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The production process ep —, eh is considered assuming one-photon exchange. Our way of
parametrizing the spin-2 density matrix is compared with the formalism of Doncel, Michel, and
Minnaert. From the explicit expression for the process in terms of three form factors, we obtain the
hadronic current tensor when 6 is polarized and the density-matrix elements of h. It is shown that
separate values of three form factors can be obtained explicitly from the differential cross section and
density matrix. Further applications of this approach are suggested.

I. INTRODUCTION

In order to discuss particle reactions in general,
it is not enough to consider only the differential
cross section of the reactions; the complete in-
formation on the physics of the reactions also re-
quires measurement of the particle polarization.
In particular, if a particle with a high spin is
produced, its decay distribution depends on its
polarization and is expressed in terms of its
density-matrix elements. The investigation of
the density-matrix elements gives further infor-
mation on the reactions.

Recently Doncel, Michel, and Minnaert" have
discussed in detail the polarization density matrix
and its measurement. They have also described
the domain for the values of the density-matrix
elements into which the experimentally measur-
able values must fall. However, they have not
considered the detailed description of the produc-
tion process.

On the other hand, we have previously shown a
straightforward way to obtain the density-matrix
elements for a spin--,' particle in specific process-
es." This method can be used in any process
when the transition amplitude of the reaction is
expressed covariantly.

In the reaction ep- eh(1236), one-photon ex-
change is usually assumed to dominate, and it is
well known that the hadronic current contains only
three independent form factors, which are related
to the Coulomb, transverse-electric, and trans-
verse-magnetic multipoles. "

Recently Jones and Scadron' have reconsidered
the yah vertex and discussed the correspondence
between form factors considered by various au-
thors. Explicit values of these form factors have
been predicted by Kleinert, ' using the O(4, 2) cur-
rent, and by Pritchett et al.'" These authors
have compared their values with experimental
data on the differential cross section. However,
the differential cross section does not give infor-

mation on the two form factors corresponding to
electric and magnetic multipoles separately. One
of the simplest ways to obtain the explicit values
of form factors experimentally is to consider the
angular distribution of decay products of 6 or, in
other words, the density-matrix elements of h.

The purpose of this paper is to connect our way
of parametrizing the spin- —, density matrix with
that of Doncel, Michel, and Minnaert", to obtain
the hadronic current tensor covariantly in the
process ep- eh when 6 is polarized, and to ex-
press density-matrix elements of 6 in terms of
momenta and form factors. The Gottfried- Jackson
frame will be considered, and the result will be
useful to investigate the momentum transfer de-
pendence of form factors as well as the possible
nonreality of the form factors considered by
Bjorken and%alecka. ' The same method can be
applied to other production processes of 6, 67',
or b, h by electrons, photons, and neutrinos.

II. DENSITY MATRIX

If the explicit form of the transition amplitude
of a reaction producing a spin--, particle is given
covariantly, it is always possible to obtain its
density matrix in terms of the form factors and
momenta of particles in the form

2 1 1
p =

~ I+ —BgS; + C)gS;) + ——-- Df;aS

Here A, B,, C;, , and D„.„are functions of form
factors and momenta of the particles; I, S, , S;, ,
and S,» are 4&&4 matrices and they are orthogonal
in the sense that the product of any two of them is
traceless. The matrices S,&

and S;» are symmet-
ric with respect to the interchange of any two in-
dices, and they are zero when two of the indices
are contracted, but they are not orthogonal among
themselves. A straightforward way to obtain the
explicit values of A, B;, C;, , andD;, .„ is given
for specific processes in Refs. 3 and 4, but this
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method is applicable to any process when the
transition amplitude of the reaction is expressed
covariantly.

This density matrix can also be expressed in
terms of the multipole parameters t~~ as"

L123 ) 123 132 213 D231 312 +D321 '

The explicit form' of the density-matrix elements
can be written as follows:

3 /3 il/2 (1)
P3/2, 3/2(-3/2, -3/2) & + K5 &

2$ I
p= P P (2f, +1)f,""r,".

+ LO N= L- (2)
1 ~8 (2I~ 1 (3 )1/2 (3)+ g rp g 5 rp

»3 il/2 (1)
Pl/2, ,/ (-»2, 1/2) + i / rP

Doncel, Michel, and Minnaert" prefer to intro-
duce a set of Hermitian matrices Q„L and a set of
real parameters 3

(L) and write Eq. (2) as

p =
2S ~1 I+ 2S+1 Q Q Q„r„1 2S (I) (I ) (8)

For S =-,', Q~(L)'s are 4x4 matrices and they are
orthogonal in the sense that

T {Q( Q(. ') = —, 6 6„„. (4)

(1'I (g)1/2 ~ (1) (6)1/2 2 (1) (g)1/2 3
1 3 g & -1 3 ~ & 0 3 p t

(2) -1 1r, = „(c„-c„),r, = —CL-„),(2)

(2) 1 (2) 1
CL13j r 1= 2~ Cf

1 (2C„—C„—C,),

The matrices S, , S„., and S,» are related to Q(",
Q('), and Q(", respectively. Equation (1) has some
advantage especially when the production process
is considered.

Because A, B&, C&&, and D,» contain all the in-
formation on the reaction from the explicit form
of the covariant transition amplitude of a produc-
tion process, and because the r~~) are fully dis-
cussed by Doncel, Michel, and Minnaert in con-
nection with decay processes, it is useful to con-
nect them explicitly. The result is

1 ~8 (2) ~ 3 (3 )1/2 (3)
0

(1) ~ (»t
P3/2, 1/2 ( 1/2, 3/2I 4~6 ( 1 1/

+ 1 ~3 (&(2) &&(2) )

+ 1 (6)1/2( (3) (3)
)

(7)

~g ( (2) ~ (2) (3) (3) X

~3/2, -1/2(l/2, -3/2) & + ~ 2 ~r-2 + r2 + -2 ~

1 (3 )1/2(y(1) ~ (1)
)

3 (Z)l/2( (3) . (3) )
3

P3/2, — /2
' (3) ( 3 -3)

where the lower signs in the equation correspond
to the values of p with the subscripts in parenthe-
ses. Equation (7) gives all the relations between
the density-matrix elements of the spin--,' particle
and the parameter r~~ tabulated in Ref. 1, where
even and odd polarizations are treated separately.

Subscripts in B&, C,&, and D,.» imply the x, y, z
coordinates in the 6 rest frame, and they are in-
dependent of the choice of a coordinate system.
The relations of r~~' in the t-channel helicity
(Gottfried-Jackson) and transversality coordinates
in Ref. 1 can be proved immediately after chang-
ing indices from 1, 2, 3 in the helicity frame to
1, 3, 2, respectively, and putting an extra minus
sign when the subscripts contain an odd number
of 2 in the helicity frame, e.g. ,

a (3') 1 31/2a33 ~ (2) ( D D(122))

(3) 3 1/2
+3

4A
(2) (Dill D(.122 ))

(3) 3 1/2
2 -3 ~ (2) (Dt. 112 ) D222)

(3) =-1 (3) 1
+2

4A +5113) D(.223)) 1 r-2 ~ DL123) &

(3) = 1
1 4~10' ( DL 113 ) DL 122 ) 8 111) &

(3) 1
4)(10'

{3) 3 1/2r "=—(—,)"'(2D —D~113) -D(223)),

where the bracket [ j in the subscripts implies the
sum over the permutation of subscripts, e.g. ,

& q ] 5 Tr(3) y & Tr(3)
1 & 3 (8)

All the other relations between r„and r„' tabu-
lated in Ref. 1 can be obtained similarly. The re-
lations between r~(~) in other channels are listed in
Ref. 1, and these can be used to relate A, B;, C„,
and D,» in different channels.

If the parity is conserved in a reaction, the real
part of the products of form factors does not ap-
pear in B, and D,». Therefore, if form factors
are assumed to be real, as is the usual case of
time-reversal invariance, B, and D,» do not ap-
pear at all in the density matrix. This gives the
even polarization density matrix in Ref. 1. In this
case, one can see from Eqs. (6) and (7) that
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P3/2, -3/2 P1/2, -1/2

P-1/2, 1/2

= P-3/2, 3/2

=0 (9)

and the treatment of density-matrix elements is
much simplified.

From the above discussion, one can see that an
important point in the treatment of the density
matrix is to obtain explicitly A, 8;, C„, and

D,» as given in Refs. 3 and 4. In Sec. III, the
electroproduction of L(1236) will be discussed.
The method is simplified and can be extended to
the arbitrary spin case.

III. ELECTROPRODUCTION OF 6
Recently the electroproduction process ep- eh

has been considered' ' to investigate the mass
spectrum of nucleons and the yNA vertex. The

transition of p-b, can be assumed to take place
through one-photon exchange. It is characterized
by one Coulomb, one electric and one magnet-
ic multipole, and therefore the relativistic yNA
vertex contains three independent form factors.
Many authors' '""have used a somewhat differ-
ent form for the form factors. Recently Jones
and Scadron' have discussed the relation between
these three form factors and compared the pre-
dictions based on different models. The yNA ver-
tex introduced by Jones and Scadron is convenient
because it simplifies the calculation of the density
matrix.

The transition amplitude for eP- eh is

2

{ZITI ) = q"(k')y"(k)(~IJ IP&

where the leptonic current u(k')y„u(k) is well
known and the hadronic current is

{&I J„IP) = — P„(P')(2Gcq„(q'P —q Pq„)y, +4GsR „'y, +(G„—Gs)[q +(m' —m)']R„„ju(P) . (11)mh q

Here k (e), k' (e'), P (E), and P' (E') are momenta (energies) of the incoming and the outgoing electron,
proton, and b„, respectively. m and m' are masses of the proton and h. We define in Eq. (11)

and

q =P' —P =k- k',

&(q) = [q'+(m' —m)'] [q'+(m'+m)'],

na es XyPX 7g &

(12a)

(12b)

(12c)

The form factors G~, G~, and Q„are actually the same as those defined by Kleinert and by Ash et +E., 3

but they are normalized differently. These authors compared their form factors with those of Bjorken and
Walecka, ' and the form factors in Eg. (11) are related to g„g~, and gs in Ref. 6 as follows:

Gu(q') = 4(, , )
(3gm+gs)

ma(q)

(,) ma(q) ( )E q 4( a+I) (gB g3

(~) mb. (q)
2(m'+ ) ~'

(13a)

(13b)

(13c)

The absolute square of the transition amplitude, after averaging over the spin states of initial particles
and summing over spin states of the final electron (but not summing over spin states of L), is

The leptonic current tensor t„„is

t„„= —, (kq k', + k„k'„+—,
'

q 5q„) .= 1
(15)

In order to obtain the hadronic current tensor T„,when the spin states of 6 are not summed, the following
two formulas are most useful:
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(mm' —p p') 5(K, +K, +K,) +3K~K2KS 1
2 f /VENT 9X PT'

and

(K~K~ +K~K~ +KSK~)
4 K) 7])v

u„(p')u(p)u(p)y, u„(p') = 24, R„„+ '
4

' ' ' ( m')[4p r]I„„-q„I„(p)-q, I„(p)j
5(K, +K, +K,) +3K,K,K,

spin I/&

(Kgb +Km' +Km') p K/K())Ks p

~])vkrq'](pp])pr )K[
m q])))%pe

(16)

where our notation in Ref. 3 is used except that the spin--,' spinor g„ is normalized" as

upu](=m /E ~

Here g„ is the polarization four vector defined in Ref. 3 as

p'p' s . p" s&
7]( )(Et + t}

g„„=3g„g„-I„„,
q])vx ='))'q])qv qx xo'('q])I(, y+'qpIy]) +'qiI])))) )

-Q. ~ (

(19b)

(19c)

I =6 + (19d)

r„(P) =I„„P,. (19e)

I„„q„,q„„and g„,z are relativistic generalizations of 5„, s„s,~, and s,» given in Ref. 3. The former
coincides with the latter at the b, rest frame. Equation (16}is a simplified form of Eq. (A1} in Ref. 4.
Using Eqs. (16) and (17) and neglecting the antisymmetric part in p, v, one obtains

(m'+m)'
TPU= 24 f 2 /2

( )
[q'+(m' —m)']

Gc P q Pq qP —q'pq +~ & '+3

5(K, +K, +K,)+3K,K,K, m'
10 [ G.( *.+'G.*}-(q'p qpq )R.(~)+-G.*(~"9G.}(q*p.—q pq.)R„(n}l

~(q) & [~"R «G*}p p R'- IG I'p.p (q'p„-q. pq„}(q'p. q.pq„)-
+ Gc(Gu+ ~B)(q'P

p
- q Pqp)R, 'Ps+ G;(Gu+ Gg)(q*P, —q Pq„)Rp.*P8

+4&(q)(IGu-Gg I'-4IGsl')R. „R8.1
2K~KBK3 m '

)fc 2

g(q) q 8 p

-G({G„—G )P„R~ „(q*fl„—q ~ Pq„) —2t' Gv)„„*R~.+RG'G„))„„R~„']I, (RO)

where R„(]l) implies R,zqz. The unpolarized hadronic current tensor is four times the terms which do
not contain K's in Eq. (20). Using the relation

(21)

one obtains



H. S. SONG

(m'+m)'
6EE'm'm "[q'+ (m'+m)']

x 4m'6 q GN +3 GE 5pv 3

[«'[G, I'+«'~'*(IG, I'+«IG 1*)[(«„- . «,)(P.—,«.) I,
from which the structure functions W, and W, can be obtained explicitly.

Using Eqs. (15) and (20) one can write Eq. (14) as

e'(m'+m)'
l&flTI~)l -24 4 «EE) 2 «2[ 2+( «+ )2]

x I
-

I o, I
q'R(k} R(»+(I o, l'+31 o, I')m "[lq'~(q) -R(k) R(k)1C

(22)

)«)«m[G (0„+QG )]«'p (k ~ «')R(«) ~ «4K

6 q

+4 Re(oeO„*)P A)m "[()q'h(q) -R(k) R(k)]

+Re[Go(o„*+op)]q P. (k+k')R '(k)P[)

+-,'&(q)( fo„-oe I' —4l oel')[R (k)RS(k) ——,
'

q R 8']]

+ ' ' ' ' — q.„p,[Im[O, (O*-O,*))q'p (k+k')p~, (k)+41m(O,*O„)R.(k)R, '(k)]
I

.
)
(23)

So far we have treated the reaction covariantly.
The unpolarized differential cross section in the laboratory frame can be obtained from the terms which

do not contain K's in Eq. (23):

(
AQ a' cos'(-,' e)
da „„4e'sin'( e)[l+(2e/m) sin'(-,'e)][1+q'/(m'+m)']

x, —„[q'Ioc I

'+ [q'+ q' tan'(-,'e)]m" (I o „I'+ 3
I oe I ')), (24)

where every value in Eq. (24} is evaluated in the laboratory frame. Equation (24) corresponds to the
Rosenbluth formula for the elastic scattering.

In order to obtain the polarization density matrix, we consider the h rest frame and obtain

where

24q'ee'EE'm'm "[q'+ (m + m')']

5(K, + K2+ K~) + 3KK2K3 (K~K2+K2K~+ K~K, ) KK2K3
««('+ 41KI («a «~a « (25)

A. = -
I oe I 'q'R(k) .R(k) + (I G„l '+ 3

I oe I
')m "[(')q'a(q) —R(k) ~ R(k)]

B,=,', (im') Im- [—G*(.o„+9G )J q'p ~ (k+k')R,.(k),

4 vg. '2
C,, =— [I oef'q R(k) R(k)P, P, +4Re(o,o*„)m"[-'q'&(q) -R(k) R(k)]P P,««(«) q

+Re[o,(o „*+G,*)J q'p (k+ k')R, '(k)p, + '&(q)(l o -Gel'-4-foe l ') [R;(k)R~(k) --.q'R(g'])

~ / 3

D,„=
)

[1m[os(o.„* —Ge«')]q'p (k+k')p, p,R, (k)+41m(Geo„)p,..R,.(k)R,'(k)).

(26a)

(26b)

(26c)

(26d}
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Finally, the density-matrix elements can be ob-
tained from Eq. (7) using Eqs. (5) and (26a)-(26d),
or from Eq. (3) in Ref. 3 and Eqs. (26a)-(26d). In the
Gottfried-Jackson frame, "p, R(k), and 8'(k) have
the components (0, 0, p), (0, -im'Pk„, 0), and
(m'mp'k„, 0, 0), respectively, and the density-ma-
trix elements are explicitly

2p3/2 ~ 3/2 ~3 Rep3/2, /2

3~14P2 2+2k 2+
k 2 I Ggl

x x

2A 2P3/ s/2 ~3 Reps/, /2

3 p,"2k„

(28a)

3
p3/23/216+m'p'(q'+2k„)~G„+G (2Va)

(27b)

p„, „,= m"P'k„'[~G„-G, ~'

—4I Gsl
' —4i im(G~ G„)],

(2Vc)

Pl 2/, 1/2 g/~ q Pk P (k+k )

x ImIG c(G „* —3G*)],

p, /2, /~ m ——"—q'pk, p (k+ k')G*(G~ +Gs),
W3

Therefore, it is obvious that separate values of

( Gc )',
( G„)', and j G~ [' can be obtained, and the-

oretical models ' "which predict explicit values
of these form factors can be checked more rigor-
ously. Also a possible nonreality of the form fac-
tors can be checked from Eqs. (27a)-(27e).

The method used here can be applied to any cases
which contain a g particle, e.g. , production pro-
cesses of ~, &n, or ~~ by electrons, photons, and
neutrinos whether the target is polarized or not.
For example, in the case of the neutrino produc-
tion of b„'" eight form factors are contained in
the transition amplitude in general. It can be re-
expressed in a form like Eq. (11), and one can cal-
culate density-matrix elements using only Eqs.
(16) and (17). Formulas like Eqs. (16) and (17) can
be obtained in more complicated cases.

p„, „,=0, etc. (2Ve)
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The general expression for the electron-deuteron scattering amplitude is derived within the framework
of Glauber theory. An approximation to this expression, used earlier, is shown to be valid at large, but
not at small, momentum transfers. Two-photon exchange effects are somewhat smaller than previously
thought. A simple extrapolation of the data does not indicate two-photon exchange dominance at large
momentum transfers. Existing data indicate that because of interferences, two-photon exchange effects
can change the cross section by - 10% for —t —1 (GeV/c) .

It has been known for some time that double
scatterings dominate in collisions of high-energy
hadrons with deuterons at large momentum trans-
fers. ' The methods used to analyze such collisions
are usually based upon Glauber theory. ' The am-
plitude E, for double scattering is a two-dimen-
sional integral, over momentum transfers Iq, in-
volving the hadron-proton and hadron-neutron
strong-interaction elastic scattering amplitudes

fe(q) and f„(q) and the deuteron wave function. It
takes the form'

&.(q)=3,&
f. -'(+qq)f. (eq-q')S(q')d'q', (1)

where S(q) is the deuteron form factor and itk is
the incident momentum. Since the deuteron is con-
siderably larger than the range of the hadron-nu-
cleon strong interaction, S (q') decreases much more
rapidly with increasing q' near q'=0 than do f„e(-,' q
aq'). Hence it is usually a good approximation to
replace the amplitudes f„and f~ in Eq. (1) by their
values at q' =0. This leads to an approximation to
E, given by

+.(q) = sf.(eq)f, (eq)(~ ') I&,

where (r ') is the expectation value, in the deuter-
on ground state, of the inverse-square neutron-
proton separation. The intensity for double scat-
tering is then given by

( )~
2 +(sq) r q

( -s)2
dQ dQ

Double scattering is typically smaller than single
scattering near the forward direction. However
the single-scattering intensity contains a factor
S'(-,'q) which decreases rapidly with q near q =0.
We see that in Eq. (3) the structure of the deuteron
appears only via (r '), a constant. Consequently,
double scattering does not decrease so rapidly with

q, and eventually dominates single scattering. Its
q dependence is insensitive to the structure of the
deuteron.

Equation (3) has been recently used by Gunion
and Stodolsky4 to describe electron-deuteron scat-
tering, an electromagnetic interaction. Since Eqs.
(1)-(3)were derived for strong interactions, it is
necessary to derive an equivalent expression for
the electromagnetic case. We see, for example,
that for e-d scattering the integral in Eq. (1) di-
verges since f~(q) ccq ' for small q. Hence Eqs.
(3) and (3) will clearly not be valid for small q.
The need for a special derivation was recognized
in Ref. 4.

Let the e-p and e-n scattering amplitudes, fe and

f„, be written as

f (q) = — [I- et "e.e ]etq d'b'iA

where 5 is an impact-parameter vector and X„e(b)
are phase-shift functions. In Glauber theory, the
e-d elastic scattering amplitude will take the
form'


