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Using functional methods and the eikonal model, the leading s dependence of elastic scattering in a
modified $' theory is discussed. An approximate evaluation of ladder or tower graphs and certain
nonplanar graphs reveals strong cancellations. The net contribution falls as a power of the energy
rather than saturating the Froissart bound, as found in less complete treatments of multiperipheral
models.

In view of the high current interest in measure-
ments' of the total cross section for pp scattering,
it may be worthwhile to describe a field-theoretic
mechanism which can alter the Cheng-Wu' and
Chang-Yan' prediction of o~-ln's for large ener-
gies. This cancellation phenomenon which keeps
the multiperipheral graphs from saturating the
Froissart bound' has been demonstrated in great
detail by using a completely different approach. '
In this brief note we will use functional methods
and the eikonal approximation to sum the leading
lns dependence of all tower graphs and nonplanar
checkerboard graphs. A considerably less elegant
method of estimation has been described else-
where. '

For the purposes at hand, we will adopt a hy-
brid theory, one midway between the massive-
photon quantum electrodynamics (@ED) and the
simple P' models used in Refs. 2 and 3, respec-
tively. A nucleon field g with sources g and q, a
neutral vector-meson (NVM) field W„with source

k„, and a scalar pion field n with source j are in-
troduced, and the interaction Lagrangian is writ-
ten as

L iggy~gWv ~AzW~W

All self-interactions will be neglected and only the
eikonal-like graphs with NVMs being exchanged
between a pair of scattering nucleons will be re-
tained. However, all virtual-pion exchanges be-
tween the NVMs will be kept. As in simpler eiko-
nal models, ' it is assumed that the vector-meson
exchanges eikonalize, carrying with them the com-
posite substructures created by pion exchange in
all passible ways, between all possible NVMs. In
the large-energy limit of interest, we will only
consider the helicity-nonf lip amplitudes, which
reduces the problem to essentially one involving
scalar nucleons.

As in other similar treatments, ' the generating
functional appropriate to this theory is defined in
terms of c-number sources j, k„, g, and q:

if', &„;n,nl=
I
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The formal solution for Z is

. 5 5(S)Z=exp i qG i q+-Tr—ln 1+gy —S
5k 5k
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where the propagators S„g„„A„andD, are for the nucleon, NVM, and pion fields, respectively. In Eq.
(2) the functions

Z, [vJ=s.,(1+mrs, )
'

denote relativistic propagators defined in terms of fictitious c-number "potentials" or sources & (x) and
P
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zz(x). The factor (S) represents the normalizing vacuum-to-vacuum amplitude.
If the closed nucleon loops and the closed NVM loops are removed, then Z reduces to the simp1. er form

. 5 if . 5 i
/=exp i qG -i —q exp —

I k d -i —. k exp — jD j5k 2~ '
5y

C

Expressions for all physical processes of interest can be obtained by appropriate functional differentiation
of Z. In particular, the configuration-space scattering amplitude for a pair of nucleons (assumed distin-
guishable to avoid the necessary symmetrization) is given by'

. 5 . 5 i —' . 5 i
M(&,y„x,y, ) =i'G, y,x, -i —Gzz y,x, -i—exp — )I, ~ Z, i -~—k, exp — jD,j

5k C 0- j-p

A somewhat more convenient form follows if all groups in which a NVM is emitted and absorbed by the

same nucleon are dropped:

(4)

&=i'exp -i
I 4, -i —. GI pi&z kx Grr J2x2 k, exp — jD,2

i (5)

For 3, =0, iz, ,(zz) =b,, and the amputated, mass-shell Fourier transform of Ezl. (5) yields the familiar NVM

multiple- exchange eikonal model.
Using techniques exactly the same as those discussed in detail in Ref. 9, one performs the familiar

Bloch-Nordsieck approximations to the nucleon G, „propagators, which then lead to the latters' repre-
sentation in terms of parametric integrals over the exponential of linear functionals of k, , The functional
(translational) operations of Ezl. (5) are then trivial, and exactly as in Ref. 9 one finds that the result may

be expressed in eikonal form,

T (s i) i zf2 I) cia'b(I ez)z(b, s))
2m2

(6)

where the eikonal is now given by

i 5 5eix =exp —— —D, —exp ig'
( Fi ~ 4, & Err

2 5m '5m

and p, +p, =p', +p'„q' = (p„-p')' = -t& 0. The source currents E are given by

E,'»)») p,",J 4'5(» -=z, , +zp, ). ,

The phase iy is a function of the transverse center-of-mass coordinate difference b = (z, —z,),. The eikonal

phase may be expressed in terms of connected graphs only:

i 5
1+i'd=exp —— Dc exp ig' E& & m 'Err ~

2 5m 5w
(9)

An expansion of g in powers of g2 produces the sum of all the connected t-channel amplitudes for n 5 's
to scatter to n W's:

where

ix = E» E" M»(u u v v )E» E"p(iz')"
n I n, n 1 n& 1 n I (10)

In the limit in which no pion is emitted and absorbed by the same NVM, the connected t-channel exchange
amplitude is

M„„=exp P -i D, Z, (u, v, ~ zz, ) Z, (u„, v„)
5 5

7i
i —j=i

It is straightforward to see that

conn, n= p
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for the present case of vector exchange. This
term reproduces the results of the simplest eiko-
nal model. ' The function iX, alone generates the
tower graphs which may be estimated for large s
by a straightforward, if lengthy, graphical analy-
sis. The leading lns behavior in every A.

' order
arises from the pure ladder exchange of pions with
ordered rapidities. If r such pions are exchanged
between a pair of NVMs, the resulting nested ra-
pidity integrals generate a contribtuion to iX, of
the form

g2 2

iy, (b, s) =-2 — d'qe"'a, (q)

( )/8m
x — -1

Os
(14)

For large b, which is most sensitive to small q,
the trajectory e, may be expanded as

a, (q') = u, (0) —q'u, '(0),

2(2~)2 r! (q, '+M'}(q,'+M')

(12)

Co 1

zX
~-cb /In(s/so)

In(s/s, ) s,
where

(15)

where

u, (q) =(2m) ' d'q(q'+M') '[(q-q)'+M'] '

1
dx[M'+x(1 —x)q2] '.

4n'
(13)

Summing over all r except r =0, which is a dis-
connected graph corresponding to the second s-
channel iterate of iX„yields the familiar result"

no
—= 1+)Pn, (0)/Sv,

a =2(g'/A. )'a, (0)/n, '(0),

c = 2m/A. 'n, '(0).
If this result is used in Eq. (6}, one finds that the
Froissart bound is saturated.

Qnce it is understood that the source of the lead-
ing s dependence is the set of nested graphs, it is
possible to devise a simple functional approach
which reproduces the same result. Qne simply
performs the replacement

ig2 d2qe" &

ig' E&4n +»-—, , —exp A. duruysu, ou q2w' q'+M' (16)

where

o(u, q) =[(u, —q~)'+M'] ',
and uses the prescription [which defines y(s, u, )]

du+du y'(s, u, )(!"2+u~'+u+u —ie) '- iw 1n(s/so),

(18)

where u, =u, +uo. These steps mirror the detailed
graphical analysis. The ordering of the pion mo-
menta produces a factor of 1n"(s/s, )/r! whose co-
efficient is independent of the relative position
along either NVM line. Precisely this dependence
is produced by the replacement given by Eq. (16),
with its exponential structure providing the factor
I/r! The correct ln(s/s, ) dependence and its co-
efficient follow from the replacement (17) and (18).

Let us now turn to the problem of computing X„
for n ~ 3. Unfortunately, an analytical evaluation
of Eq. (11) is not possible. This problem has been
discussed in Ref. 5, where upper and lower bounds
were derived for each value of n. In this paper we
will use the functional approach to derive results
in a simple and transparent manner which are not

exact but which lie between the rigorous limits.
The consequences of a leading-log factor (1/r!)
ln"(s/so) (for the exchange of r pions between n

NVM lines), multiplied by appropriate coefficients
n, (q, + q, ) (assumed independent of position along
any NVM line), combined with an obvious statisti-
cal factor (representing the number of ways of
selecting pure ladder graphs of this form), may be
reproduced by the equivalent functional replace-
ments of Eqs. (16)-(18); one easily obtains

where

A.
'

Q= —P o.(q, +q, ).8n'; (),
Two important features of this equation should be
noted: the oscillating phase factor i" which will
provide caneellations between every other term,
and the rapidly growing s dependence which is in
the form of Regge behav ior between each Possible
pair of exchanged NVM lines.
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To illustrate our final result, we make the sim-
plifying assumption that the q' dependence of a,
can be neglected. This is a reasonable assumption
sinch each q, integral has a convergence factor of
(q, '+m') ' and each a, (q') has its q' dependence
reduced by (x(1 —x)) & —,'. This approximation does
not change the qualitative behavior of the result.
The total cross section becomes

(P) /6&1).

a = C
2&2iif '

1/2

x ln — + ~ ~ ~ (24)

where

and P'=lny. A simple analysis of the z integral
then shows that as s

o~=, Re i" 'C„—.
4lT S

f5= 2 p

where

(20)

2
C„=—, b db[2Ko(b)]"= 1.

1 p

Thus the total cross section can be written as

(21)

err =,Re+ C„i" '(x/y)"y",
n=2

where

x = g'/4m,

(o~/ 6~
y=

Sp

(22)

2m' 1 g2 x 288 (23)

where

F(X)=-Re+ C„i" 'X"
8= 2

=X'(1+X')-'

Since y is very large in the region of interest,
where the previously made approximations make
sense, this series is badly divergent. However,
it can be defined as summed by using the formula

C gyp: dxx F( x)
TT p

Therefore there is almost complete cancellation,
and rather than behaving as the Froissart bound,
=ln's, the total cross section falls as a power of
s. Further, it is easy to see that if C„ is not giv-
en by Eq. (21) but is given by a smooth function of
n, the total cross section still falls as Eq. (24).

One may expect that certain of our results are
quite independent of specific details and approxi-
mations used in this model. In particular, the
strong cancellations exhibited between higher-
order nonplanar graphs should be a general prop-
erty of relativistic theories. For example, one
should be able to use these cancellations to pro-
duce constant total cross sections rather than the
typical Froissart-bound behavior. However, one
must engineer the theory very carefully so that the
forces between the NVMs saturate and do not pro-
duce the behavior exhibited above. In any case,
multi-Regge-type models which do not contain the
nonplanar graphs required by unitarity cannot be
trusted at very large energies. One cannot rule
out the possibility that such theories are acci-
dentally accurate at intermediate energies.
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