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Recent measurements of inclusive production cross sections are analyzed in the framework of the
Landau hydrodynamical model of particle production. We also give a critical analysis of recent data
and the variables used in their presentation. It is concluded that the evidence for a flat rapidity
distribution in the central region is not compelling. Except possibly at the very highest available ISR
(CERN Intersecting Storage Rings) energy, the Landau Gaussian gives an excellent description of the
rapidity distribution of the nonleading charged secondaries, The calculation of distributions in the
variable g = -ln tan(0/2) from given rapidity and transverse momentum distributions is worked out in

many interesting cases. The Landau rapidity distribution is cast in a universal (energy dependent)
scaling law which agrees well with available data. The angle and energy dependence of charged
secondaries near 90' in the c.m. system in pp collisions agrees well with the theoretical prediction.
Finally it is shown that the hydrodynamical model leads to approximate Feynman scaling except for
very small values of x = 2p~~/~s, where large deviations from scaling are predicted.

I. INTRODUCTION

The description of particle production in high-
energy collisions has recently attracted a great
deal of attention. Experiments at the CERN inter-
secting storage rings (ISR) and NAL are beginning
to reveal interesting patterns in such processes.
The approximate validity of scaling laws has been
established for inclusive cross sections and is
perhaps the most striking single result. No ade-
quate theory yet exists which gives a satisfactory
description of the data. %e refer' ' to some re-
cent review articles which summarize experimen-
tal results and the partial insights obtained from
various phenomenological models.

The main purpose of the present paper is to res-
urrect Landau's hydrodynamical model4 of particle
production and particularly to elaborate its phe-
nomenological consequences pertinent to recent
experimental work. Secondly, we discuss some
purely phenomenological questions having to do
with the rapidity variable and the related "cosmic-
ray" variable q = -ln tan(e/2) (Secs. II and III). The
hydrodynamical model, which was well regarded in
the 1950's, suggests a number of interesting lines
of research when cast in modern garb. Here we

shall analyze the experimental consequences of the
most simple version of the model, in an extension
of previous work by the authors. ' This version in-
volves rather brutal approximations to the compli-
cated equations of the complete theory and hence
could give a distorted picture of the theory's true
predictions.

The hydrodynamical model can be regarded as
an extension of Fermi's statistical model. ' One
envisions a thin slab of hot hadronic matter in
thermal equilibrium just after the collision;
strictly speaking this is a "head-on" collision
picture, but one can imagine that a fraction of the
collision products are described by this initial
condition while leading particles carry away a
sizeable fraction (of the order of —,') of the energy
and perhaps most of the angular momentum. ' In
Landau's model the particles do not jump right out
into phase space (which leads to too many heavy
particles in Fermi's picture), but undergo an ex-
pansion phase before breaking up. The force re-
sponsible for the expansion is large in the longitu-
dinal direction (the pressure gradient is mainly in
the longitudinal direction because of the Lorentz
contraction) and provides a natural dynamics for
the well-known tr ansverse-longitudinal asymmetry
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'd "T„,=0. (1.2)

In order to solve these equations one needs in ad-
dition an equation of state, taken by Landau to be

P=s& p (1 3)

which is characteristic of blackbody radiation. It
is not surprising that (1.3) is equivalent to the
vanishing of the trace of T",

T
p

=E —3P. (1.4)

Thus the expansion phase is treated by a seale-
invariant dynamics; the scale of length enters
through the initial condition (the ratio of the thick-
ness and radius of the Lorentz-contracted proton
is y=E/m~ in the c.m. frame) and the temperature
characteristic of the system at the moment of
breakup (T = m, =140 MeV). [The effect of chang-
ing the equation of state has been studied'*'; how-
ever, we shall use (1.3) in this paper. ] A brief
supplementary bibliography of works extending or
justifying Landau's approach is given in Refs. 9-
16.

A second feature of Landau's approach is the as-
sumption of adiabaticity in the expansion process.
[This is actually implied by the form of Eq. (1.1).]
A straightforward consequence is the multiplicity
formula ¹KE"',where F. is the laboratory pro-
ton energy. When E is measured in GeV, the con-
stant K (not predicted by the theory) is found to be
about 2.0. This power law, which has been used
for years in cosmic-ray work, gives at least as
good a fit" to the data as the currently fashionable
logarithmic form expected in multiperipheral
models.

A decided virtue of the point of view of the mod-
el is its independence of the actual hadronic co-
ordinates which best describe the highly excited
hadronic matter. A second feature of the thermo-
dynamic approach is that the precise nature of the
interactions and even equations of motion are un-
important provided that the requisite local ther-
modynamic equilibrium is maintained. The de-
tails of the final stage, in which the fluid breaks
up into asymptotic states of the system, remain

of secondary momenta. In addition, the predomi-
nance of pions is claimed to be a consequence of
the cooling of the medium during expansion.

The detailed calculations are made on the basis
of the classical relativistic hydrodynamics of a
perfect fluid, whose energy momentum tensor T"'
ls

T"' = (e +P)u "u" —g""P,
where u" (x) is the four-velocity field and e, P are
the scalar densities of energy and pressure. The
hydrodynamic equations are simply

quite obscure, as in the parton model. We re-
mark that the parton model should provide the
simplest context in which to study the approxima-
tion of the full quantum-mechanical problem by the
quasiclassical perfect fluid. The general problem
of isolating those interactions which tend to estab-
lish local equilibrium (for which the averaged
fields of thermodynamics, e(x), p(x), etc. , are
the correct hadronic variables) from the interac-
tions causing scattering in the usual sense is a
deep and interesting problem which has scarcely
been studied in hadron physics. Some preliminary
efforts in this direction will be found in Refs. 13-
16. We plan to outline an approach to this problem
elsewhere.

In the present paper we shall discuss the gross
properties of inclusive reactions. Most of the ap-
plications will be to PP collisions, since the theory
is simple (symmetry in the c.m. frame) and since
all available ISR and NAL data are of this type.
More sensitive tests of the model, such as corre-
lations, charge dependence of cross sections, etc. ,
are left to subsequent work.

Our procedure relies on the work of Milekhin, '
who showed that the essential content of the three-
dimensional solution to Landau's model was that
the transverse motion is statistical (described by
a Bose distribution in the local rest frame of the
fluid at the moment of breakup) and that the longi-
tudinal distribution is given by Landau's Gaussian
in rapidity. The empirically observed exponential
falloff in P, can be regarded as an approximation
to his formulas. Cooper and Schonberg" have re-
cently obtained excellent numerical agreement with
inclusive data using a (corrected) version of Mile-
khin's analysis. Here we shall use the simpler ex-
ponential (and also Gaussian) transverse distribu-
tions. The reader is invited to regard these as
purely phenomenological formulas if he so
chooses.

Sections II and III are devoted to a number of ki-
nematical facts which are essential for a meaning-
ful comparison with experiment. We investigate
the shape of distributions in the experimentally
convenient variable q =-lntan(19/2) for flat and
Gaussian rapidity distributions. The difference
between these variables is quite significant, as
pointed out by Lyon, Risk, and Tow" but some-
times ignored by subsequent workers. Section IV
is in part a polemic against premature or mislead-
ing conclusions based on confusion of the rapidity
with the variable q. Detailed analysis of the avail-
able experimental information shows that there is
little convincing evidence for the long-awaited
(multiperipheral) plateau in the rapidity distribu-
tion except possibly at the very highest accessible
ISB energy (v s =53). The remaining data are
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surprisingly well described by Landau's energy-
dependent Gaussian rapidity distribution [see Eq.
(2.1) for the definition of y]

1 do dN

(7~ dp

values relating coordinate frames 1 and 2. In
much of the present paper we shall be concerned
with "integrated" distributions dN/dy or dN/dQ
rather than the full double-differential cross sec-
tions. For instance, the number distribution

=N exp(-y'/2L)/(2wL)"',

where the parameter L is

L =-,' In(s/4m, '),

(1 5)

(1.6)

dN 1 der

0'. dg

is obtained by integrating the single-particle in-
clusive distribution

where s is the squared total c.m. energy.
It must be kept in mind that the form (1.5) and

the width formula (1.6) are but crude mathematical
approximations to the full content of the model
(which is in turn perhaps a crude approximation
to the physical situation). Nevertheless the clarity
of expression allowed by these oversimplified for-
mulas is to be preferred in a preliminary investi-
gation such as this one.

The apparent success of (1.5) (which involves no
arbitrary parameters once the multiplicity is fixed
at a single energy) over almost the entire range of
available energy of 30 GeV and greater could mean
that multiperipheral asymptopia is either wrong or
essentially out of reach with contemporary appara-
tus.

In Sec. V evidence from other reactions (yP, wP,

KP) is scrutinized and found to support (1.5), pro-
vided that the Gaussian is not centered at zero. In
Sec. VI, Eq. (1.5) is rewritten in a universal form
involving the variable z =y/V L, and the distribu-
tions dN/dz shown to be in agreement with current
experimental information. Section VII discusses
the angle and energy dependence of the inclusive
differential cross section near 90' in the c.m. sys-
tem, according to the Landau picture. Finally, in
Sec. VIII it is shown that our version of Landau's
model gives approximate Feynman scaling" for
x = 2P~~ /Ms not too small. For very small x sub-
stantial deviations occur. From our point of view
the variable x has no natural role in the theory.

(2.3)

q = -1ntan(8/2).

It is useful to rewrite this in the form

(2.4)

P +Pllg=-, ln (2.5)

The variables g and y appear to be almost equiva-
lent. It has already been noted that, because of
the bounded transverse momentum distribution,
particles in the central region are sufficiently
nonrelativistic that the q distribution is substan-
tially depressed relative to the rapidity distribu-
tion. '" We find that these distributions also dif-
fer at large angles, a fact which is not so obvious
although required by equality of areas of the inte-
grated distributions.

In order to derive dN/dq from (2.1) we have to
integrate over p for fixed g. The volume element
d pis

over the transverse momentum p~ and dividing by
the inelastic cross section u. . Throughout we
shall have in mind the inclusive reaction pp- r
+ anything, unless otherwise stated. This special
case accounts for the bulk of produced particles
in pp collisions. In many experimental situations
it is much simpler to measure angles than to sep-
arately determine p, and pll. The variable analo-
gous to (2.1) in this case is

II. KINEMATICAL PRELIMINARIES

d'P =P' sech'qdPdqdg,

which is to be compared with

(2.6)

From the point of view of relativistic invariance
the most useful coordinates describing an emitted
particle are the transverse momentum p and the
rapidity y'.

(2.7)
d'p

==P ~ dP ~ dy dQ

used for the pair of variables p, y. Some useful
relations among the variables are

E+Ply= —,ln
Pll

(2.1)

X2 =Sr + Jy2 ~ (2.2)

Under Lorentz transformations along the Pll axis
rapidity transforms additively:

tanhy =P() /E,
tanhq =P(( /P,

sech'9 =P i /0 I

y =tanh '(vtanhq),

(2 6)

where y» ——In[y(1+P)] depends on the usual P, y where v =p/E The last two of. Eqs. (2.6) allow us



(2.9)

which is to be contrasted with

do
p,f(p„y, s)dp„.

Cfg 0
(2.10)

(The true upper limit is determined by phase
space. In almost every case we consider, the in-
tegrand cuts off sufficiently rapidly that this effect
can be ignored. ) It has already been noted'" that,
at 90' in the c.m. frame, do/dq and do/dy differ by
the average transverse pion velocity

(2.11)

to express the right-hand side of Eq. (2.1) as a
function of P and g. The "priority" of the variables
is not just a theoretical bias but can be motivated
by the simplicity of data plotted in terms of P~ and
Y.

Since the bulk of the produced particles are pi-
ons, we shall work out this case in detail. The
cross section do/dq isdo,

I

"
P sf(P sech', y(P, q), s) dP

2-K

(v), =2, , „„2d),
2 (k +02)

where the parameters p. ; are given by

(2.16)

III. ANALYSIS OF ln tan(0/2) DISTRIBUTIONS
IN TERMS OF RAPIDITY DISTRIBUTIONS

pg ™Bg
(2.17)

p2 = mB2 ~

Since ( v) does not depend on the particle mass
separately from the slope parameter B, it is easy
to convert from one particle type to another, using
Table I. Preferred" 2' values of B, and B~ for pi-
ons appropriate to MAL and ISR experiments are
B,=6 (GeV/c) ' and B,'=10 (GeV/c) '. In our
computations we shall use B,m„=0.875. It will be
noted that for pions do/dq differs from do/dy by
about 20%% near 90' in the c.m. frame. For a given
slope the effect is even bigger for heavier parti-
cles, such as K mesons (see Fig. 5 and the accom-
panying discussion). In the following section we
give more extensive and detailed examples.

This result follows directly from Eqs. (2.9) and
(2.10); the average is taken with the distribution

pf(p, 0, s)
fdppf(p, o, s)

'

There are two popular forms for fitting the P
dependence of the data, namely exponential and
Gaussian:

In the absence of complete double differential
cross-section measurements one needs theoretical
input to compute do/dq from do/dy. At present
this essentially means that one either makes in-
formed guesses based on earlier experiments or
employs semitheoretical formulas. In this paper
we adopt (2.12) or (2.13) as a factor of the full dis-
tribution and assume that

f,(P,) =B,'e '"',
f,(P.) =2B,'e "" .

(2.12)

(2.13)

J P.f;(P.)dP. = 1.
0

(2.14)

The corresponding values of (v) are given by

(2 -K

)1 ((2 2)1/2 (2.15)

e have normalized these distributions in a uni-
form way so that

f =f;(P.)Z(y, s). (3.1)

Of course, the slope constant B; may have a slight
energy dependence. Detailed analysis at conven-
tional (20-30 GeV) energies'4" suggests that one
may need a sum of, say, two terms of this form
for a good fit to the data. Our purpose here is to
exhibit the main effects without becoming bogged
down in the mass of detail required to obtain great
accuracy.

Actually, the functional form of (3.1) is the lead-
ing approximation to Milekhin's version of the hy-

TABLE I. The average emitted pion velocity at 90 in the c.m. frame is shown for trans-
verse momentum distributions of the form f&~ exp( B&p2 ) and f-2~ exp(M2pz ). The favored
experimental values for moderate P~ values are & &= 6 GeV and &2 = 10 GeV

&i (Ge& )

(v) i

&,' (GeV-'~

0,986 0.953 0,920 0,885 0,852 0.819 0,788 0,758 0,730 0.704

9 12 16

0.964 0.938 0.918 0.900 0.884 0.870 0,845 0.833 0.803 0.770
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drodynamical model, in which the transverse dis-
tribution is dominated by thermal motion rather
than hydrodynamic flow. It is very interesting
that the hydrodynamic picture leads to approximate
factorization in y and P~. Whether the corrections
will lead to agreement with facts when computed in
the model remains to be seen.

Most of our attention will be directed towards
two choices of the rapidity distribution g:

Risk, and Tow have shown" that a flat distribution
in y leads to a dip in the q distribution. They used
a P, distribution of the form (2.13). We verify
their result and, in addition, show that the expo-
nential gives similar (stronger) effects. For the
exponential case we find the ratio

dg 4g
&,(n) =-

dg

g„(y, s) =const. ,

exp(-y'/2L )
gl (yt } (2vL )1/2

(3 2)

(3.3)

]2 -(dan.

(~I + + 2)1/I

p j mB, sech' .
(3.4}

We have labeled these functions by M and L be-
cause the corresponding g's are characteristic
predictions of the multiperipheral ' and Landau
models, respectively. The Landau model gives a
specific prediction for L, but one can simply re-
gard (3.3) as a smooth parametrization of various
data. (These questions form the subject of Sec.
rv. )

a. I'lat raPidity distribution. The multiperiph-
eral model and the parton model naturally lead to
the prediction of a flat rapidity distribution in the
"central region" at sufficiently high energy. Lyon, p.2

= mB2 sech'.
(3.5)

(Note that do/dy is constant. ) Figure 1 shows the
dependence of R,(q} on q for pions (m, B =0.875);
for various values of 8, the dip does not heal until

q reaches a value of about 2.
In the case of a Gaussian P~ distribution (2.13)

the required ratio is (Fig. 2}

I.O— I.O—

0,9 0.9

b
U

b

b

g

b

0.8 0.8

07—

I I

0 I 2 3
q= -In tan (8/2)

FIG. 1. The ratio R& =(do/dg)/(do/dy) for pion pro-
duction is illustrated for a Qat rapidity distribution and
an exponential transverse distribution of the form
exp( —B&p~), for several values of B (B in GeV ).
(The experimentally preferred value is about 6.25 for
pions. )

&= -ln tan (et2)

FIG. 2. The ratio R&(q) = (do/dry)/(do/dy) for pion
production is illustrated for a flat rapidity distribution
and a Gaussian transverse distribution of the form
exp(-B2 pj ) for several values of B2 . (The experi-
mentally preferred value of B2 is 10-12 for pions. )
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dg dN

Om d'0 d&

&'exp[ f y-'($—)/2L] d $
(2+I)1/2 J (~2 + ~ 2)1/2

(3 7)

where i/. and y(g) are defined by

p. , =a,m„sech',

tanhy(f) = (»)„,tanhq .
+Pi

(3.8)

%e shall evaluate this for various energies using
Landau's predictions of the parameter I.

I, = —,
' ln(s/4 m ~') . (3 9)

Here m~ is the proton mass. Table 0 gives the
energy dependence of various parameters useful
in the Landau model.

Figures 3 and 4 compare the input Gaussian with
the resulting q distribution for Ms =30.6 and v s
=53.0, corresponding to energies actually used in
ISB experiments, in particular the Pisa-Stony
Brook experiment. " If we normalize to the exper-

b. Gaussian sapidity distribution. It is clear
from the foregoing calculation that a flat g distri-
bution corresponds to a peaked rapidity distribu-
tion. Since it is easier to go from y to q than vice
versa we use (3.3) to compute do/dq. We find that
at sufficiently high energy the Gaussian in y be-
comes flattened in q in the range -1&q~ 1. Con-
sider the normalized distribution

No~ Bi2
2 )3/2Z1/2 exp( B1PJ. y /2L)

(3.6)

where Nis the multiplicity, and use Eq. (2.9) to
predict do/dq.

The number distribution then following from Eq.
(2.9) is

imental area of the latter experiment, nearly per-
fect agreement is obtained with the curves repro-
duced in Jacob's rapporteur's talk' at the NAL
conference.

An additional qualitative point exhibited by Figs.
3 and 4 is that the large-g distribution does not
coincide with the large-y distribution. Therefore
one cannot safely equate y with q even for large
values of these variables.

Figure 5 shows the effect of increasing the par-
ticle mass; we have assumed F. =1500 QeV, m
= m~, B,=4.2 (m//B =2.06), as seems appropriate
for K mesons produced at ISH energies. The dip
in the K distribution is less pronounced but still
visible at NAL energies.

Figure 6 shows the predicted number distribu-
tion computed from Eq. (3.7) for pion parameters
(m,B=0.875), normalized to the total charged
multiplicity N= 2 OE"~ (.E measured in GeV) At.
100 QeV there is no discernible flatness, while at
the highest ISB energies (corresponding to E = 1500
GeV) the distribution is quite flat in the variable q.
In the following section we shall discuss recent
experimental data in the light of the present anal-
ysis.

c. The flattened Gaussian rapidity distribution
Another plausible rapidity distribution is a hybrid
of the multiperipheral and Landau distribution,
i.e., a flat-topped Qaussian. For instance we can
adopt one of the curves of Fig. 3 or 6 as a rapidity
distribution, feed it back into the integral (2.9)
[using the factorized form (3.1)] and compute the
resulting q distribution. Carrying this out for E
=1500 QeV gives the results shown in Fig. 7.

d. The laboratory q distribution. In order to
compute the laboratory distribution dN/dq~ we
have only to express the c.m. expression in terms
of lab variables since f is a Lorentz scalar
[f (P )=f(P)=f(A 'P )]. Hence P =P
=P~ sech@~ by Eq. (2.8), and y =y~ —y, by (2.2),
where y, =1ny(1+6) and P is the relative velocity
of the c.m. and lab frames. Performing a calcu-
lation analogous to (3.7) leads to

TABLE II. Some basic parameters appearing in the hydrodynamical model are shown as a
function of laboratory proton energy E. s is the total squared c.m. energy in pp collisions.

is the width of the Gaussian rapidity distribution of Eq. (1,5), and the total charged multi-
plicity is computed from the formula 2.0 E ~4, with E measured in GeV.

E (GeV)

s (GeV)

50

95.8

1.65

5.31

100

189.8

1.99

200

377.8

2.34

7.52

300

565.8

2.54

400

753.8

2.68

8,93

500

941.8

2.79

9.45

1000

1881.8

3,14

11.26

1500

2821,8

3.34

12.46
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0 0

000
I

0

0
oC

I

4 5

= In ton (8/2)

FIG. 3. The difference between distributions in the rapidity variable y and the cosmic-ray variable p =- In tan(p/2)
is illustrated in this c.m. number distribution for s =936 GeV (E =497 GeV). The solid curve is the distribution dN/d q
computed using Eq. (3.7) when the rapidity distribution is a Landau Gaussian. The peak in (y~ &1 is flattened whereas
the wings are broadened. Data points are from Ref. 28.

2

0

00

—q = In tan (8/2 j

FIG. 4. This figure is the same as Fig. 3 except that the energy has been increased to s =2809 GeV2 (E =1493 GeV).
The central region is broader and flatter (in the variable g) than in Fig. 3. The normalization is chosen to agree with
Ref. 28.
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1 dv dN

(T~ AQL,

N $e
(2vg)1/2 ((2+' 2@12

p., = mB, sech', .

x exp[-(3 —y, )'/2I. ]0(,
(3.10)

l.5—

In order to compare with the 2O5-GeV NAL exper-
iment" we take K=7.65 (very close to the Fermi-
Landau formula 2 OE'~ . )4, andm„B=0. 875, and
evaluate E, (L =2.35) using Eq. (3.9). The resulting
curve (Fig. 8) shows excellent agreement with the
data. These data do not as yet exclude a small
flat region near the peak, yet the general skewed
Gaussian behavior of the experimental points is
nicely accounted for by (3.10).

The systematic energy dependence of (3.10) is
exhibited in the predictions of the total charged
multiplicity in Fig. 9. In computing this curve
we computed t. using Eg. (3.9) and used the multi-
plicity formula 2 OE"' .(The l.atter is easily cor-
rected to other normalizations by an appropriate
scale factor. ) Pion parameters were used (m,B
=0.875) but this approximation should not be a sig-
nificant source of error.

The calculations of Secs. III B and IIID were all
done with the simple exponential transverse mo-
mentum distribution of Eq. (2.12). It is of interest
to compare some of these predictions with those
resulting from the Gaussian (2.13) or with sums
of Gaussians

O.5 I

-2
q=- In tan (8/2)

f,(p)=gn;p exp(-B p'),
(3.11)

We adopt the criterion that (v) at 90' should be
the same in order to see the effect of the differ-
ence in shape. For comparison of a single expo-

FIG. 5. The z and K g distributions {normahzed to the
same total area) are given at E =1500 GeV to show the
effect of changing the particle mass. In each case the
rapidity distribution was assumed to be a Landau Gaus-
sian. For the 7t curve we took m„B& ——0.875 and for the
K curve mEB&{K)=2.06 I.corresponding to B&{K)
=4.2 Gev ]

200

q= -In tan (8/P)

FIG. 6. Predictions of the c.m. number distribution dN/dq from Eq. (3.7) are shown for lab energies E (in GeV)
appropriate to the NAL and ISR facilities. Note that the flatness becomes more pronounced as the energy increases.
Pion parameters are used (m„8 =0.875) and the multiplicity is assumed to be 2.0 E



RAPIDITY AND ANGULAR DISTRIBUTION OF CHARGED. . . 867

0, I75—

0.!50—

OI25—

O.IOO-"O

Z,'

0,075—

0.050—

0025-

I

-4
I I

0
q = -In tan (8/2)

FIG. 7. In order to see the qualitative behavior of the c.m. g distribution (1/Ã)dN/dg when the rapidity distribution
is flattened in the center we have used the output curve (dashed) (1/N)(dN/drI) & ~ as the input rapidity distribution in
Eq. (3.7) instead of the Gaussian. Pion parameters were again used in this calculation.

nential with B, =6.25 (GeV/c) ' we have B,' = 12.1
(cf. Table 1). The c.m. formula for dN/dq is ex-
actly like (3.7) except for the change of e ' to
2e . The two distributions are compared in
Fig. 10 for E =500 GeV.

IV. IS THE RAPIDITY DISTRIBUTION FLAT
IN THE CENTRAL REGION?

%'e are now prepared to analyze recent experi-
mental results in the light of the investigation of

Sec. III. Although many experimental groups have
announced the (theoretically desired) result that
the rapidity distribution has a plateau in the cen-
tral region at ISB energies, we shall find these re-
sults to be contradictory and confusing when sub-
jected to careful analysis. Some groups"'" have
found flat q distributions (and then over a rather
small range of q), while others" "give y distri-
butions for various fixed P,. In the latter case
possibly nonconstant cross sections are often ren-

0
-I

I

0
I

4

-qL = In tan (8L /2)
FIG. 8. The laboratory distribution dN/de is computed using Eq. {3.10) and compared to the 205-GeV data of Ref. 21.

If the parameter m (we used m~B =0.875) is known and the multiplicity fixed at any energy, there are no adjustable
constants in the model.
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z l,5

0.5
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-2 0 2 4 6 8
-qL= In ton (eL/2)

FIG. 9. The systematic energy dependence of the laboratory distribution dN/dpi, according to Eq. (3.10) js shown.
pion parameters (m~B =0.875) were used and the curves are normalized to a total charged multiplicity N =2.0 E
(E is the lab proton energy in GeV).

dered flat by using logarithmic graph paper and a
stretched-out horizontal scale. Moreover, some
authors have evidently" assumed the equivalence
of the variables, if not in the analysis then in the
description of the analysis.

Hence we need to inspect the consistency of vari-
ous experiments and then to adopt a rational crite-
rion for flatness (rational means uncolored by
prejudice based on some theoretical model).

We first consider the results of Barbiellini et

a/. ,29 who give the total charge distribution dEjdq
in the c.m. frame at s =915, 2000, and 2800 GeV'.
The q distributions obtained by this group are es-
sentially constant in the (small) interval 0&

~ q ~

& 0.8. These authors claim that their results are
compatible with a flat rapidity distribution and a
Gaussian P' distribution exp( B'p') -for 3&B'
& 18 (GeV/c) '. Our calculations (cf. Fig. 2) show
that the range of q in this experiment is not great
enough to be sensitive to the shape of the rapidity

2.5—

f
~

(X exp (-6.25 p+)

I.5— pg)

0.5—

I

-4
q= -In tan (8/2)

FIG. 10. In order to examine the effect of the detailed shape of the transverse momentum distribution on dN/dq we
have computed (1/N)(dN/dg) for the distributions (2.12) and (2.13), adjusted to give the same (v) at 90 in the c.m.
frame [consequently (dN/dq)~ =(dN/dq)2 for g=0]. The values of B; are B& =6.25, B2 =-12.1.
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distribution. A detailed comparison with the data
is made in Fig. 11, showing that one cannot exper-
imentally distinguish the flat y distribution from
the Landau Gaussian distribution. Also shown are
the predictions of the Landau distribution of Eq.
(3.7), again normalized by eye.

The results of Breidenbach et al."are very
similar to those of the foregoing group. If any-
thing, these data indicate an even flatter q distri-
bution over a larger range of q (0&

~
g~& 1.3), al-

though in some cases the scatter seems to be sub-
stantial. Figure 12 shows the data compared with
the predicted distributions following from flat and
Landau Gaussian rapidity distributions for expo-
nential P distributions of the form exp(-6. 25P ).
The reader can judge for himself which fit he pre-
fers.

It is also necessary to mention the compilation
of Fig. 8 in the review paper of Sens." The figure
in question summarizes an attempt to piece to-
gether various experimental results available at
the time. This synthesis is quite reasonable ex-
cept for the crucial matter of how one treats the
central region. We find agreement with the cen-
tral points only if the variable is g, not y. In y,

the central points computed from the data of Brei-
denbach et al. ss should be 1/( v) = 2590 higher. With
this correction much of the convincing evidence for
a central plateau disappears.

The foregoing criticisms are made with the re-
alization that the range of g is very small in the
first two experiments and, more importantly, that
the experimental errors could be much bigger than
statistical.

Now we turn to the results of the British-Scan-
dinavian collaboration, "which should be superior
to the foregoing experiments for our purposes
since momentum is measured, making possible a
determination of true rapidity. The results at v s
= 30.4 GeV are given for p = 0.2, 0.4, 0.6, 0.8, 1.0,
and appear quite flat to the naked eye except for
the larger values of P . This constancy is partly
due to the fact that the data are indeed slowly
varying and partly due to the use of log scale for

s I

1p ps=52.2 GeV

9-

L

+s =52.2 GeV

gs =44.58-
7

ps=44. 5

5-

b
8- ps= 3p.4

2
T

~era

7- l
6-
5-

+s =pp.4

7 - +s=21.5

6-
5-
4-

- l.2 -I.O
e

-0.8 -0,6
I

-0.4
I

-0.2

I

0,4
I I

0.8
q = In tan (8jp)

l.2

FIG. 11. The data of Barbiellini et al. (Ref. 29) are
compared with g distributions calculated using a flat
rapidity distribution (solid line) and a Landau Gaussian
rapidity distribution (dashed lines). In each case the
transverse distribution was taken to be exp(-6. 25 P~)
and the height adjusted to please the eye. It is difficult
to choose between the two cases.

q = In tan (8/2)

FIG. 12. The data of Breidenbach et al. (Ref. 30) are
compared with g distributions calculated using a flat
rapidity distribution (solid line) and a Landau Gaussian
rapidity distribution (dashed line). In each case the
transverse distribution was taken to be exp(-6. 25P~)
and the height adjusted to please the eye. In contrast
to the data of Fig. 11 (which cover a smaller range of
g) the Gaussian rapidity distribution gives a distinctly
better fit.
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the vertical axis and an expanded scale for the
horizontal axis. Numerical integration to obtain
dc/dy shows that there is a 23% decrease as y

goes from 0 to 1.1. This is to be compared with
a 19% decrease predicted by the Landau formula
at this energy. Some might consider this flat
enough, but the visual appearance of the complete
Gaussian distribution will never be flat, even
though the percent decrease in a fixed rapidity in-
terval 0& ~y ~&c will get smaller and smaller as s
increases.

The same group has produced ' similar d3ta at
the higher energy s =2000 GeV', but without the
crucial (dominant) value P, =0.2. These data have
a flat appearance, and if the P~ =0.2 region is also
flat one might conclude that a plateau is indeed de-
veloping at this very high energy. Qf course this
result then contradicts the flat g distributions
found in Refs. 29 and 30 at the same energy.

On the basis of the foregoing analysis it appears
that current evidence is inconclusive on the theo-
retically interesting question of the shape of the
rapidity distribution in the central region. It is
also apparent that the y dependence of Zd'o/O'P
is somewhat greater for large P than for small
P . This fact, apparent at both ISR and conven-
tional energies, means that factorized distribu-
tions of the form (3.1) are too simple to account
for the facts. Of course (3.1) represents'" only
the leading term in the hydrodynamical model. We
plan to discuss these second-order questions else-
where. In the present work we are primarily con-
cerned with integrated distributions, which depend
less on the fine details of the double differential
cross section.

V. FURTHER REMARKS ON THE GAUSSIAN
RAPIDITY DISTRIBUTION

The possible experimental fact of a Gaussian
rapidity distribution of produced particles is sig-
nificant independently of the Landau model. (The
authors are confident that at least some of the con-
temporary models are sufficiently flexible to pro-
duce such distributions. ) Only further detailed
calculations of correlations and other fine struc-
ture can be expected to establish (or disprove) the
hydrodynamic picture of particle production.

In the present section we examine various reac-
tions (including mP, KP, and yP as well as PP col-
lisions) and find widespread evidence for Gaussian
distributions of charged secondaries, even at en-
ergies so low that no justification for statistical
methods can be given. For unlike particles the
forward-backward symmetry characteristic of PP
collisions is no longer expected. Therefore, we
shall compare data with the formula

——=N exp[ (y-—y, )'/2L]/(2wL)"'
1

0~ Ctg
(5.1)

in order to determine the best values of $0 and L.
In order to expedite the fit we take the logarithm
of (5.1}, giving a quadratic

do'
ln d— =K —(y —y, )'/2I„ (5.2)

which is matched to the data using a least-squares
routine. The constant K is

K = InNc, „——,
' ln.(2m L), (5.3)

and can be used as a check on Na. if desired. Thus
we want to choose K, L, y, to minimize

M(K, 1., y)=g ln( —)
—(K — ' '

)
(5.4)

Here y; are the points at which the (dg/dy); are
measured. We can also fit this to d'o/dp dy for
fixed p; in this case it turns out that, at least at
BNL energies, L decreases with increasing P~.
This effect also appears to occur at higher (ISR)
energies, as mentioned in Sec. IV.

Full rapidity distributions are surprisingly
scarce at present. We treat the following data:
(1) yp- n' X for" E&=2.8, 4.7, and 9.3 GeV; (2)
w'P- w X at" 7 GeV/c and" 18.5 GeV/c; (3) K'p
—v X at 12.7 GeV/c. "

For w'p- n X (7 GeV/c) the results are y, =0.26,
I, = 0.71 [note that the formula (1.6) gives I =0.72];
for v'p- m X (18.5 GeV/c) y, =0.20, I.=1.07 com-
pared with L =1.17 from (1.6). For K'P- m X
(12.7 GeV/c) the fit gives y, =0.25, L=0.95, while
L=0.99 from Eq. (1.6). Next, consider yP- m X;
the values of (y„L) at E~=2.8, 4.7, and 9.3 GeV
are (0.35, 0.65), (0.38, 0.85}, (0.46, 1.00). Since
we have not given a theory of collisions of unlike
particles, it is not completely clear that the L of
Eq. (1.6) should be reliable, especially at the rel-
atively low energies in the experiments cited
above.

There have been interesting speculations on dis-
placements of the peak based on the idea that the
quark c.m. frame is preferred for the description
of particle production. " In the context of the hy-
drodynamical model a similar problem has been
studied, i.e., the asymmetry in nucleon-nucleus
collisions. "'" (In that case it appears that the
equal-velocity frame is preferred. ) Thus far no-
body has investigated the prediction of the hydro-
dynamical model for the collision of unlike parti-
cles, although it is unlikely that the dynamics
would change much on replacing one hadron by an-
other. Moreover, the similarity of photon-induced
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reactions to purely hadronic reactions, with regard
to both the multiplicity (also 2.0 E' ~; see Ref. 36) and

rapidity distributions, suggests that p dominance
could account for the principal features of this
process. Figure 13 shows the empirically deter-
mined energy dependence of a =1/2I. , compared
with Landau's formula I, = —,

' In(s/4m'). The inte-
grated cross sections give L values which agree
too well with this formula. [The fixed-P~ fits give
P -dependent values of L which contradict the fac-
tored form of Eq. (3.1) at BNL energies, although
the integrated or average behavior has the correct
I,.]

It is entirely likely, as suggested by Cooper, "
that the "P, dependence of L" at moderate ener-
gies is really due to a kinematic effect, namely
that ym«decreases with increasing P, and that
formula (3.6) ignores this fact. One could intro-
duce an ad hoc envelope function decreasing to
zero on the phase-space boundary, which has es-
sentially the same effect. In the present work our
main interest is in extremely high energies, so
we shall not pursue this question further. Even
at the lower energies the amount of cross section
involved is very small.

The detailed form of L is, after all, asymptotic
and is based on a slablike initial condition. The
formula could easily be I, = A In(s/4m') +&, with
A W-,

' and J3c 0. In fact, J3 is not negligible in some
treatments of this problem. ' Secondly, the energy
actually available to the secondaries is not the to-
tal energy because of the leading-particle effect.
Supposeis the energy available to the expanding
hadronic matter is ks, where k = —,'. Then L is de-

VI. A NEW ENERGY-DEPENDENT SCALING LAW

We return to the c.m. rapidity distribution

— = exp(-y'/21, )/(2mL)'"
1 dN

Pf dy
(6.1)

for charged-particle production in PP collisions.
As we have seen, this simple formula gives a
good approximate description of many experi-
ments, at least up to the highest available ISR en-
ergies at which the rapidity distribution may be
somewhat flatter than (6.1) near y =0. It is possi-
ble to cast (6.1) in a simple universal form' by de-
fining the variable z:

(6 2)

Now Eq. (6.1) becomes

creased by —,
' ink, which is =--,' ln2= -0.35. This is

a rather small correction; typical L values are 2
to 4 in this paper. Also striking is the fact" that
the four-prong events in 6.6 GeV/c pP collisions
have a rapidity distribution in perfect agreement
with the Landau Gaussian and the theoretical width

At the lower energies there is considerable de-
pendence on the charge of the selected final parti-
cle. For instance, at 24 GeV the PP- ~ X data of
Muck et al. are much smoother and better fitted by
a Gaussian than are the pp- m'X data. This is
scarcely surprising in view of the many dynamical
effects associated with the phenomenon of the lead-
ing proton.

1,0

0.8 -X
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FIG. 13. The experimental energy dependence of 1/2L [obtained from a least-squares fit to the Gaussian exp(-y~/2L)
to do/dy] is sholem. The theoretical prediction of Eq. (1.6) is given by the dashed curve. Solid circles correspond to
pp —z X (from Refs. 24, 25, 31, 41, and 42). Open circles correspond to pp-~+~ (from Ref. 31). Triangles corre-
spond to K+p 7t X (from Ref. 26). Squares correspond to n+p ~ X (from Refs. 26 and 38). Solid diamonds corre-
spond to pp —&,hX (from Ref. 21). Open diamonds correspond to pp N,~X (from Ref. 2).
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1dN e'/
pg de (2s)"' ' (6.3)

which formula boldly lacks any adjustable con-
stants, except to fix the constant K in the multi-
plicity formula N =KF.'

This (energy-dependent) scaling law is conve-
niently written in the form

5

4-
~ pp vr, X

0pp ~ x
4

~ I
~ ~&

/
/ typical

error
~i/
~go bor

ln -- = —,'z'+ —,'ln 2g . (6.4)

Hence the use of the variable z is supposed to re-
move the energy dependence from the rapidity
distribution.

Fj.gure 14 shows varj. ous data ' ' ' plotted as
a function of z. The over -all agreement is quite
good.

0'

VII. ENERGY DEPENDENCE OF THE ANGULAR
DISTRIBUTION IN THE CENTRAL REGION

Equation (6.1) is closely connected with the an-
gular distribution dv/dQ in the central region,
where der/dg is a constant ( v) times (dv/dy)„,
over a range of y (cf. Fig. 6). Throughout this
range of q [typically O(1) at ISR energies] we
have" '"

FIG. 14. Plot of ln[N/(dN/dz)] as a function of z =y/WL.
The dashed parabola is the prediction of Eq. (6.4). For
the momenta of 19, 21, and 28.5 GeV/c, we have made
use of existing curves for do/dy (Befs. 24, 25, 41, and
42). For the momenta of 12 and 24 GeV/c, we have
integrated the published curves (Ref. 31) (1/7t')d20/dy dP»
over all given p~ to get da/dy. Note that the 7t data
{pp ~ X) cluster on the inside of the universal curve
for z & 0.75, while the ~+ data cluster on the outside.
Other data (including those from ISR) were plotted in
this manner in B,ef. 5.

I.5—
P =0.3,0.5,0.7,0.9 GeV/c

I

0.7—

IO

I
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FIG. 15. Plot of the 90' c.m. inclusive cross section &d30/dp for pp- ~*X as a function of ~s. x+ data are shown
as open points and ~ data are shown as solid points. The data appearing in cited references were plotted for each p~
separately. Here we combined them in one plot, and for each p~, E d 0/dp~ was normalized to unity at Ws =43 GeV.
The dashed curve is the theoretical prediction, where E d a/dp varies with energy as (y, m /lny, )~, normalized the
same way as the experimental curves. Data points are taken from Refs. 31 (triangles), 22 (circles), and 35 (squares).
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dg A(s)
dQ sin 8'

where A(s) is given by'

X(v)o;„
(2w)'" [ ln(s/4m, ')]"'

1/4

[ ln(s/4m, ')]"' '

(7.1}

(7.2)
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The sin '0 angle dependence of (7.1) is in agree-
ment with Refs. 29 and 30 and presumably in dis-
agreement with the flat y distribution at v s =53
GeV reported in Ref. 22. In order to check the
(nonscaling) energy dependence of (7.2) we plot in
Fig. 15 the energy dependence of the 90' cross
section. Although the energy dependence is very
well explained, the numerical value of A(s) seems
to be slightly too high, i.e., ( u) determined by the
fit to the data is -0.6 rather than the -0.8 expected
from the empirical P~ distribution.

The approximate s' dependence has been noted
independently as an empirical rule. " Of course,
(7.2) implies that the possibly hypothetical scaling
"limit" is never reached in the central region.
The result, (7.2), which is simple and natural in
the Landau approach, is awkward (and involves
constants which are arbitrary or have the wrong
sign) in Begge or multiperipher'al models.

VIII. APPROXIMATE FEYNMAN SCALING; DEVIATIONS
FROM SCALING AT SMALL x

It remains to relate the Landau model to "Feyn-
man scaling. " Although the Feynman variable x
defined by"

x = 2p~~ /Ws (8 1)

(x'+4m, '/s)'" + x
(x'+4m, '/s)"' —x

= —' ln (8.2)

where m, ' = m„'+P' for pions.
For factored distributions of the Landau type

[(3.6)] we have

d'Q
=p,f,(p,)Z(x, p„s), (8.3)

where f, (P~) is one of the distributions (2.12) or

is not at all natural in a model in which the natural
coordinates are y and P, it happens that except
for very small x (where scaling is in doubt) the
Landau distribution (3.6) automatically gives ap-
proximately energy-independent x distributions.
However, this result appears purely fortuitous,
and the variable x presently appears to be unnatu-
ral from the point of view of the hydrodynamical
model.

From Eq. (2.1) we see that x and y are related by

O. I

0 Q. l 0,2
l

0.5
I

04 0.5
X

FIG. 16. The hydrodynamical model gives approximate
scaling in the variable x except for very small x where
significant deviations are predicted. The dependence
of the distribution E(x, p~, s) of Eq. (8.4) is shown
for p~ =0.2 for various equivalent laboratory proton
energies. The data are taken from Refs. 32, 33, and 45.

(2.13), and E(x, p, ) is

N exp[-y'(x, P,)/2L]
(2wL)"'(x'+4m '/s)'" ' (8.4)
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Figure 16 shows E(x, 0.2, s) for a wide range of
lab proton energies. Scaling is approximately val-
id for x&0.05. The experimental tendency of low-
energy x distributions to cross over the high-en-
ergy x distributions was already noted by Panvini
et al. The characteristic prediction of the hydro-
dynamical model (or any model giving rapidity
Gaussians} is that the x distributions become in-
creasingly peaked for small x as the energy in-
creases. Hence we expect scaling to break down
in a very specific way for x & 0.05. Similar results
have been found by Cooper and Schonberg. "
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