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Dependence upon a limited common pool of polarization
data from p -carbon scattering is intrinsic to experiments
using this reaction as an analyzer. The data relevant
to the present experiment are from sources referenced
in McNeely’s report above. Kretschmar associated with
each interpolated p -carbon analyzing power determina-
tion a quantitative uncertainty which reflected the statisti-
cal accuracy and interconsistency of the contributing
measurements. The small ultimate effect of these un-
certainties is discussed in Sec. IV, above, and is illus-
trated in Fig. 2. These tests do not rule out the possi-
bility that the original results on p -carbon scattering
may simply be wrong. This contingency would have a
more severe effect on experiments in which large pro-
ton polarizations are observed than on the pres-
ent one which demonstrates an apparent zero-crossing.
8Polarizations were obtained by maximizing the likeli-
hood function

&) =T 1 +A(T;, 6;, AT;)P cosg; ],
i

where ¢; is the azimuthal p -carbon scattering angle
for each event and A is the corresponding analyzing

power as a function of energy, polar angle, and inelasti-
city.
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The cosmic-ray muon integral intensity (E_resnod = 1 GeV/c) was measured under water
with a detector of small angular aperture (6.5° full width at half maximum). The motivation
of the work was to check the range-energy relation for muons under a medium, water, whose
properties are very well known and whose atomic properties (Z, Z%/A) are significantly dif-
ferent from “rock” used in underground measurements. The ratio of these measured rela-
tive muon intensities, converted to equivalent depths of standard rock, to those measured
under rock and converted to standard rock, for 50 hgcm™2<d<s 1000 hgem™ of equivalent
standard rock, is 1.09+ 0.06. This measurement shows that the range-energy interactions
of muons are consistent between “rock” and water for E, S 240 GeV.

I. INTRODUCTION

This experiment measured the relative integral
intensity of single cosmic-ray muons with a small-
angle aperture (the angle-for full width at half
maximum is pwuy=6.5°) for water depths of 244 m
and for slant-angle (zenith) detector orientations
up to 75°. The purpose of this experiment was to
establish accurately the consistency between muon
range-energy interactions in water and rock.!~®
The significant differences between water and
“standard rock” are partially reflected in their

atomic properties (Z/A, Z2?/A) and their specific
densities [(0.50, 3.67),, (0.50,5.5);, (1.0),,
(2.65)g).

A simple two-element small-angle-aperture de-
tector telescope was constructed and used as the
principal detector after a series of different con-
figurations, generally of wider angular aperture,
were experimented with in an early phase of the
work.* Relatively hard muons, E,z1GeV, were
necessary to trigger an event in the telescope.
This directionally sensitive telescope registered
the number of muons, in fixed time periods,



oo

while positioned at different water depths (30 m
Sdy, = 244 m) and at different slant angles (0°s 6
< 75°) in Lake Chelan.® The telescope was aligned
with its axis of symmetry fixed, relative to the
zenith, for a set of different depths. Section II
describes the experiment, the environment, and
the telescope instrument. The procedure for col-
lecting the data and the nature of backgrounds is
discussed in Sec. III. The final results of these
underwater data, in comparison to the well-known
data from under rock, are the subject of Sec. IV.

II. EXPERIMENT

The two-element telescope detector was com-
prised of a flat circular disk of scintillator plastic
radiator mounted coaxially, along its axis of cylin-
drical symmetry, with a cylindrically symmetric
Cerenkov detector; the scintillator radiator was
“in front” of the Cerenkov detector.® The detec-
tors and the scintillation and Cerenkov counters
were optically separate. An event in the whole
telescope detector was registered by an electronic
coincidence between bona fide events in each of the
two elements. An event in one element was the re-
sult of a threefold coincidence between three pho-
tomultipliers (56 AVP), used optically in parallel,
each viewing the element’s radiator.

The telescope detector, Fig. 1(a), was designed
to have a small angular aperture to be able to
measure large slant depths with relatively modest
absolute depths and to limit the need for making
extensive measurements and calculations of the
acceptance function of the detector. The small-
angle aperture and the physical configuration of
the telescope detector minimized the contribution
from several kinds of backgrounds, muon knock-
on electrons, and correlated muon pairs. The
telescope’s relative angular sensitivity was calcu-

lated (from its geometrical configuration) and mea-

sured in a set of calibration runs during' the exper-
iment. The Monte Carlo calculation and the cali~
brated angular sensitivity agreed very closely’
[Fig. 1(0)].

IIIl. DATA

The data were collected in a series of sets of

runs. Each set took several days. The final series

was distributed over five months. The calibration
of the relative angular sensitivity was taken in the
middle of these data runs. The experimental pro-
cedure for a typical run involved setting the tele-
scope’s slant angle and running for preset time in-
tervals at different depths:

6 ,(detector)=0° 60° 7T5°;
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dy=30.5, 61, 122, and 244 m.

The element-event signals were established to
be free of experimental biases; through monitoring
and extensive tests it was well established that
“singles” feed-through, ambient light, or chance
coincidence (using coincidence resolving times
<20 nsec) had less than 1% effect in any data run.
Estimates of knock-on electron and correlated mu-
on pair rates using other source data!'® showed our
data to be essentially uncontaminated to the level
of a negligible fraction of our error in the ratio
I“(water)/lu(rock). While we ran with the tele-
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FIG. 1. (a) The muon telescope detector, as it was
positioned, under the surface station (a moored raft) on
Lake Chelan. The upper element of the telescope was a
scintillation counter, with the set of three photomulti-
pliers encased in the adjacent pressure vessel. The
second element, the Cerenkov counter, utilized the in
situ lake water as the Cerenkov radiator; the light-baf-
fled cone in front of the set of three photomultipliers of
the second vessel allowed the daytime use of the detec-
tor. (b) The relative angular sensitivity of the telescope
7(0) cm’sr, times an arbitrary constant, as determined
by the Monte Carlo calculation and the experimental
calibration measurement. (c) A typical run of the IM d)g
data set at 6, =60°.
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scope slant angle at 90° the systematic errors in
the operation® prevented the use of these data with
those taken at < 75°. Runs were also made at an-
gles larger than 90° and showed no anomalous rate
(<1072 of the 0° rate).

IV. RESULTS AND ANALYSIS

The final configuration of the telescope had its
data grouped together in sets IM(dy)g=fixea; this
reflects the procedure in which the data were col-
lected. These rates were compared with the rates
expected from standard-rock measurements?® using
the following procedure: The depth of water,
dy, was used to calculate the effective range, d,
from the top of the atmosphere in “standard rock.”
This d was used to calculate the vertical integral
muon intensity, I(d, 0°), using Miyaki’s empirical
formula®'!° as a model:

K

oy_ B g-a,-Bd -1 -2 -1
I(d,O)—K+dd e (sec”'em™sr™),
with the parameters d (hg cm™ of standard rock),
K =164, H=400 hgem™, o =1.53, f=0.65x10"°
hg™'cm?. The full form of the integral muon flux
was calculated using the model of Barrett et al., '*?
which gives
_ d o (e+1)E +E,

1, 6) —1<cose’ > (e +1)cosOE +E,’

with the parameters € =1.9, E,=90 GeV; E is the

minimum energy for range d. The model of Bar-
rett ef al. has proved to be an accurate description

of I(d, 6) for the muon energy range involved
in this experiment.

The results of this experiment are characterized
by the ratio

IM(d)o! (dmin)e
IM(dmin)el (d)e ’

The effective values of the parameters d and 0 are
d=(41 hgem™, 71 hgem™, 132 hgem™, 254 hg
cm™?) of “standard rock” and 4 =(0° 58° 73°) ef-
fective mean zenith angle of detector. This d i, is
the depth to which the data at the common angle,

6, are normalized. The value of R(d), is displayed
in Fig. 2. In principle R(d)q should show no depen-
dence on 6§; our results show no 6 dependence.
The mean value of R(d) over the range of slant
depths in this experiment is 1.09 +0.06, 50 hgcm™
<d <1000 hgcm™2; most of the error is statistical
in origin.® This result shows that the range-ener-
gy relation of muons in water, E, <240 GeV, is
quite consistent with our knowledge of muon range-
energy in standard rock. Had there been either a
d dependence or a @ dependence for R(d)g this
might have had its origin in these I(d, ) measure-
ments in water, a moderating medium quite differ-
ent from the usual rock® overburden of under-
ground experiments.

R(d)e =

2
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Analyzing =~ hyperons produced by K ~ stopping in the 30-in. BNL hydrogen bubble chamber, we
have obtained (a) an upper limit for the ratio (" —e *nv)/T(E~ —e "nv) of 0.018 with 90%
confidence and (b) a value for the branching ratio, [(2~ — e ~nv)/[total ['(27)], equal to (1.05 4 0.07)

X 1071, in good agreement with existing data.

I. INTRODUCTION

The universal V- A Fermi interaction modified
by the Cabibbo theory® is still in good agreement
with the existing experimental data on hyperon
leptonic decays.? In the last few years a number
of articles summarizing the theory have been
published, as for example the recent report by
Chounet et al.,® so we shall refrain from a repeti-
tion here.

The useful data that can be obtained from hyper-
on leptonic decays to test this theory are (1) data
on the search for the decay Z*—~(e*or u*) +n+v
[this is a AS=-AQ decay mode, and its existence
will invalidate Cabibbo’s hypothesis that the had-
ronic current should transform as an octet of vec-
tor and axial-vector currents under the SU, trans-
formations!], and (2) determination of branching
ratios, energy spectra, and angular or polariza-
tion correlation of the decay products for A, =,
and = leptonic decays. From these data the sign
and magnitude of the vector and axial-vector cou-
pling constants could in principle be determined
and compared with the values predicted by the
theory.?3

We would like to report here on a measurement
of the ratio

I'(Z~~e wn)/[ total T'(Z7)]

and of an upper limit to the ratio

I'(c*~etwm)/T(E"-e"vn) .

Preliminary reports of this work have been re-
ported at international conferences in 1968 and
1969.*

II. METHOD OF THE EXPERIMENT

The =% and =~ hyperons were produced, in an
exposure of the 30-in. BNL hydrogen bubble cham-
ber to a beam of K~ mesons stopping inside the
chamber, by the reactions

K- +p-Z~+7",

K +p-Z*t+n~.
In about 10% of the cases, the =* hyperons were
produced in a K~ +p interaction in which the K~
was not at rest.® 490222 pictures, containing an
average of ~10 stopping-K~ per picture, have been
analyzed and 858 =~ - e™nv~ decays have been
found. No =% - e*nv with e* momentum larger
than 70 MeV/c was found. Inthe 90% of the cases
in which the =* are produced by K ~ particles
coming to rest in the hydrogen, the momentum of
the = at production will be 181.3 MeV/c for the =*
and 173.2 MeV/c for the =~ particle, correspon-
ding to a ¥ range maximum of 1.27 cm and 1.06
cm, respectively.® With such short ranges,
almost all =* particles decay or interact inside
the bubble chamber.

Ignoring radiative decay modes, the possible = *



