.12a),

2f,' —5f,'+9k, 'f, + 9k,f,'= 2EO'+ 5E,'- 3E,-'. (3.2)

Eliminating 2f, '- 5f,' gives a single first order-
differential equation for f, . Using (2.22), this
can be written as

(3.6)

with a solution

f (s)=
3 Jt4

)( 3 4 3st FQsI
ds s —4

+ {4—Ss')H {s')j,
S

f (s) =f" (s) +
3 ~3

ds' R(s') (3.V)

where the integration is taken such that f, (~~)
= f~ (~+). Thus, if the symmetry condition (2.24)
is satisfied, f, (s) =f," (s)o, with 5 =0 in (2.14). If,
however, due to apprazimations, R(s) does not
vanish identically, then the term involving R (s)
gives a correction so as to make f, (s} consistent
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with crossing symmetry. The choice of solution
f,(f) = f," (&) is taken because, according to
(2.24), ffG(s) is always compatible with crossing
symmetry at s = &.

Next, we obtain the s-wave solutions of (2.19a)-
(2.19c), denoting themby foG, f",G. As noted be-
fore, the equations are not consistent unless the
symmetry condition R (s) =0 is satisfied, and f",
f",G may therefore not be uniquely defined. It is
nevertheless convenient to formally obtain solu-
tions of these equations in a way that can be sim-
ply related to the solutions of (2.12a)-(2.12c).
Again, because (2.19b) and (2.19c) are differential
equations, the solutions are defined only up to ad-
ditive constants, and the restriction is made that
foFG (s), f," (s) satisfy (2.19a) at s = f. Since from
(2.16), E,"G(ss.) = 0, this can be done conveniently
by constructing solutions such that

f,"'(~)=-F.(f),
f,"'(~) = -F.(~)

(3.8)

f, (s)- f,(s) —5z,

f, (s)-f,(s) —2x. (3.9)

Instead of working with f„f, directly, it is con-
venient to use the combinations

f (s) = f, (s) +2f, (s),

g(s) = 2f, (s) —5f, (s) .
From (2.19b) and (2.19c), one obtains

df FG

(s) = -n.,E,(s) -2b, E, (s)

(3.10}

Eo' (s) —2E,' (s-)

+2[-n.,E,(s) —6,E,(s}],
f"G(s) =-E (s) —2E (s)

(3.11)

S
-2 ds'[n, , E,(s') +2n. ,E,(s'}] . (3.12)

- 4/s

The other independent solution, g«(s), can be
taken directly from (2.19a):

g "G(s) = 2EO(s)+5E, (s) --3F,"G(s) . (3.13)

From (2.5) and the definition of Ez(s) in (2.10),
if is seen that this is equivalent to taking
A '(f, +) A'(f, +) =0. Recalling the relation for
the Chew-Mandelstam coupling constant"

A'(s, f)= ~
0

(21
it is seen that our canonical solutions correspond
to & =0, and the parameter a in (2.20) is just
a = -A, . We can therefore rewrite (2.20) as

Turning now to (2.12b) and (2.12c), one obtains
again

—(s) = -n, ,Eo(s) -2n, ,F2(s),

which is the same as (3.11) so that

Rs ) = f" (s ) . (3.14)

S

g(s) =g" (s) -3(4-Ss) ds'R(s').
a/s

Collecting these results,
S

f, (s) = f", (s)+ ds'R(s'),
y/s

f(s)=f" (s),
S

g(s) = g"G(s) -3(4 -3s) ds'R(s'),
4/s

(3.1V)

(3.18a)

(3.18b)

(3.18c)

and it is seen explicitly that the general solutions
reduce to the Froissart-Gribov ones when the
symmetry condition (2.24) is satisfied and R(s) =0
for 0 & s & 4. However, as notEd, R (s) will not
vanish identically in actual calculations due to the
approximate niture of fhe inputs, and in this case,
it is necessary to retain the extra terms in
(3.18a)-(3.18c) to enforce crossing symmetry. On
the other hand, we take b = 0 in (2.14), leaving
only the one-parameter ambiguity of (3.9). The
amplitudes constructed in this way then agree with
the Froissart-Gribov ones at s =+, where
(2.19a)-(2.19c) are always compatible, but are
modified elsewhere to satisfy crossing symmetry.

We note here that the amplitudes f and g are of
interest in themselves, f being essentially the
neutral pion amplitude, f =Sf", , and g having the
important property that it is determined com-
pletely by fhe absorptive parts and is free of the
ambiguity (3.9). The s-wave amplitudes having
definite isospin are of course found by inverting
(3.10):

f.(s) = ~[5f (s)+2g(s)],

f2 (s) =
9 [2f (s) -g (s)] ~

(3.19)

On the other hand, (2.12a) can be written in the
fol m

g(s) = 2EO(-s)+5E2(s) -SE,(s) -Qk, f, (s),

(3.15)

which becomes, using (2.18),

g(s) =-2Fo(s)+5F2(s) —SF/" (s)

'f"'()- ' 'f (). (3.16)s-4 ' s-4
Comparison with (3.13) and (3.7) gives
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Fl(s) =— dtA~(s, t)FI(s, t), (3.20)

E, (s, t) =F, (s, t)

+s 4
(3 21)~-4+2s '~ -s

FG (3.22)

s, E~(s) =- dtAI, (s, t,)b, , Fl(s, t),
7T J4

(3.23)

h~ Eo(s, t) =b, , E2(s, t)

1 1
(t -4+2s)' (t -s)' ' (3.24)

IV. NUMERICAL RESULTS: AMPLITUDES
FOR O~&s ~&4

The amplitudes in (3.18a)-(3.18c) are deter-
mined except for the ambiguity (3.9) once A', (s, t)
are specified. The basic inputs in our actual cal-
culations were crossed-channel partial waves
through l'=3,

AI(s, t) =Q P~~ (2l'+I) 1m'', (t)P, ~ 1+
&', r'

(4.1)

and for large I', I;& tp s channel Regge forms

Al(s, t) =y~(s)t "s&'&, (4.2)

with I'p taken above the g resonance, tp =160.
Resonant partial waves (e, p, f,g resonances)

were parametrized by the unitary form

pp2l
f'(')=17(t)g, —t) ir p"" ' (4.3)

where

4 x/2

I„+C, I, +C,
'

and I" is related to the experimental width I by

In solving for f"o and g" from (3.12) and (3.13),
one need only know F, , (s), S,E»(s), and F,'o(s).
Explicit expressions for these quantities are

f,'(
ls-4

s —4
(4 4)

For simplicity, we will also often denote the s-
and p-wave scattering lengths by the isospin label

pa, =a, 2
a2 =ap (4.5)

In addition to the resonant partial-wave contri-
butions, we have also used a nonresonant I =2 s
wave with scattering length a, = -0.05, draping to
s~p=-15' at E =V65 MeV, and I=O, I =1 Regge
terms (pomeron and p) with

n~(s) =1+0.00568s,

y (s) =0.0447eo. mais

n~(s) =0.57+0.0143s,

y, (s) =0.0462.

These values are also discussed in Ref. 14. The
explicit form for the resulting contributions to the
amplitudes ls given ln Appendix A and with these
results, the amplitudes f„f, ,f, are readily cal-
culated in the region 0 & s & 4.

Before discussing our results, we note that
since the total amplitudes satisfy crossing sym-
metry by construction, and since our input ab-
sorptive parts are positive, nearly all the con-
straints imposed by crossing symmetry and posi-

vt, I
(t )]23 + 1

The values of the parameters were taken as far as
possible from experiment, but where freedom
exists, were chosen so as to minimize A(s) in ac-
cordance with the symmetry condition (2.24). As
noted previously, the inputs used have appreciable
contributions to A from l'~ 2 partial waves and
Regge terms to cancel those of the /'=1 partial
wave. The importance of terms other than s and

p waves was first noticed by Lovelace" and more
recently emphasized by Basdevant eI; a l.'7 This
was also discussed in detail in Ref. 14, and the
parameters used in the present calculation are
the same as given there; for convenience, the val-
ues of the parameters are given again in Table I.
In this table, a, are the scattering lengths defined
(in the s channel) by

TABLE I. Input parameters; the constants c~, c2 are determined from the scattering length
ar and phase shifts at the energy E&.

I m =~tz (MeV) I' (MeV) Z, (Mev)

0 0
1 1
2 0
3 1

900
765

1264
1670

400
115
150
150

0.16
0.035

0.0016
0.000 05

600
600
765
765

3P b

13'
2b

10

-3,380
—0.5873
—2.487
—3,948

—1.921
60.91

-196.2
420.4
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tivity' are automatically satisfied. We have, for
example, tested our final results using the five
Roskies relations relating the s and p waves. '
These can all be written in the form J, ds ((s) =0,
and using as a measure the quantity [Jo ds ((s)]j
J, ds ~g(s)~, we find crossing symmetry to be valid
to about one part in 104. The remaining discrep-
ancy is associated with numerical integration er-
rors and use of asymptotic forms for the Regge
terms. Also, we have examined some of the rela-
tions involving the neutral-pion amplitude f,"= ,f, —

and find that they are always satisfied. The com-
puted amplitude f (s) is shown in Fig. 1, where
most of the simple inequalities, e.g.,"

f (4) -f (o) -f (3 19),

f (3.205) ~f (0.2134) ~ f (2.9863),

can be verified by inspection. The minimum of

f (s) occurs at s = 1.64, rather near its maximum
value s = 1.697.

The one important exception is a recent con-
straint of Yen and Roskies" which combines
crossing symmetry and the positivity of individual
partial waves, Imf~~(t), a stronger condition than
the positivity of the total absorptive parts A~t(t, s).
In our calculations, all explicit partial-wave con-
tributions have Im f, (t) ~ 0, but we also use the
Regge terms which may not be equivalent to such
a condition. In addition, the neutral amplitude (or
f) used in the Yen-Roskies constraints is decou-
pled from the p, which means that the I =0 Pom-
eron term plays an important role in this particu-
lar amplitude. It is therefore not particularly sur-
prising that the final Yen-Roskies condition (6.5)

of Ref. 19, which is known to be particularly
stringent, ' ' is violated. It would be of interest
to see what sort of modifications of our Pomeron
input are necessary to satisfy this test, but we
have not looked at this question. In any event, the
effect of the violation on the isospin amplitudes
should not be serious since f, used in this test,
is generally more than an order of magnitude
smaller thang (see Fig. 1). For completeness,
we give here the computed values for this test:
7= -0.125, y = -0.0022.

The amplitudes g and f, both have the property
that they are determined completely by the as-
sumed inputs and are independent of the parameter
A, in (3.9). These amplitudes are shown in Figs.
1 and 2 and have the associated threshold con-
stants" L = +(2a, -5a,) =0.098, a, =0.034V. The
value of L is in good agreement with that of the
"universal curve", " L= 0.1, while a, is consis-
tent with recent experimental estimates" "and
the assumed input value a, = 0.035 (Table I). Note
also that the relation L =Sa, is nearly satisfied,
indicating approximately linear amplitudes. '

The s-wave isospin amplitudes f„f, , on the
other hand, depend on the value of A., which is not
determined by crossing symmetry. Thus, the
question of the existence of zeros in the region
0 & s & 4, a feature predicted by current algebra, '
cannot be discussed without an additional require-
ment to fix X. It has been argued on general
grounds, i.e., independent of current algebra, that
such zeros should actually appear in the physical
amplitudes, "'~ and this idea can be easily checked
here by requiring reasonable scattering lengths
and then looking to see if the zeros indeed appear.
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FIG. 1. The amplitudes f(s), g(s) for O~s «4 (m~=1).
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FIG. 2. The amplitudes fp(s), f~&(s), fp(s) for 0( s ~ 4 (m~ =1).

The computed values of f, and f, at threshold are
f, (4) =0.152, f, (4) = -0.057. This corresponds to
A. = 0, so that from (3.S), one has the possible
scattering lengths

ao = 0.152 —5A.

a, =-0.057 —2A. . (4.6)

ap=0.185, a, =-0.043, A, =-0.00664

sp = 0.56, s, = 1.91,
which does indeed have reasonable scattering

(4.7)

TABLE II. Characteristics of s-wave amplitudes for
O~s ~4.

ap Qp/02 sp sp 4sp+ 5s2

0.14 -0.061 —2.28 1.55 1,15
016 -G 053 -3 8G 122 140
0,18 -0,045 -3.97 0.67 1.82
0.20 -0.037 —5.35 0.21 2.17
0.21 -0.033 -6.30 0.00 2.35

11.9
11.9
11.8
11.7
11.7

0.002 36
-0,000 64
-0.005 64
-0.009 64
-0.01164

The characteristic features of the amplitudes
are indicated in Table II for a range of a, of physi-
cal interest, "0.14 &ap & 0.21. For these values,
both the I =0 and I =2 s-wave amplitudes have sub-
threshold zeros s„s,which furthermore agree
well with the Pennington-Pond sum rule" 4s, +5s,
=12.

In Sec. V, we will actually fix A. by using uni-
tarity to find a preferred solution. Here we mere-
ly report the result:

lengths and subthreshold zeros.
In comparing this result with some amplitudes

recently found by other methods, ' '" it is useful
to divide them into groups, depending on whether
or not they have values of a, and L, similar to our
solutions. As noted previously, these quantities
are completely determined by the absorptive parts,
arid can be considered to give a simple measure
of an effective strength of the dynamics. We have
done this in Table III where our preferred solu-
tion (first entry) is compared with other ampli-
tudes. The second entry comes from a recent
current-algebra calculation in which unitarity cor-
rections were systematically included"; this solu-
tion is, in fact, very similar to our own in all re-
spects, including the positions of the zeros. (A

recent phenomenological analysis, R. C. Johnson,
Durham report, 1972, also produces similar s-
wave characteristics, I =0.103, ap=0. 183, a,

0 050 sp 0 60 s2 = 1 .90; the p -wave scattering
length, however, is larger than ours, a, = 0.05.)
The next two entries are inverse amplitude calcu-
lations'~, where the physical p was enforced by
means of a subtraction. These solutions, because
of the differences in s„s„and a/a„appear to
be quite different, but this appearance is actually
misleading because the quantities in question are
rather sensitive to small changes in A.. The fifth
entry shows a solution of our own with an adjusted
value of A., A. =0.00236, and this is seen to closely
resemble the previous two solutions. Since the
required change in A, , AA, & 0.01, is small com-
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TABLE III. Comparison of preferred s-wave amplitudes with other determinations,

Solution

Preferred (A, =-0.006 64)
Morgan and Shaw
Carrotte and Johnsons
Widder4

(A. = 0.002 36)

Le Guillou et al.5

Bonnier and Gauron6

L =-(2ap —Ga&)8

0.098
0.106
0.085
0.103
0.098

0.130
0.157

0.035
0.036
0.04
0.036
0.035

0.045
0.052

ap

0,185
0,211
0.136
0.146
0.140

0.206
0.22

ag

-0.043
-0.043
-0.047
-0.065
-0.061

-0.073
-0,10

ap//a2

4+3
4,9

-2,9
2 +2

2 Q3

-2,8
2 Q2

Sp

0.56
0.42
1.5
1.625
1.55

1.4
1,75

Sg

1.91
2.0
1.2
1.1
1.15

1.27
1„00

4sp+ Gs2

11.8
11.7
12.0
12.0
11,95

11.95
12,0

pared to the scattering lengths, it would appear
that all the solutions having similar values of a,
and L are actually quite similar.

Two additional calculations are also listed in the
second section of Table III."These also impose
the physical p using a K-matrix-type formulation,
but nevertheless have over-all dynamical
strengths, as measured by a, and L, considerably
stronger than ours. These solutions cannot be
generated from our own by any choice of A., and
we wouM have to change our basic inputs to obtain
equivalent solutions. It would seem then that a
precise determination of the parameters I and a,
is of great importance. "

V. UNITARIZATION: PHYSICAL REGION RESULTS

Unitarization is done using the X/D method as
described in a previous paper. " The left-hand
cut is calculated for -32 &s &0 using

4wg

lmf f(s) = Q Pl~' dtAf'(t, s)
4 r'=a

)(Z, 1+, 5.].

where Af(t, s) are the crossed-channel absorptive
parts used in the gap calculation. For s & -32,
the unknown left-hand cut is replaced by poles
whose positions and residues are adjusted so that
the amplitude computed by the N/D method most
closely matches that found in Sec. IV for 0 &s &4.
The number of poles used is somewhat arbitrary,
and we have relied heavily on our previous experi-
ence with known test functions which indicate that
two poles are adequate to give good results. "
Both one- and two-pole calculations were made to
check that drastic changes did not occur in going
from one case to the other, but our final reported
results are generally for two poles, the N/D out-
put taken to agree exactly with the amplitude at
the values s =0, s =+2, and the pole positions ad-
justed to give a best over-all fit. The parameter
taken to determine a best fit was

Q,",[f,(s,. ) -Ã(s, )/D (s, )I'
+51 [f1(s )]2

where f,'(s, ) is the appropriate gap amplitude com-
puted in Sec. IV at equally spaced points s, in
0 & s & 4. Again, there is a degree of arbitrariness
in defining a best fit by this particular method,
but it is a reasonable one which was found to give
good results for test functions. For definiteness,
we will quote a specific result obtained by the pro-
cedure described above, but it should probably be
thought of as a typical rather than unique result.

The unitarization method is similar to that of
Kang and Lee,"but the treatment of the left-hand
cut is quite different. Kang and Lee use what we
call a "pure pole" model, i.e., the entire left-hand
cut is represented by poles. The calculation has
been criticized by Tryout,

"who points out that the
residues used by Kang and Lee are not consistent
with the left-hand cut as determined from the
crossed channels, several of the residues even
having the wrong sign. This problem does not
occur in our method since the entire region of the
left-hand cut -32 «s «0 which is determined by
crossing is explicitly retained. Furthermore, by
keeping this part of the cut, the matching and
stability problems that plague pure pole methods"
are largely avoided. "

In the p wave, our interest centers on the effects
of the symmetry term in (3.18a) and on the exis-
tence of the p meson as a dynamical resonance.
We performed two separate calculations, one us-
ing the Froissart-Gribov amplitude ffo alone, and

another with the complete amplitude f, . We find
the following general results:

(a) The output using the symmetry term is ap-
preciably better than that coming from the pure
Frois sart-Gribov amplitude.

(b) The complete amplitude leads to a dynami-
cal p resonance with parameters near experi-
mentally observed ones.

The phase shifts for each case are shown in Fig.
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FIG. 3. s- and p-wave phase shifts (m~ =1).

3 and some relevant parameters are listed in
Table IV. As mentioned previously, some varia-
tion in the output is allowed due to inherent am-
biguity in the method, but tests made in the pres-
ent calculations indicate that the qualitative state-
ments (a) and (b) above are not affected by any
reasonable changes in procedure. Three general
types of test were made:

(1) Changes of pole positions. The pole posi-
tions are chosen to give an optimal fit in the gap,
but one can use other positions which lead to fits
nearly as good. For small variations of pole posi-
tion, only small changes in output result, e.g.,
changes in position of 1()%%uo typically lead to output
variations hm, aI'~ 5 MeV. If large variations in

pole positions are made, then a wider variety of
outputs can be found, but the qualitative results
are not altered as long as Z is kept comparable to
the optimal case. For calculations retaining the
symmetry term, a resonance was consistently ob-
tained with mp ( 800 MeV, I

~
( 200 MeV.

(2) Changes in number of poles. We have tested
the stability of the two-pole optimal solutions by
adding a third pole having an arbitrary residue,
subject only to the condition that the match in the

gap, i.e., Z, be comparable to that of the original
solution. Again, the output changes slowly as the
residue of the third pole is varied from zero, in-
creases of Z by 1% corresponding to changes Lm,
ht'(5 MeV, and increases of Z by 2(P/g corre-

TABLE IV. Characteristics of s and p waves in the physical region.

p -wave solutions m (MeV) F (MeV) a ~(765 Mev)

Froissart-Gribov
f& (F. G. plus symmetry)
b =-0.0002

s -wave solutions

A, = -0.0016 I = 0
I=2

869
777
765

802

363
168
148

879

3.5 x 10
2.].x 1O-'
2 2x10-8

4.8x10 5

5.3x10-'

0.035
0.035
0.035

0.160
-0.053

850

-19,2'

A, = —0.0066
(preferred)

I=o
I=2

1025 1244 1.0x 10 8

1.2x10 8
0.185

-0.043
65'

—18.7'

A, = —0.0136 I =0
I=2

4.5 x 10 5 0.220
8.8 x 10 -0.029

40'
-17.0'
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sponding to changes Am, b, l"~ 20 MeV. A single
pole also leads to a resonant output, though with
much poorer results.

(3) Changes in input. We find that our calcula-
tions are stable with respect to input changes, i.e.,
smaB changes of input lead to only small changes
in output. For example, altering the l =0, I=2
phase shift at the p mass by 5% leads to a negli-
gible alteration of output, and eliminating the l =0,
I =2 input completely changes the resonance pa-
rameters ~m = 10 MeV, AI' = 15 MeV.

We find, then, that the qualitative results are
independent of details of the method and that a dy-
namical p meson is a persistent feature of the cal-
culation. This finding is contrary to many sugges-
tions that the p must probably be inserted as a
CDD pple. ' Mpst pf the pessimistic cpnclusipns
of other authors regarding the p simply reflect the
fact that in particular calculations, a satisfactory
resonance could not be obtained. The paper of
Tryon, however, is somewhat different in that his
conclusions are based on rigorously derived sum
rules of the fprm"

c„ i dvimfii(v) I " dvE„(v)
n v"" 3m, (v+2)~' ' (5.2)

where v= (s -4)/4, c„are constants, and E„(v) are
functions computed from absorptive parts, reso-
nances for small v, Regge terms for large v; ex-
plicit forms are given in Ref. 12 for n =1, 2, 3.

Unfortunately, although rigorous, these sum
rules are extremely difficult to use in practice be-
cause of large cancellations. The problem can be
seen in Table V where the right-hand sides coming
from our own inputs and the left-hand sides cor-
responding to the calculation of Table IV are given.
On the left-hand side, the contributions (5.2) of
the cut -32 & s & 0 come almost completely from

the s and p waves, and are nearly balanced by
equal contributions to the right-hand side. Thus,
if one tries to determine the residues of the poles
which replace the left-hand cut for s & -32 by
matching the left- and right-hand sides of the sum
rules, these residues will be determined almost
completely by the high-energy region above the p
where there is substantial inelasticity and ampli-
tudes are poorly determined. In our calculations,
the residues actually used lead to quite satisfactory
agreement for n = 2, 3, and for n = 1 are about half
the needed magnitude to bring the two sides into
agreement. Noting the large uncertainties of the
calculation, the discrepancy is not unreasonable.
We should point out here that our own method of
determining the pole residues, i.e., matching am-
plitudes in the gap, does not suffer from such can-
cellation difficulties. All contributions except the
I =2 s-wave one are additive, and those coming
from energies above the p are only about a third
of the total amplitude.

In Tryon's calculations, the distant parts of the
left-hand cut are estimated by demanding agree-
ment of the right- and left-hand sides of the sum
rules, the right-hand sides being respectively
(for his inputs) 0.0096, -0.0032, 0.0052 for

n =1, 2, 3. Because of the cancellations mentioned
above, this procedure is clearly dangerous unless
a large latitude in high-energy inputs is allowed.
Unfortunately, Tryon allows no variation of inputs
at all and takes all contributions above the f' me-
son from the Veneziano model. Tryon himself
mentions other estimates that lead to substantially
smaller high-energy inputs, but does not use them
in his actual calculations, claiming that the left-
hand cut is already "too weak" to generate a p,
and that other such estimates lead only to a fur-
ther weakening of the cut. However, consistency

TABLK U. Contributions to Tryon sum rules.

Left-hand side
n —2 n —3

Right-hand side
n=1 n=2 n=3

f 0

f2

fi
-0.0007

-0.0088

0.0003 -0.0003

0.0026 -0.0013

0.0057 -0.0034 0.0040

-0.0007

-0.0096

0.0071 -0.0037 0.0041 f0

0.0003 -0.0003 f20

0,0027 -0.0015 f1

cut(-32 ~ s ~ 0) -0.0038 -0.0005 0.0024 -0.0032 -0.0007 0.0023 f()
+f0 +f(

poles (s & —32) 0.0053 -0.0005 0.0001

0.0032 -0.0003

0.0026 0.0005

0.0048 -0.0001

fo

f3
Regge

Total left-
hand side

0.0015 -0.0010 0.0025 0.0074 -0.0006 0.0023 Total right-
hand side
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conditions aside, the fact that the much "weaker"
cut used in our own calculations does generate a
p certainly shows this argument to be incorrect.

A second deficiency of Tryon's calculations is
that he uses only a single pole to represent the en-
tire distant part of the left-hand cut. In a situation
such as the present one where pole contributions
are extremely important (see Table V), such a re-
striction is rather severe. As a test, we did a
calculation by Tryon's method, i.e., determining
the pole residues from the sum rules (using our
own inputs), but allowing two poles instead of one.
Nore explicitly, the pole residues were taken so
as to satisfy the n =1 and n =2 sum rules exactly
(the poles contribute negligibly to the n =3 sum
rule), the pole positions then being free param-
eters. As mentioned previously, we do not feel
that this is as good a procedure as at of match-
ing amplitudes in the gap, but did it simply to see
if a resonance could be generated. We found, in
fact, that we could generate a resonance at nearly
any desired energy. Though the outputs are by no
means satisfactory (the widths are much too large),
they do provide a counterexample to Tryon's
claim that cuts consistent with the sum rules can
give rise on1y to small output phase shifts.

If the results of our calculations are correct and
not simply in some way fortuitous, then it is clear
that retaining crossing symmetry is extremely im-
yortant in producing the p. Even with the inputs
taken so as to make R(s}very small (the amplitude
fp is indistinguishable from f, on the scale of
Fig. 2}, the symmetry term causes a noticeable
improvement in the amplitude when continued to
the physical region.

The importance of the symmetry term is per-
haps made more plausible by considering a greatly
simplified analytic situation. Suppose that there
is only a p meson in the crossed channel, and fur-
ther, that it is represented in zero-width approxi-
mation, ImA,'(t) =vt'6(t -t„). The Froissart-
Gribov and symmetry terms in (3.18) become

'(s —4)(3s -4)I'
(t„-4) (3t„-4) ( ts- s) '

and f, (s) = f",o (s) + ff (s). In the region 0 & s (4,
we have s«t„, P, =1, Q, = —,'[(s —4)/2t„]', and fs
is small throughout the gap,

As 2 (3s 4)
ts

Nevertheless, if the amplitude is directly contin-
ued into the physical region, it is the symmetry
term ff (s) which contains the pole at s = ts .

The situation for the real problem is of course
much more complex, both because of contributions
other than the p which reduce considerably the
magnitude of the symmetry term and because the
continuation to the physical region is done numer-
ically in a much more indirect manner. In Table
VI, we show how the addition of the symmetry
term affects the way in which the amplitude is
built up from% andD in the gap. As canbe seen,
although the N/D approximation to the Froissart-
Gribov amplitude is nearly equal to the symmetry-
corrected one, the same is not true of the separate
values of N and D. In particular, as s increases,
the values of D (s) fall more rapidly for the sym-
metry corrected case. It is chiefly this steeper
decrease in D that leads to the lower resonance
energy and reduced width of the p meson in the
physical region.

Finally, we note that it is possible to improve
the output further by relaxing the condition b =0
and treating b as a free parameter. Again, exact
results vary somewhat depending on details, but
for any given set of inputs and matching procedure,
the results can always be improved by allowing b
to vary. For the particular case reported in Table
IV and Fig. 3, taking b =-0.0002 gives a minimum
Z solution with m~=765 MeV, I'~=148 MeV (see
TaMe IV).

TABLE VI. Effect of symmetry corrections in the gap.

Froissart-Gribov
N

Symmetry corrected
N/D

0.00
0.64
1.28
1.92
2.56
3.20
3.84
4.00

-0.03164
-0.026 59
-0.021 75
-0.016 89
-0.01191
-0.006 76
-0.00138

0.000 00

-0.031 64
-0.026 14
-0.021 01
-0.016 Ol
-0.01108
-0.006 16
-0.00123

0.000 00

1.000
0.983
0.966
0.948
0.930
0.912
0.892
0.887

-0.031 69
—0.026 61
-0.021 75
-0.016 88
—0.01190
-0.006 75
-0.00138

0.000 00

-0.031 69
—0.026 03
—0,020 80
-0.015 76
-0.010 84
-0.006 00
-0.001 19

0.000 00

1.000
0.978
0.956
0.934
0.911
0.888
0.864
0.858
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After crossing symmetry is enforced, the s-
wave amplitudes still have the ambiguity (3.9).
The procedure we used to resolve this ambiguity
was to unitarize f, by the N/D method, using dif-
ferent values of A. As ~ was changed, the com-
patibility of unitarity and the calculated left-hand
cut with the amplitude in the gap was measured by
noting the change in the matching parameter g.
The results are shown in Fig. 4 where it is seen
that g goes through a clear minimum with a scat-
tering length a,= 0.185 (A. = -0.00664). For this
value of A., the N/D calculation produces a high-
mass resonance (m, = 1025 MeV) of the superbroad
type (I',= 1244 MeV), and ihe corresponding I=2
phase shifts drop to about -19' at the p mass.
Unfortunately, however, the nature of the I=0
phase shifts is changing very rapidly just as Z
goes through this minimum, so that small changes
in the gap correspond to rather large changes in
the p region. A further difficulty is that we can
find no values of A which lead to values of Z as
small as those obtained in the p-wave case, which
indicates some further residual uncertainty. Thus,
although our output is certainly consistent with the
near-resonant or resonant results currently
favored by experiment, ""we cannot make any
strong statement at present about the I =0 phase
shifts. In order to exhibit the rapid variation of
the solution, we show phase shifts for the range
of scattering lengths 0.16 & ao &0.22 in Fig. 3, and
list some parameters in Table IV.

On the other hand, the I=2 phase shifts are very
slowly changing with A, in this region" (Fig. 3 and
Table IV) and agree well with recent experimental
results. " Another satisfying point is that g be-

comes small for I =2 at about the same values of
"as it does for I=0 (Fig. 4). The agreement is
not perfect, but the results seem quite satisfactory
in view of the fact that there is no automatic rea-
son why there should by any correlation between
the two minima. The reason for the flat nature of
the g curve on the left side is presumably that the
scattering length a, is becoming small enough to
make unitarity no longer very restrictive.

VI. SUMMARY AND CONCLUSIONS

In the calculations outlined in this paper, we
have made strong use of crossing symmetry in
two different ways, first by using basic inputs
which were adjusted to approximately satisfy
physical region constraints, and then by directly
imposing crossing symmetry in the region 0 &s
&4 when constructing the s and p waves. Unitarity
then leads to a determination of the single free
parameter, the Chew-Mandelstam coupling con-
stant, and to an output in qualitative agreement
with experiment in both the s and p waves.

For the p waves, a reasonably good p meson
emerges naturally as a dynamical pion-pion reso-
nance without any recourse to CDD poles, cutoffs,
or other adjustable parameters. In view of the
many negative findings by others, one must of
course admit the possibility that our results are
somehow accidental or fortuitous. We can find no
evidence of this in any of the tests made, however,
and the appearance of the p seems to be a very
stable and persistent consequence of the inputs
and method of calculation described. Though the
question needs further study, our own results sug-
gest that the failure of other efforts to obtain the
p dynamically is primarily due to the use of inputs
and approximations which violate crossing sym-
metry.

For the s waves, the most interesting result is
that the subthreshold zeros are obtained in a
quite natural way using a direct calculation from
the crossed channel absorptive parts. As has
been noted, the amplitudes are quite similar to
those obtained by quite different methods, current-
algebra techniques on one hand, and the existence
of the p (in the direct channel) plus crossing sym-
metry and positivity on the other. Nevertheless,
one must evidently make a clear distinction be-
tween results obtained in the gap, which are rather
uniquely determined by the inputs and unitarity,
and results at appreciable distances above thresh-
old. For I =2, there appears to be no problem,
i.e., the phase shifts are stable with respect to
small changes in the gap, and moreover agree
well with experiment. For I = 0, however, small
variations in the gap correspond to rather large
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changes of the phase shifts in the p region, so that
while the results are clearly consistent with ex-
periment, no very strong statement can be made.

There are two ways in which these calculations
can be improved: through better choice of ab-
sorptive parts in the inputs, and through the in-
troduction of inelasticity. The inputs actually
used, though reasonable, are certainly not optimal
ones, particularly at high energies. Possible im-
provement here involves the use of more experi-
mental information, and the adjustment of absorp-
tive parts in accordance with crossing symmetry
constraints [minimizing R(s)], the x, y test of Yen
and Roskies, and ultimately, the self-consistency
of output with the input and the Tryon sum rules.
The other factor is the use of inelasticity, which

has not been introduced at all in these calculations.
It is evident now that there is appreciable inelas-
ticity above the KK threshold" "and this could be
quite important in understanding the s waves. "
The fact, though, that the major features of the
low-energy region have already appeared without
the use of inelasticity is highly encouraging.
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APPENDIX A: EXPLICIT FORMS FOR RESONANCE AND REGGE CONTRIBUTIONS

2)

Inserting the t-channel partial-wave expansion

The basic form for the symmetry function is given by (2.25)

1 [" dt [2A,'(s, t)+3A', (s, t)-3A', (s, t)](2t+s-4) 2A', (s, t)I
m ~ (t-4+2s)(t-s) 6(t -4+2s)(t -s) 8's

The s-channel isospin amplitudes in (]])1)can be written in terms of the tmhannel isospin amplitudes via
the crossing relation (2.1) as

s J4 (f -4+2s)(t-s) (t -4+2s)(t-s) as zs o

A, (t, s) =P (2)' t) tmAs(t)P (tt1+ t4},=0

where l' +I' is even, the l'=0 terms in (A2) cancel and leave an expansion for R(s):

3)

R(s) = Q Q (2P+1)P~
I'= o l '= i

dtimAf, (t)Rfs(s, t),

J
S 2 Qo OQ S

ds'R(s') = Q Q (2P+1)p'~ dt imAgs(t) ds'R(~s(s', t) .
C/3 I'=o J'=x g/3

Explicit expressions for the first few P are

I 2
(t -4)(t —s)'

ds'R' ' t = 3s -4
(t —4)(t —s)(3t -4)
6

(«)'(t )

6 3(t -s)ds'R,"(s', t) = (— ), ln

5)

8)

R', (s, t) = &, 4, [20s'+5(t-12)s+16+12t-4t'], (4() 10)

ds'R', (s', t) =
4/3

(21t'-48t+16)(3s -4) 20(3s -4) 3(t -s)
(t-s)(3t-4) 3 3t -4

In actual use, the t integrals are cut off at a finite value t =t„and for t & t„s-channel Regge poles
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A (s, t) = y, (s)t &")

are used. Keeping I =0 (Pomeron) and I=1 (p) terms in (Al) gives a large tc-ontribution:

1 "dt 2yI ~s,t & +Sy &s&t+"'R"(s)=— — ' ' ' ' -y'(s)t o2"'-y (s)a'(s)t "s"'1st}

3s (2.-a)t' "s st' "s (2 a)t -1-a s s s ' \-a)}

(A12)

(A14)

Because of the additional factor 1/t, in the first term, R" is dominated by the p contribution and gives
an important cancellation to keep R(s) small.

We also consider here the contributions to the s-wave Froissart-Gribov solutions f", g"o. For small
t, the t-channel partial wave expansions (A3) are again used. For f"o, given by (3.12) and (3.20)-(3.24),
one finds that the I =1 isosyin terms cancel:

2

f"o(s) =- j dt g g(2l'+1) Imf3fs(t)(-pa~ -2p2~ ) R, (s, t)p, , 1+ +2l, t 2g, , -
I'=0 l'=0 l 0 t l

1 ("
dt Af (2l'+1)[-lmf', .(t)-21mf,', (t)] R, (s, t)P, . 1+ +2I,.-2Z.p 2 — 2S

l~=p even
0

(6
g, , (s, t)= I

ds'
4/S

In our calculations, only l'=0, 2 were used,

(3s -4)'
(3t —4)(t -4+2s)(t -s)
3 (3s -4)(4t -s -4) 6(3t -4) 3(t -s)

2 2 2 (t 4)2(t &) (t 4)2 3t 4 2 0 0

g"o is easily found from (3.13):

g"o(s)=- dt p (2l'+1)lmf,', (t)P, , 1+1 2s -6
4 l 'odd t -4 t -4+2s

+ Q (2l'+1)P, s 1+
4 ~

— —
4

ln
2s 'tt 2 2 t

l 'even

-5 15 2
t-s 6 s-4

3 2'7 2 t+s -4
+ lnt-s 6 s-4 t

) (mf', , (t)

ln Im ', , t

(A18)

(A19)

Again, in actual use, Regge forms are used for t& tp.
00 3O 6

fz (s) =-
t

dt[-A', (s, t)F, (s, t)]+— dt ds'[-Ao(s', t)b, ,E,(s', t)],
~4/S0 0

and with the Pomeron in (A12) and large t limits for E„f)2, p„
-yj, (s) (16 —32s + 13s') 4 ', (4 —3s')y~(s')

3&[2 —&I,(s)]to' m, f, [2 - e~(s')) t '

ln the same way, from (3.13),

Asst(s) —f At[ 2A , (st)3', (s, t-) -= 3'A', ,(s, t)3', (s, t))
tp

2 (16-32s+13sn)y~ 3 (4-3s)yz
3)[ (2 —n )t,' "3 w (1 —a )t,' "I'
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