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Nucleon-Nucleon Interaction from Pion-Nucleon Phase-Shift Analysis
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The two-pion exchange contributions to nucleon-nucleon forces are calculated from our knowledge of
pion-nucleon phase shifts and pion-pion interaction which are used as input into dispersion relations
with the subtractions required by Regge asymptotic behavior. At low energies, nucleon-nucleon
potentials are derived, which, with the addition of 7r-meson and co-meson exchange, explain many
features of the phenomenological potentials without any adjustable parameter. However, the calculated
spin-orbit and central potentials have significant nonlocal components at small distances,

I. INTRODUCTION

This work is an extension and a refinement of
previous work done in 1962, by two of us (W.¹C.
and R.V.M.). In that paper, 'whichwilibe referred
to as I, an attempt was made to use the Mandel-
stam representation in order to correlate the long-
and intermediate-range nucleon-nucleon forces
with known properties of n mesons, their interac-
tions with themselves and with nucleons. In the
present work as in I we confine ourselves to the
longest-range part of the two nucleon interaction,
in particular to the one- and two-pion-exchange
contributions to the amplitude. The one-pion-
exehange part is unambiguously determined in dif-
ferent approaches. The same cannot be said of
the two-pion-exchange contribution. Many auth-
ors' have adopted the fundamental Lagrangian
viewpoint with specific dynamical models; here,
since we investigate the extent to which two-pion
exchange can be understood in terms of our knowl-
edge of pion-nucleon and pion-pion interactions,
dispersion relations seem to be the appropriate
framework.

Ten years ago, the ~(1236) resonance was the
only mell-known feature of the pion-nucleon inter-
action, and the p meson the only established reso-
nance in the pion-pion interaction. In paper I
these features were used as input data into disper-
sion relations; this did give an understanding of
many properties of internueleon forces, but was
unsatisfactory in its predictions of the central
forces.

Recently, this type of approach to the problem
of internucleon forces has been revived by Brown. '
Brown, Chemtob, Durso, and Riska' use essen-
tially the same framework but improve the input
by adding further baryon resonances Ithe P„(1400)
and D»(1518)], and by imposing soft-pion con-
straints on the pion-nucleon amplitude. Their
work will be referred to as II.

From recent and more accurate pion-nucleon

phase-shift analysis and various indirect studies
of the pion-pion interaction, we now have much
more information on these amplitudes than was
available in 1962. In the present work, we pursue
the task commenced in I and II of using this infor-
mation as input into the Mandelstam representation
in order to generate the longer-range features of
the nucleon-nucleon amplitude.

Another modification in the present work con-
cerns the number of subtractions in the dispersion
relations; these are determined by the asymptotic
behavior of the amplitudes. Here, the necessary
number of subtractions is determined by assuming
Regge asymptotic behavior and the subtraction
functions related to the low angular momentum
nucleon-antinucleon annihilation into two pions.

The following plan will be adopted in this paper:
In Sec. II, we present the full set of dispersion
equations relevant to the calculation of the two-
pion-exchange amplitude. In Sec. III, we discuss
the input data used in the calculation of the double
spectra1 functions and the subtraction terms. In-
stead of computing the long-range phase shifts we
prefer, as an initial step, to define and calculate
an equivalent potential, and this we do in Sec. IV.
A discussion of the results is given in Sec. V.

II. THE TYCHO-PION EXCHANGE

The notation of I is used throughout this paper.
Qoldberger et al.' demonstrated that the ampli-
tudes associated with the Fermi invariants were
in general free of kinematic constraints and plausi-
bly satisfy the Mandelstam representation. Ne
work, as in I, with Amati et al.6 invariants. For
natural-parity exchange and in particular two-pion
exchange, these also plausib1y satisfy the Mandel-
stam representation. This is because, in this
case, the invariants F, and F, of Ref. 5 vanish at
t=0.

Apart from antisymmetrization, the scattering
matrix is

800



NUCLEON-NUCLEON INTERACTION FROM PION-NUCLEON. . . 801

(2.1)
dv—= (m'/4))'E)'

~ M» antisymmetrized
~

'. (2.4)

M2, =P [3P',(w, t, t ) + 2P,. (w, t, t )7'". r~ jP;,
(2.2)

Assuming the Mandelstam representation, the
weight functions p',.(w, t) themselves satisfy rela-
tions

1 " y',. (w', t)

4 2 w —w
(2.5)

1 " p,.'(w, t ') v (—1)'p ',.(t, t ')
(2.3)

g'/4)) =14.0.

The one-pion-exchange term in included in Eq.
(2.3) to show our normalization which is such that
the differential cross section is given by

The dispersion relations (2.3) and (2.5) should both
contain subtraction terms depending on the asymp-
totic behavior of the amplitude. The Mandelstam
double spectral functions; y',.(w, t), are related,
using unitarity in the NN-2m-NN process and
pion-nucleon fixed-t dispersion relations, to the
elastic pion-nucleon scattering absorptive parts
by the equations

I' —w
8n'2V t AA BA 4 wtA 2

16m 2y I; 2 wt&)'

32K v' t pvtK '
(2.6)

y (ss t)=&
d
—

RJl
I ds'ds" SS( — —,)Z'

y', (w, t) =0,

where

Y = (s' —s")/w,

Z = [s' + s" + t —2(p, '+ m') J /t,

K= [-I (t Z)' —tw(w Y'+ t —4p, ') J

(2 'I)

and

Z„'„=[o„'(s',t)J [a„'(s",t)j,

Zs„=Re[as(s', t)J*[a„'(s",t) J,

zd)s = [as (s', t) J*[as (s", t) j,

(2 6)

where o„'(s,t) and as(s, t) are the absorptive parts
of the usual pion-nucleon scattering amplitudes. '

The integrations in s' and s" are over the con-
nected bounded region where E' is positive, and
therefore in physical pion-nucleon scattering en-
ergies. However, the double spectral functions

are defined in the region of t& 4p, ' and require an
extrapolation in I; from the physical pion-nucleon
scattering region.

To determine the number of subtractions to be
made in E(Is. (2.3) and (2.5), we assume the as-
ymptotic behavior to be given by the Regge model.
In E(I, (2.3), the asymptotic behavior in t is deter-
mined by any Regge trajectory for baryon number
2. The deuteron could lie on such a trajectory;
however, the fact that for the values of w that in-
terest us there are np dibaryon resonances with
angular momentum larger than 1 implies that
p,.(w, t)-t~ ~ ' with o.(w)&2. At most, one sub-
traction is therefore sufficient in E(I. (2.3). Such
a subtraction will only influence the low partial
waves or the very short-range interaction in nu-
cleon-nucleon scattering and will not be con-
sidered further. Consider now the t-channel
(NN-NN) helicity decomposition of the p,.(w, t),
keeping only the natural-parity (two-pion in par-
ticular) contributions; we get
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p', (w, t) api(t, t) = 4Q (2J'+l)[Pz(z)lmF, '~ —2zPJ (z) ImF'I+z(zPz" +Pz')imF'~ ],1 & ~]p4

p,'(w, t) ~p', (t, t)=,p (2 J+1)[-p,' (z) ImF'f +(zP,"+P,') ImF" ],

pg(w, t) ap,'(t, t) =, ,Q (24+1)P~"(z) ImF'~,
1

(2.9)

p ~(w, t) +p,'(t, t) =—, ,Q (2 J +1)PJ (z) ImF'~,
1

where

P =t/4 —I, q =t/4 —egg, z=(t —w)/4pg. (2.10)

The subscripts + and —refer to the nucleon-antinucleon pair having the same or opposite helicities in the
initial or final states. The functions F~ are the partial-wave NN-NN helicity amplitudes and contain con-
tributions from meson resonances. We associate these resonances with Regge poles and, again, the usual
assumption that these poles dominate the asymptotic behavior of the p, (w, t) for large go determines the
number of subtractions necessary in Eq. (2.5). Thus, the Regge model, with Eq. (2.9), predicts that for
large w

p', (w, t) -(w)" ~', p', (w, t) -p', (w, t) -(go)" ~'~ ', p', (w, t) -(w)" &'i ' (2.11)

where gg. (t) are the leading trajectories in the t channel. In the isospin (-) amplitudes, the leading trajec-
tory contains the p and g resonances with angular momentum such that

Rea~(t) =0.5+0.02t.

Since we are only interested in the long-range forces, we are not concerned with very heavy mass ex-
changes. In particular, for t( m, '=120'' we have o.(t)(3 and the convergent dispersion relations

(w-w, )' ",y, (w, t) I
p, (w, t) -p, (t, t) =S, (t)(w -w, )+ ' dw', , „,+, t +pzg(t, t)-peg(w, t),

p, (w, t)+p, (t, t) =S, (t)+ ' ', ', , +, —dw'-pzg(t, t)-psg(w, t),
(go -wo)' "

y,
' (go', t)

p, (w, t)-p, (t, t) = ' ', ', +, —dw'+peg(t, t) pzg(go, t), -w-go, "
y,' (w', t) I

(2.12)

p, (w, t)+p, (t, t)=S, (t)+ ' ', ', , +, —dw' p4z(t, t)-ps4-(w, t).(w -w, )' " y,' (go', t) 1 I

In the isospin (+) amplitude the dominant trajectory, at small t, is associated with the Pomeranchukon
which is roughly flat for small t and given by

Reggp(t) =1.0,
and for large enough t, with the f-resonance trajectory which is degenerate with the p and g trajectory.
For t(m&'—-80', ', n(t)( 2 and we have the following convergent dispersion relations:

(w -w, )' "
y,"(go', t) I, I

p,'(w, t)+p,'(t, t) =S,'(t)+, —, , +, —dw'+pzg(w, t)+peg(t, t),

p,'(w, t)-p,'(t, t) = ' ', ', +, —dw'+pzg(w, t)- pzg(t, t),
"

y,"(w', t)
jT ~ 2 K —K 'N -K K

oo

p,'(w, t) +p,'(t, t) = — y,"(w', t), +, dw'+ pzg(w, t) +ps(t, t),
4m 2

(2.13)

w -wo " y~(w', t) I I
p,'(w, t)-p,'(t, t)= ' ', ', +, — '

dwp +(wz4, t)-pz4(t, t).
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In Eqs. (2.12) and (2.13), we have the following definitions:

w, =2m' —t/2,

1 B t de
ps(w, t) = — ys(w', t)

(2.14)

(2.15)

y',. '(w, t) =y*,.(w, t) hays(w, t) . (2.16)

ys(w, t) is the contribution to y',. (w, t) calculated from Eq. (2.6) when only the single-nucleon term is kept in
the pion-nucleon amplitude. Equation (2.15) converges without subtraction, and has been separated from
the other terms in order to facilitate the calculation of the two-pion-exchange potential. In Eqs. (2.12) and
(2.13) we have imposed the symmetry properties of iwo-pion exchange under the substitution w —t [or
(w —wo) —(w —wo) ] at a fixed t.

The amplitudes F~ are related, by unitarity, to the NN-2m helicity amplitudes':

p m p' ' ~m2
ImF++ =(p'q')~ t(f f (', ImF, =)

( )],q, Re(f *f,), ImF =
( )

—jf~['. (2.17)

Much work has been done over the past few years on the NN-2w S- and P-wave helicity amplitudes f', (t),
f', (t), and f"(t). We now have several reasonably consistent models which possess the correct singularity
structure and contain the p resonance and a more or less mell-defined e resonance.

We use some of these models to calculate the subtraction functions S(t). By combining Eqs. (2.9)-(2.17)
and projecting out the S and P waves from the imaginary parts of the amplitudes as given by Eqs. (2.12)
and (2.13), we get the subtraction functions as

ao 1+ ~l 2m'
S,'(t)=,()f, (' —

Ifs, (')- dw' Q, (x) ' ' —2my", (w', t)+m'xy,"(w', t)+ y,"(w', t)

1 1 1 ~ 1
3 2 2

S, (t)=~t, f, —~~f —f„-~~f,

(2.18)

+, (fw' 2q, (x) —', ' +3m ' ' —2m'y, ' (w', t) -3m'6 ", y,
' (w', t) y,

' (w', t) . . . , y~ (w', t)
5g K( ~~2 X X %OX

y,
' (w', t) y,

' (w', t), , y', (w', t)
+q (x) -3 ' ' -+4m ' ' —m'y' (w', t) —4m'

1 x 3
$00 X

'*'"= ri "' ~-
W2

— '- " &sf -)
)

3&2wq', ~, m. . . m

6 " . y,
' (w', t)

+5 SM"[(),(x) —q, (x)]
' ' -my', (w', &)),5&0 4m 2 x

3lr 3 OQ

,(t)=-2 t
(~f'-~' —~f,' ~')+5„d'~@,(~)-@,()

(2.19)

(2.20)

(2.21)

where

x=(w'-w, )/w„q=(t/4 —p')'", Q~ =usual Legendre functions,

and f~~ „(t)is the one-nucleon-exchange contribution to the amplitude f~~(t).

III. INPUTS AND CALCULATIONS

A. The Spectral Functionsy; (w, t)

Equation (2.6) shows that y', (w, t) are given in
terms of the functions o„'s(s, t), which are taken
as input into this calculation. They have a single-
nucleon contribution to os(s, t) of sg'5(s —m') and
a continuum contribution. This latter is taken froni

phase-shift analysis of pion-nucleon scattering,
extrapolated to positive-t values. Apart from this
question of extrapolation, there are several differ-
ent phase-shift analyses of pion-nucleon scatter-
ing; they are qualitatively similar but have signif-
icant quantitative differences. In this paper we
take some account of these differences by using
the CERN experimental' and the Glasgow A' solu-
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TABLE I. The nonzero coefficients of the expansion ops'(s, t) =Q„C„(s)(t/50)"at s =132@ .

Cp C( C2 C3

CERN
Glasgow

CERN
Glasgow

CERN
Glasgow

CERN
Glasgow

-12.63
-8.620

3.379
2.782

-8.572
-7.756

1.828
1.718

-32.53
-19.566

9.329
7.716

-27.74
-29.39

6.865
7.050

-19.67
-12.62

7.106
7.712

-25.50
-37.10

6.539
8.225

2.251
0.3817

0.1647
1.781

-1.254
-9.966

0.0202
1.306

0.2117
0.3961

0.0116
0.0217

0.0249
0.0322

0.0014
0.0018

tions.
Concerning the extrapolation, the domain of

analyticity in f of o„'s(s, t) is determined by the
boundary of their double spectral functions. At
small w, the integrals of Eqs. (2.12) and (2.13)
converge very quickly and are only sensitive to
y',. '(to, f) for small values of w; these, in turn, de-
pend only on the input functions o„'s(s, t) at small
values of s. For these small-s values, o„'s(s,t)
have a large domain of analyticity in t; in particu-
lar, neglecting pion production" below the p-reso-
nance production threshold (s& 150','), there is no
two-pion-exchange double spectral function, and
the domain of analyticity is determined by four-
pion and higher-mass exchange. The four-pion
double spectral boundary starts at t =16',', how-
ever, because of the four-pion phase-space fac-
tors it is to be expected that the effective bound-
aries are at much larger values of t. Phase-shift
analysis gives the input functions as polynomials
in t. The reliability of the extrapolation can be
judged, to some extent, by examining the coef-
ficients of these polynomials. For example in
Table I, we give the nonzero coefficients c„for
o„'s(s, t) =Q„c„(t/50)"at s =132','. The Glasgow A
and the CERN experimental solutions are shown
for comparison. The two solutions are similar,
and the high powers of t do not give large contribu-
tion for t& 80''. This indicates that we do have a

reasonable extrapolation out to these large t val-
ues. Table II gives the same coefficients for s
= 194','. Although the high powers of t are again
not large, the two solutions are not in very good
accol d.

%e have calculated the double spectral func-
tions y,

' '(w, t) with both phase-shift solutions in the
region zo & 1000',' and t + 80', '. For se and t values
not too large the calculations give similar results,
for large zv and t there can be large differences.

To illustrate these ambiguities, we show graphs
of combinations of spectral functions associated
with the dominant to-channel helicity amplitudes.
As one would expect from Regge-pole phenomenol-
ogy, we have a large helicity-nonf lip combination
in the isospin (+) amplitude. Figure 1(a) shows,
at t =30', the helicity-nonf lip combination

—2 mD$2+m D J3 +D$4

D = (ts —2 m')/2m'.

In the isospin (—) amplitude, the double helicity
flip is the dominant combination. This is associ-
ated with

24m—2m/2 +m p3 +

and at t =30)L' is shown in Fig. 1(b).
The functions y',. '(w, t) as obtained above were

TABLE II. Similar to Table I, but at s =194' .

Cp C(

0'g

CERN
Glasgow

CERN
Glasgow

CERN
Glasgow

CERN
Glasgow

17.86
21.10

0.2176
-0.0112

-8.937
-23.57

0.6961
2.023

54.29
55.82

1.1387
1.4486

-31.06
—69.65

2.059
5.206

40.82
40.61

2.841
3.340

-26.81
-53.51

1.436
3.133

9.711
8.494

1.2194
1.432

-5.954
11&73

0.3067
0.4534

0.402
0.058

0.0194
0.0029

0.325
0.0576

0 ~ 0158
0.0028
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inserted into Eqs. (2.12) and (2.13) in order to cal-
culate the double spectral contributions to the am-
plitudes. As discussed in Sec. II, these equations
are, in principle, convergent and we, in fact, find
very rapid convergence before I)' = 1000'.'. For
t& 50'.', both nN phase-shift inputs give almost the
same results. For larger-t values, they begin to
differ; however, these ambiguous regions give
only small contributions to the high angular mo-
mentum amplitudes.

The CERN experimental phase-shift analysis ex-
tends up to s=250g', the Glasgow A analysis up to
s= 200''. The calculation of the functions y', (w, t)
involves the pion-nucleon elastic amplitude only
for values of s smaller than so. In particular, it
can be seen from Fig. 2 that with s & 250', ', we
can obtain y',-(w, t) for w & 700', ' and to even larger
zo values for small values of t.

15 ~

10

5 ~

0

+
Va+o+

500

(b)

w{)al)

B. The Subtraction Functions -5

The subtraction functions occurring in Eqs.
(2.12) and (2.13) have been calculated from Egs.
(2.18)-(2.21) using various models for f 0(t) and

f,'(t):
(i) the resonant wg 8-wave solution of Ref. 11

called BD1 in Ref. 12 and referred to here as R;
(ii) the nonresonant wv S-wave solution of Ref.

13 called here NR;
(iii) the nn P-wave solution of Ref. 11 called here

N and of Ref. 14 called here H.
References 11, 13, and 14 contain forms for

f,'(t) and f,'(t) for t& 45', '. The resulting subtrac-

-10 '

-15

FIG. 1, The functions y + +(~, t) and y+ +(m, t) at
t =30p . 6: Glasgow input; C: CERN experimental input.

80

"&'
O~ O2

70

60

50

40

30

20

10

500 1000 w(g 2)

FIG. 2. Nucleon-nucleon double spectral boundaries. The spectral functions are zero to the left of the boundaries.
Curve 1 corresponds to s' =s"=m =45.54@ . Curve 2 corresponds to s' = m, s"=(m+ p) =59.8p . Curve 3 corresponds
to s'=m, s"=m~ =79.33@ . Curve 4 corresponds to s'=s"=m~. Curve 5 corresponds to s'=m, s"=248@ .
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tion functions S,'(t) and S, (t) are shown in Fig. 3.
The contributions from the double spectral func-
tions y', '(w, f) in E&ls. (2.18)-(2.21) were found to
be very small, which explains the independence of
S,'(f) and S, (f) from the Glasgow or CERN mN

phase-shift models. It can be seen also that the
subtractions associated with the p meson are sim-
ilar for the two models. The parameters of p ex-
change are well established; in fact, we obtain
similar results for the low-energy amplitude by
treating p-meson exchange as a simple particle
exchange, taking, for example, the old coupling-
constant estimations of Ref. 15. From Fig. 3, the
S-wave subtraction is not so well determined.

With these ingredients one can calculate direct-
ly, by standard techniques, from the amplitude
M» the nucleon-nucleon phase shifts, at least for
higher angular momentum values. Detailed work
on this program is currently under way. The es-
sential features of two-pion-exchange nucleon-
nucleon forces can also be expressed in terms of
equivalent potentials. This is done in the next
sections.

&&5 +
l

0-

-10

20 30

I

I

t

I

/

(a)

t {p'j
40

50
t (p'J

IV. DEFINITION OF THE POTENTIAL

%'hile the previous sections are devoted to the
derivation of the two-pion-exchange contribution
to the relativistic two-nucleon S matrix, we would
like to derive here an equivalent potential. Of
course, such a potential is not necessary when
one is only concerned with the two-nucleon system
and could even be ill defined, especially at high
energies. However, a potential which has a rea-
sonably sound basis outside the core region would
be useful in various nuclear calculations. This is
especially true since the various phenomenological
potentials which fit the low-energy two-nucleon
data differ even at rather large distances. Also,
a potential, which is reliable for distances smaller
than those where the one-pion-exchange potential
dominates, would help in reducing the degree of
arbitrariness of the core region.

As in papers I and II, we wish to define a poten-
tial which, when inserted into a Schrodinger equa-

20

FIG. 3. The subtraction functions. (a) S+&(t). R is
calculated from f+0(t) of Ref. 11. It is constructed from
a pion-pion phase shift which passes through 90 in the
e mass region. NR is calculated from f+0(t) of Ref. 13.
In this model the pion-pion phase shift does not pass
through 90 . (b) S& {t). N is calculated from f,{t) of
Ref. 11. H is calculated from f ~(t) of Ref. 14. S2 (t)
and S4 (t) have very similar shape and size with both
models. S2 {t) is smaller by a factor of 0.16, and S4 {t)
is larger by a factor of 1.2.

tion, gives, in an energy range sufficiently below
the meson production threshold, the same T ma-
trix as the scattering amplitude derived in the
previous sections. The T matrix is related to the
potential V by the Lippmann-Schwinger equation

&i I & li& =&p I &li& fd e&v I&-li&=,'-.. ..&417'Ii&, (4.1)

and is normalized by

do' m 2—= (2»)'—
d'Q 4n. (4 2)

we therefore require

(p, ~
T jp, ) =-(2 ), Pu(p, )g~ u(n, )g„,M„u(n,)g„,u(p, )g&, , (4.8)



NUCLEON-NUCLEON INTERA CTION FROM PION-NUCLEON. . . 807

where M» is the field-theoretic causal matrix defined by Eqs. (2.1) and (2.2).
As we are concerned with the definition of a nonrelativistic potential, it is appropriate to express the

causal amplitude M» in terms of the usual nonrelativistic invariants'e 0 [a = central, spin-orbit, tensor,
spin-spin, and (spin-orbit) ] rather than the relativistic invariants P, which we have used in the previous
sections. The transformation matrix X such that

P) =Q X)~A„ (4.4)

can be obtained by direct calculation and is

-2muv

m(E+ m)

2v
8+m

1
[2 m(E+m)]'

2(2E+m)
[2m(E+m)]'

m'v 2E+m
VE+m

2E+m0
2m(E+m) (4.5)

t+4P' u' 1 1 t 1
4m' m(E+m) m' 12m' 6m' [2m(E+m)]'

1 t
12m' 12m'

where

E t 2E t(2E+ m), E E t(2E+ m)
4m(E+m) ' m 4m(E+m) ' m 4m2(E+m) ' m m' 4m (E+m) '

(The transformation matrix used in 1 is the adiabatic limit of the one given here. )
Because of its analytic structure M» can be written as

M =Mo»c+ M~Ec+ ",21 21 21 (4.6)

where M, ,E and M2~1~, as functions of t, have respectively a pole at t= p,'and a cut beginning at t=4p
due to the two-pion-exchange contribution; the other terms of this sum correspond to three-pion and fur-
ther cuts.

On the other hand, it has been shown" that for superpositions of Yukawa potentials, the T matrix defined
by (4.1) is an analytic function of t which has a pole at t =p' and branch points at t =4p~, 9p', . . . ; we there-
fore can write T as

Z —yOPEP + yT EC + ~ ~ ~21 21 21

where again T02»1 and T~» are associated, respectively, the pole at p,
' and the cut with branch

point at 4p.', etc. We make the same decomposition of the potential, namely,

(4 f)

y yOPEP+ yYPEP + ~ ~ ~
~ (4.6)

Taking into account the proper normalization factors as given by Eqs. (2.4) and (4.2), and identifying
terms having the same singularities yields

(p, ~
TopEP(p ) =- —M2of~ for the pion pole (4.9)

hnd

(p, ~

T~E )p, )=-,—MP for the two-pion branch point. (4.10)

The corresponding one-pion-exchange potential is
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VQPEP (g ) ~oPEc
(2 )3E 21

1 g' m (oP Z)(o" Z)
(2v)3 m' E p,2-t

Since

where

I Voppp, 2 I ) d 3 (P2 I
V""

lq& m& q I
V""

I pi&
~2 ~2

(4.11)

(4.12)

(4.13)

we define

( (
VTPEP

( &
~TPEc+ ( (

VQPEP, 2
( (4.14)

This equation gives the two-pion-exchange potential in terms of our M2~ with the iterated one-pion-ex-
change potential (p, I

VoPEP'(p, ) subtracted out.
Since in Eq. (4.13) lq( is not necessarily equal to I pl, the calculation of (p(VoPEP'(p, & requires an off-

energy-shell extrapolation of (pl VoPEP Iq). This was done in I by taking the adiabatic limit (E/m =1) of
VoPEP given by Eq. (4.11), which amounts to treating it as a strictly local potential. The two-pion-exchange
potential V~EP as defined by Eq. (4.14) then has a singularity, as a function of w, at 20=4m'. The associ-
ated cut vanishes in the limit of E/m =1, and was discarded in I as part of the adiabatic limiting procedure.
However, it has been pointed out by Partovi and Lomon" that this is a bad approximation for the calcula-
tion of the central potentials. If V~~ is to be strictly real and not have a singularity as a function of en-
ergy at gg =4m', then relativistic phase space suggests that the kinematic factor of m/E in VoPEP must be
interpreted as [m/E(p)] 't2[m/E(q)) '~2. In the Schrodinger-equation framework this means that the one-
pion-exchange potential is somewhat energy-dependent, which implies a certain nonlocality in coordinate
space.

The extrapolation to be inserted into Eq. (4.13) is suggested by the y3 pion-nucleon interaction,

-( o (-&
' ' ' ' ' [E(P)+ ][E( ) ]

(2E)' 4m' E(p) E(q) p2+ (p- q)'

E(P)+m E(q)+ m E(p)+ m E(q)+ m
(4.15)

In doing so, we get the same iterated Yukawa potential as the one derived in II and Ref. 18 through the
Blankenbecler-Sugar-Logunov- Tavkhelidze equation.

If one recasts this iterated Yukawa potential in the form

, 3$„'(3u,t')+2)„(w,t')T" ~'
tl

(relevant formulas can be found in II or in Appendix A of Ref. 18, for example), the two-pion —exchange
potential can be rewritten

Tppp I~ y 1 ~ - 1 37/&@(Ã~ t )+ 2'&(3II~ t )7 7'
(4.17)

with

q' (2II, t') =—Q,. (+P, (CV, t')+ P,"(3II, t') + (-)'[~P, (t, t') +P,.
' '(t, t ') ])X, ——g'„(uI,t') (4.IS)

and

P,"(u, t) =P,'-(W, t).+P,. (2I, t) .
In Eq. (4.18), p,. (w, t') and g'„(2II,t'), as functions of 3II, both have a cut starting at w =4m'. However,

with the prescription of Eq. (4.15), the discontinuities across this cut exactly cancel in the combinations
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which appear in E(I. (4.18). These particular combinations have only faraway left-hand cuts at
m =-4p(2m + g) [from $' (m, t)"] and at w=-t [from p,. (t, t)] which give rise to very weak energy depen-
dence for values of se relevant to nuclear physics. We shall hereafter refer to the contributions to
)I' (w, t') from p, and $~ as the "fourth-order contributions. " Because of the cancellations discussed
above, the energy dependence of these fourth-order contributions is very weak. The remaining terms p,"
in Eq. (4.18) which come from the double spectral functions y,'. have closer singularities (at the pion-pro-
duction thresholds), and they are responsible for most of the energy dependence of our potentials. In the
following, we shall call them the "double spectral contributions. "

We have studied the w dependence of the potential functions )I'„(w,t), for zu less than the pion-production
threshold, and found that qT(w, t), qss(u, t), and )Iso(w, t) have only small so dependence implying that their
associated potentials should be reasonably local. This is not the case for the functions qc(w, t) and, to a
lesser extent, for iso(so, t). However, for the calculations presented in Sec. V, we define a local nucleon-
nucleon potential in momentum space by

OO, . p
It'TPEP (g) =- —,Q 5„—,[3q' (w, t')+ 2r" ~~g„(so,t')],2v' ~ "x 4q2 t' —t (4.19)

where zg has a fixed value. Hereafter, we define

The form for the potential, in configuration
space, was given in I. For completeness, we list
below the useful formulas:

V (x) =QQ„[3U„+(r)+2U„(r)r"~ r~],

„gj.f2
U' (r) =-. q' (t) dt,

1
ttso(r) =+, ~ stso(t) t't t+ t ) dt

( &) r rt
„]lf2 3 3

UT(r)=-(2 ), qT(t) t 1+,~,+, dt,
R&) 42 rt r t

(4.20)
e

Uso. (r) =(2 ). n"„2(t) 3
7f 4p3 r

xt 1+ j(2+ 2 dt,
3 3

r2t

g mesons, since in E(I. (4.20) contributions to the
potentials from large t are suppressed by the ex-
ponential factors e '". For example, at r &0.6p ',
this factor for g-meson exchange is less than 4%%u(;

that for p-meson exchange.
Finally, we add the well-known one-pion-ex-

change potential and, as part of the three-pion ex-
change, a one-boson-exchange potential corre-
sponding to the exchange of the co meson. For the
~ coupling constants we take

G'„/G."= -0.12 .

The smallness of this ratio is established from
many different phenomenological sources. The
actual size of the coupling is not well established,
and if we take the ratio of the vector coupling to
protons of the ~ and p to be

G /G"=2. 3,
G ~ is then the same as that of II, which facilitates
the comparison of our results with those of II.

We do obtain reasonable fits to the phenomeno-
logical potentials with this ratio; however, we do
not include ()))-meson exchange in our calculation,
and some of our ~-exchange potential could be
ascribed to the exchange of the P meson.

Because of our limited knowledge of the spectral
functions, different cutaffs had to be introduced
into E(I. (4.20). The "fourth-order contributions"
were cut off at t=600p', which, for our purposes,
is essentially the same as ~. The "double spectral
contributions" were cut off at t =80',' for the iso-
spin (+) amplitude and t= 120'' for the isospin (-)
amplitude. The subtraction function contributions
8+, (t) were cut off at t=45p, ' corresponding to the
limitations of the input models. As we have dis-
cussed in Sec. II, our scheme of calculation does
not include exchange masses as large as the f and

V. RESULTS AND DISCUSSION

The inputs of these calculations came from sev-
eral different sources, and we consider that some
are better determined than others. To remind the
reader of these inputs we list them belom in order
of decreasing reliability:

(i) The "fourth-order contributions. " They are
unaffected by the present uncertainties on the m
and mN phase shifts. In the calculation of the po-
tentials, the modifications suggested by Ref. 18 to
the method of Charap and Tausner have been taken
into account.
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(ii) The "double spectral contributions. " These
contributions along with (i) contain the exchange of
two pions in D waves and above. They depend upon
the wN phase-shift analysis, and they give rise to
most of the energy dependence of the potentials.

(iii) The "subtraction functions in the isospin (-)

state. " These are related to the exchange of two
pions in a P state, which is dominated by the p
meson.

(iv) The "subtraction function in the isospin (+)
state, "which is related to the exchange of two
pions in an 8 state.

C3
a

4
+

'C ~

C3

C)

C)

C3

Q ."C ~X

I f

20 40 60 80
"] ]

100 20 40 60 80 100

1
X

x + +4 X +

C

C)
I

5s
O

CU

C)
t

20 40 60 80 100 20 40 60 80 100
I (p'] t[~ ]

FIG. 4. The potential spectral functions g„(ce,t) for fixed u =4m: H is the contribution of the isospin (-) subtraction
functions with the mm P wave of Ref. 14. 4th is the "fourth-order contribution. " G and C are the "double spectral con-
tribution" from Glasgow and CERN solutions, respectively.



NUCLEON-NUCLEON INTERACTION FROM PION-NUCLEON. . . 811

(v) The u& exchange. It represents part of the
three-pion exchange. However, the over-a11 cou-
pling of the ~ to nucleons is not well determined.
This exchange only contributes to the isospin (+)
potentials.

We have displayed in Figs. 4 and 5 the contribu-

tions (i)-(iv) to the potential spectral functions
q'„(ur = 4m', t) to show their relative importance.

In order to isolate some of the more ambiguous
parts of our calculations, the mg 8-wave exchange,
and the & exchange, we first compare our isospin
(-) and (+) potentials with the (-) and (+) combina-
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FIG. 5. The potential spectral functions g+(ze, t) for fixed zv =4m2: R and NR are the contributions of the isospin
(+) subtraction function with a resonant and nonresonant mm S wave, the other notations have the same meaning as in
Fig. 4.
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tions of the Yale' and Hamada- Johnston" phenom-
enological potentials.

First then let us consider the q (w, t) potential
spectral functions and the potentials U„(r).It ean
be seen from Fig. 4 that the "double spectral con-
tributions" to the g (w, t), for t (50g', are small
and almost the same with both phase-shift analy-
ses, but they become for t & 50', ' large and de-
pend on the particular phase-shift analysis. This
means that our potentials U (r) have very little
ambiguity for large r (say r &0.5@ '), but become
progressively more dependent on the input models
and more energy-dependent since most of the en-
ergy dependence, as discussed in Sec. IV, is due
to the "double spectral contributions. " As for the
P-wave subtraction functions S,. (t}, they are de-
rived from P-wave mw interaction of Refs. 13 and
14 up to t=45p' only. For t-45'. ', the largest
contribution to these subtraction functions comes
from the function fs'-(t} [see Eq. (2.21)j. In Fig.
4, we assume that this term dominates at the
larger t values, and the corresponding contribu-
tions to the subtraction functions are also plotted
for 45', &)&90@, .

The Uqs(r} and U~(r) potentials are mainly due
to the m and mm P-wave exchange, the "fourth-or-
der" and the "double spectral" contributions being
very small. The main uncertainty in these calcu-
lated potentials comes from the P-wave subtrac-
tion function S4 above the cutoff at t =45','. Our
potentials have been calculated with the assump-
tion that S, is dominated by fs'-(t ) at the larger t
values. The amount of such contributions to the
results of Uqq (r} and U~(r) is less than 20% at
r =0.6p ', and, at least for z&0.6p ', our results
are in good agreement with the phenomenological
potentials.

For all of our input models, the potential Uso(r)
(Fig. 6), although qualitatively correct, is too small
by a factor of about 3. This is a little surprising
to us. Here also, the main uncertainty in the cal-
culation is the cutoff at t=45p, in the P-wave sub-
traction contribution. The model, described in
the previous paragraph, for continuing this con-
tribution to larger t values has been again used in
the calculation of our potential Uso(r). The A, is
the next heavy boson (t= 59'') to contribute to this
potential, and it gives a contribution of the wrong
sign. If the phenomenological potentials are cor-
rect, then this is the only clear example for the
necessity of including uncorrelated three-pion-
exchange effects in the theoretical potential.

The "double spectral contributions" to the func-
tion qe(w, t ) are not as small as they are in the
previous cases, inducing therefore some energy
dependence of the Ue(r) potential. We regard the
quantitative fit of our calculation with phenomenol-

ogy as significant (Fig. 6), but we are aware of
the energy dependence of Ue(r).

Let us turn now to the isospin (+) combinations.
The potentials U~~(r) and U~(r) have no contribu-
tions from mw S- or P-wave exchange, the domi-
nant parts come from the "fourth-order" terms,
the "double spectral contributions" and the ~-rne-
son exchange are small (Fig. 5). Figure I shows
good agreement with phenomenology. We have not
included g-meson exchange in this calculation.
Its inclusion, with a small coupling constant as in
Refs. 4 and 18 would bring our results closer to
phenomenology. U8o(r) is the first potential in
this discussion to be influenced by the gn S-wave
exchange, and although this is ambiguous, it is
small. Our Us+o(r) has also a 50% contribution
from our model of (d exchange. The main feature
of this potential is the largeness of the "double
spectral contributions" (see Fig. 5) with their non-
negligible energy dependence inducing a significant
nonlocal component to the potential. Such nonlocal-
ity should not change the qualitative features of the
potential shown in Fig. 6; the sign and size are in
agreement with phenomenology. As can be seen
from Fig. 5, there is no dominant contribution to
rt+e(w, t}. The "double spectral contributions" are
large. There are also mm S-wave and w-exchange
parts. Here & exchange is repulsive and mm S-
wave exchange attractive. With the co-nucleon cou-
pling-constant value given in Sec. IV, both the Yale
and Hamada- Johnston potentials favor the nonreso-
nant mv S-wave model (Fig. 6). Although the S-
wave resonant model is more attractive than phe-
nomenology, an increase of our model & coupling
could restore reasonable agreement with phenom-
enology. However, this U+e (r) potential is the
most model-dependent potential of this work.

We have studied explicitly the energy dependence
of both our potentials spectral functions q' (w, t)
and our potentials U'„(r). Figures 8 and 9 show,
for different values of zo between the elastic
threshold 4m' and the pion production threshold
(2m + g)', the variation of our potentials obtained
from the Glasgow A phase-shift solution and the
nonresonant nm S-wave model. The Usg U~ Usp,
Uss, and U& possess the desirable feature of being
very weakly energy-dependent, especially for
large r &0.6p '. The approximate 10% energy de-
pendence of U~, for x&0.6p. ', comes from the
strong cancellation between the n and the mm P-
wave exchanges in this region giving rise to the
turnover of the potential. As expected from the
importance of the "double spectral contributions, "
the energy dependence of the central potentials
Uc(r} and, to a lesser extent, of the spin-orbit
Uso is significant.

In Fig. 10, we show, in the isospin 0 and 1 com-
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ed here in the framework of dispersion relations
from the presently known properties of n mesons.
Our aim was not to achieve a best fit of the nu-
cleon-nucleon data. It was rather an attempt to
relate independent pieces of information from dif-
ferent branches of meson physics. The fact that
we have obtained, without adjusting any parameter,
a good consistency between experimental data on
the m-nucleon, mm, and nucleon-nucleon systems
does give us confidence in the dispersion relation

approach to the fundamental problem of nucleon-
nucleon forces. Conversely, within the same
framework, better nucleon-nucleon data could help
in removing some ambiguities of the m nucleon or
m interactions.
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