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A class of gauge theories is discussed in which the AS =0 and the M =1 semileptonic de-
cays are mediated by distinct intermediate bosons, whose mass ratio is related to the
Cabibbo angle 0. Common features of the models are as follows: 0 is well defined only as
the result of spontaneous symmetry breaking; p decay and the semileptonic M =0, M =1
decays are in the ratio 1:cos 8:sin 0 only if CP is maximally violated in the lepton sector;
a breakdown of pe universality related to CP violation; a superweak impact of CP viola-
tion on K decays; the mediation through a neutral vector boson of nonleptonic decays which
obey

~
nI

~

= a'; and an amplitude «O(G) for v&e scattering. Two distinct types of theories are
discussed in detail. (a) The gauge group O(4) reported before. Here the CP-violating pa-
rameter needs a renormalization. To O(G), v&-nucleon reactions are possible only if a
heavy lepton is produced. (b) O(4) &&8, where left- [right-] handed fermions are in O(4) [9]
but scalar with respect to 8 [O(4)]. Here the CP-violating parameter can be made finite if
a constraint between electron and muon multiplets is satisfied. Further consequences for
case (b) are: the v, -e and v, -e elastic cross sections are (1+sin2)() ~) times their respec-
tive V- A values, and v&-nucleon reactions are possible with or without production of a
heavy lepton. However, the final hadronic state is necessarily "charmed. " The example
9 =U(1) is discussed in detail. The role of discrete symmetries is emphasized.

I, INTRODUCTION

A surge of theoretical activity has been gener-
ated by the discovery of a new class of renormal-
izable theories in which the notion of spontaneous
breakdown of a local symmetry plays a key role.
This development opens the strongly attractive
prospect of unifying weak interactions with elec-
tromagnetism. Current investigations are pro-
ceeding on two main fronts. First and foremost,
work is going on to clarify further some difficult

and obscure technical aspects of this new renor-
malization program. Secondly (and hopefully not
too early) attempts are under way to close in on
the local symmetry that is chosen by nature, and
on the representations of the symmetry to be as-
signed to the particles. '

Features common to all these investigations are
(1) the occurrence of a number of vector mesons
with masses that appear to hover invariably in a
region well over 10 GeV/c', (2) the appearance of
scalar mesons mainly needed for the mass gen-
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eration of particles by the Higgs mechanism, '
but about whose own mass relatively little can be
said, (3) the insight that the field-theoretical sta-
bility of the phenomenological weak-interaction
selection rules and the classification of weak pro-
cesses in "allowed" and "forbidden" categories '
is a consequence of the fact that the fine-structure
constant ~ is small. Beyond these traits every
single proposal has its own much more specific
properties which embody one or more of the fol-
lowing novelties: (1) the occurrence of "new cur-
rents, " (2) the occurrence of heavy leptons,
(3) the occurrence of new hadronic states which
will demand an extension of the generally accepted
internal- (global) symmetry quantum-number la-
beling of hadrons. All this taken together provides
a rich diet, perhaps too rich. Yet it is hard to
escape the impression that, if the whole strategy
makes sense, some new experimental insights
ought to be beckoning of a kind stranger than what
has been seen so far.

A condition most commonly imposed is that the
theory shall contain an interaction of the form

elf[6'y„(1 + y, )&e +&, y„(1 +y, )e

+p„y„(1+ y, ) p, + ~ ~ ]W„+H.c.,

where W is a charged vector field with mass M,
related to the Fermi constant G and to f by
G = f'M 'W2, and where Xe =Xcos8+A. sin8. 6', X,
A. are the conventional quark fields, 0 is the Ca-
bibbo angle. (In what follows, 8 will actually de-
note the absolute value of this angle. ) Here the
assumption is made that (at least to a good ap-
proximation) one and the same 8 appears in both
the V and the A part of the interaction. This as-

sumption is also made in what is to follow. The
in Eq. (1.1) stands for contributions due to

less-conventional particles, as they may appear.
If Eq. (1.1) is adopted, then one task consists in
finding representations for the group at hand which
at least contain the left-handed parts of g~ and of
A.~ =X sin0 —Xcos0 as members. Thus 0 enters
the theory via the states, so that this angle al-
ready appears before the spontaneous-symmetry
mechanism sets in or, as we shall say hereafter,
"in the symmetry limit. " In such a strategy, 0

plays the role of a variational parameter, the val-
ue of which is to be fixed or at least delimited by
some physical constraints. 4 This is somewhat in
contrast to a strategy which has been pursued
starting from the different direction of (global)
hadronic-type symmetries namely that 0 is defined
only after such symmetries are broken. ' This is
not to say that this contrast is necessarily a con-
flict. However, it led me to ask the question: Is
it likewise possible to express 0 in terms of the
parameters of the spontaneous-breakdown mech-
anism, hence that 0 does not enter via the states?
It was in the study of this question that I came up-
on a possible view on the origin of CP violation.
It is the purpose of this paper to report on this
work in detail. A communication of these attempts
has already appeared. ' The present paper is an
elaboration and also an extension of the results
quoted earlier, in that not only the gauge group
O(4) but also certain extensions thereof (already
briefly mentioned at the end of PRL) are treated.

The starting point consists in an attempt to take
an alternative road to the ones which lead to Eq.
(1.1), namely to see what happens if Eq. (1.1) is
replaced by

ff, [6'y„(I+y,)3I+p,y„(I+y,)e+t „y„(1+y,)P+'' ]W'

+if,(gy„(1+y,)A, +a[e'~ v, y„(1+y,) e e'+~P„y„(1+y,)p]+ ] W'+H c., (1.2).

(1 —a )tan8 =2acos(g —P),
where

(1.4)

M
tan8 =

M2

where W', W' are a pair of charged vector mesons
and f, ,f, a pair of semiweak coupling constants.
Clearly, Eq. (1.2) satisfies ge universality to
0(G). The extra parameters' a, P, g are introduced
in order to satisfy the "Cabibbo condition"

i3g„/: iKei:i%~/ =1:cos8: sin8, (1.3)

where the SR's in order of appearance denote the
matrix elements for p, decay and X-6' and ~-6'
P decays. Equation (1.3) implies that

1

One can look upon Eq. (1.4) in essentially two dis-
tinct ways. If aW1, it can be considered as an
equation for 0 in terms of a, g, and Q. In fact for
a 11 there would be no need to introduce g and Q
at all. Note that for g = P =0 one has a CP and-
T-conserving scheme '; and pe universality holds
strictly. If, on the other hand a =1, then Eq. (1.4)
demands that g = p a —,'m and we have a CP- and T-
violating scheme. As will be explained in detail
in this paper, for all semileptonic and nonlep-
tonic processes CP remains strictly conserved to
all orders in the strong and electromagnetic inter-
actions and to 0 (G) in the weak interactions. Also
for purely leptonic processes CP remains con-
served to all electromagnetic and strong orders
and to O(G) in the weak interactions as long as
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(momentum transfers)' and (lepton masses)' are
neglected relative to M, ' and M,'. But to higher
order in the weak interactions CP break" down.
It wQ1 also be shown that CP violation delimits
the validity of p, e universality.

It is this a =1 version which wiO be pursued
here. It should be stressed that, from. the point
of view of a gauge theory, a is in essence a
Clebsch-Gordan coefficient, so that once a group
is picked and representations are chosen, the
quantity a is fixed. However, before entering into
such group considerations we must pause and ask:
Whatever happened to nonleptonic decays? To the
usual g~ order Eq. (1.2) does not allow such pro-
cesses at all.

Let us digress briefly on the odd position which
nonleptonic decays have occupied throughout in
the current-current picture. As is familiar, Eq.
(1.1) implies on the face of it a large ~al~ = —,

' com-
ponent along with the desired ~AI~ =-,' part. At-
tempts to ameliorate this by adding suitably ad-
justed neutral currents to Eq. (1.1) run into prob-
lems which are again familiar. As an alternative,
it has been argued that a hadronic "octet domi-
nance" mechanism may relatively suppress ~b, I~
= —,
' contributions. There is no stringent argument

against this assumption. However, this author,
for one, believes that an important clue may be
missed by adopting this device, especially because
of a fairly satisfactory understanding of the de-
viations of ~b. I~ =-,' which does not appear to neces-
sitate to any appreciable extent the ~A I~ = —', mech-
anism just mentioned. This situation has been re-
viewed recently by Lee and Treiman' who make
a new suggestion in this regard which may be de-
noted as "scalar-field dominance. " In the context
of a specific model, they demonstrate the pos-
sibility of having ~LI~ =2 dominantly mediated by
the scalar fields which are inherent in this gauge
theory. The dominance would emerge due to a
favorably chosen scalar to vector-boson mass
ratio.

Not to change the subject, a look at Eq. (1.2)
shows that one needs at least four gauge fields.
The electromagnetic field makes five which is not
a pretty number from the point of view of groups.
So I decided to begin with six and study O(4).
This introduces a sixth vector meson which is
neutral and thus coupled to a neutral current. It
was an encouragement to find that this coupling
precisely mediates nonleptonic decays to order G.
The coupling is V-A. . The quark structure of the
familiar hadrons is such that the interaction is
b, I =-,'; see Sec. IV and Appendix C.

The three main and interlocking themes of the
present study have now been indicated: The origin
of 8 is directly linked to spontaneous-symmetry

gz =82=-gp

so that D„ is also invariant under the reflection
operation R:A„C„. The discussion of spon-
taneous breakdown is begun in Sec. II and it is
shown that

Mztan8 =
2

(1.9)

corresponding to Eq. (1.5) with f, = f, . Since the
vector mesons are massless in the symmetry
limit, and acquire mass due to the spontaneous-
breakdown mechanism, it is clear from Eq. (1.9)
that 8 is not defined in the symmetry limit but only
becomes meaningful after the symmetry is spon-
taneously broken. It is noted that O(4) contains a.

second mass ratio:

0 (1.10)

where M, is the mass of the neutral heavy vector
meson which appears in the model. It is further
shown that there are two versions of O(4) depend-
ing on whether Wz is R-odd or R-even and that this
distinction is not manifest in the structure of the

breaking; the dynamical origin of CP violation is
directly associated with the leptonic sector (sup-
ported, as we shall see, by an appropriate Higgs
system); and nonleptonic decays have, to leading
order, nothing to do with charge-raising or
-lowering currents. In all three respects this ap-
proach differs from other gauge theories proposed
so far. The smallest gauge group I know of which
implements these ideas is O(4). However, O(4) is
not unique in this respect. As will be developed
in this paper, there is a class of gauge theories
which can serve this purpose. The class as a
whole has a common trait in the way the left-
handed fermions are treated. This is why Secs.
III and IV deal with these states separately. The
treatment of the right-handed fermion states (and
therefore of the Higgs system) is distinct from
case to case. On the phenomenological level, the
cases differ in their predictions concerning neu-
tral-current events.

I shall now outline the plan of this paper on the
more technical level. In Sec. II the general as-
pects of the gauge group O(4) are discussed. The
covariant derivative is given by (S„=&/sx&)

D„=8„—i (g,A„ t+ g2C„p) . (1.6)

A„, C„are the six Hermitian gauge fieMs. The t, p
satisfy

txt =it, px p =ip, [t, p] =0 (1 .7)

characteristic for SU(2) x SU(2). More specifically
we shall take
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currents but affects the expression of 8 in terms
of the symmetry-breaking parameters.

In Sec. III the left-handed lepton multiylets are
discussed. These are two quartets each with elec-
tric charge (+, 0, 0, -). Two pairs of heavy leptons
appear, one (x', x') of the e type and one (y', y')
of the p type. It is explained that the possibility
of having CP phases enter the theory [as exempli-
fied in Eq. (1.2)] is intimately related to the fact
that the representations chosen contain two yarti-
cles with the same electric charge. " It is shown
that these phases can be rigorously transformed
away from all vector currents in the limit where
all neutral lepton masses are set equal to zero.
Thus there exists an intimate relation between CP
violation and the mechanism of mass generation.
It is then demonstrated that the impact of the CP
violation on purely leptonic processes is super-
weak.

At this point it should be explained in what pre-
cise sense the term "superweak" is employed in
this paper. Obviously it is an adaptation of its
usage in neutral K decays" where we have
learned" to distinguish, yhenomenologically, two
possible origins for CP violation in decays like
K~-2m, namely on-shell or (LS=1) transition am-
plitude effects and off-shell or (AS=2) mass mix-
ing effects. In general, let 9, be the CP-conserving
amplitude for a weak process to the conventional
leading order: O(G). Let 8' be a small CP-violat-
ing amplitude contribution coherent with 8. Then
if

8'«0 (G o.),
we shall call this CP-violating amplitude a super-
weak amplitude. As is well known, "if a theoreti-
cal scheme yields Eq. (1.11) for all on-shell aS =1
decay amplitudes —a view which is currently fav-
ored —then the CP-violating mechanism in K de-
cays is to a high degree of approximation due to a
b, S =2 mass mixing term —which is what suyer-
weak means in practice. To return to Sec. III,
Eq. (1.11) is shown to hold there for purely lep-
tonic processes. With reference to Eq. (1.2), note
that the smallness of CP violation has in no way
necessitated the introduction of a minuscule new

parameter, but is due to the fact that at one point
the v,e and the P„p, currents are maximally out of
phase.

However, we shall encounter in Sec. III a subtle
question of renormalization. As is already clear
from the prototype Eq. (1.2), effective CP viola-
tion can only arise if the currents coupled to W'

and W' interfere, in particular if the 8",8"' me-
sons are subject to mass mixing due to virtual
lepton loops. This is a perturbative effect in a
highly nondegenerate system. Two parameters

2g fh(qh)2 (1.12)

where I," is the isosyin of a quark, Q" its charge
and the summation goes over all quarks which
couple to m'. In Sec. IV we also discuss the bary-
on model of Ref. 9 and note that it does not lend
itself readily to the interpretation of static SU(6)
properties. However (see Appendix C) one may
conceive of alternative baryon models within the

appear, p and & [defined by Eqs. (3.16) and (3.17)
below], which respectively correspond to real and

to imaginary mass mixing. We shall find (at this
stage) that p is finite, o logarithmically divergent.
This raises two problems. (a) To understand
"why" p is finite. Observe that such loop effects
are potentially quadratically divergent. The gen-
eral proof of finiteness of p is an application of
"Weinberg's lemma. "'3 Briefly, the point is this:
First write down the most general Lagrangian (in
the symmetry limit) compatible with the precepts
of strict renormalizability (for the precise defini-
tion of which see Refs. 14, 15, and 16). Consider
a quantity which is potentially divergent, such as
a correction to a zeroth-order mass relation.
Try to locate a counterterm in the Lagrangian
which can act as a, renormalizer if the potential
divergence were an actual divergence. If such a
counterterm does not exist then what is potentially
divergent is actually convergent. This key remark
is due to Weinberg" and was phrased more broad-
ly by Lee.' With the help of this lemma the fi-
niteness of p can be demonstrated. (b) The di-
vergence of o can be proved not to be incompati-
ble with renormalizability because a counterterm
can be located. The reason why o, potentially
quadratically divergent, is actually logarithmical-
ly divergent will be stated shortly. In PRL we

proceeded by making the assumption that the re-
normalization of the logarithmic divergence will
not change the order of magnitude of the effect, a
type of reasoning with which we have lived for a
long time for quantities like mass differences. Be
that as it may, it is obvious that one would wish to
have both p and o finite. To this question we re-
turn in Sec. VII.

Meanwhile, we introduce the left-handed quarks
in Sec. IV, again quartets, again two of them. It
is shown that no AS = I neutral currents appear and

that LS =2 hadronic transitions and the amplitude
for K~ -pp, are sufficiently suppressed. The
semileptonic CP violations are shown to be super-
weak. The ~A I~ =-,' semileptonic decay mechanism
is exhibited. As in other versions of eight-quark
models, we assume that all charmed quarks are
SU(3)-singlets. It can then be shown, further,
that it is compatible with the "n'-2y condition""
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eight-quark scheme in which SU(6) may become
more transparent.

In Sec. V the assumption is examined Rat the
right-handed fermions are O(4) representations
of the triplet type. Here we encounter a tight con-
nection between the choice of CP phases [like P
and g in Eq. (1.2)] and the structure of the neutral
current. It is explained why the assumption that
right-handed leptons are O(4) triplets leads one
to choose what amounts to +0, g =&v in Eq. (1.2}.
The reason is that this forbids to 0(G) the reac-
tions

(1.13)

Indications are that this reaction is indeed sup-
pressed, "though it is much too early to say
whether the amplitude is 0 (G n) as several mod-
els, ""including the present one, imply. With
this CP-phase choice, not only is v„e scattering
suppressed but also v&+ p - v&+ p and v„+ p v&

+anything (again as in certain other models"").
The only neutral reaction which v„+p can make to
0(G) is v„+p-y'+ . , that is (inelastic) y' pro-
duction. v, -e scattering within O(4} is also dis-
cussed; see Eqs. (5.6), (5.'I), (5.8), (5.20), and
(5.21). In any event, what emerges is an intimate
connection between the CP structure of the model
and the magnitude of the neutral current processes.

A more complete discussion of p and 0 is also
given in this section. Here the importance of dis-
crete symmetries begins to emerge. Three cases
have to be distinguished. (a) The bare-coupling-
constant relation g, = g, , Eq. (1.8), is part of a
strict 8 invariance in the symmetry limit. Then
p is finite. (b) g, = g, but the B invariance is ap-
proximate in the sense that the scalar field cou-
plings to fermions are not R-invariant. Then p is
logarithmically divergent. The counterterm prob-
lem for this case is solved in Appendix A; here
g, = g, is a "zeroth-order coupling-constant rela-
tion" only. (c) g, og, . Now p is quadratically di-
vergent. (In all cases o is logarithmically diver-
gent. ) All three schemes are renormalizable.
But what begins to be evident is that the imposi-
tion of discrete symmetries can make one renor-
malizable theory more convergent than another.
I believe that this phenomenon may well transcend
the particular model discussed here. Section V
concludes with the full description of the Higgs
mechanism for O(4) and it is found that the scalar-
field system needed is rather complicated (full de-
tails are given in Appendix B).

This concludes the discussion of O(4). In Sec.
VI the following questions are raised. To what ex-
tent are the results obtained uniquely characteris-
tic for O(4)? Is it possible to eliminate the di-
vergence of the CP parameter 0 if another group

o(v,e) =— E„(1+sin28),
4 G'm(e)

(1.14)

cr(v,e) =3a(v,e), (1.15)

where E, is the neutrino lab energy in GeV.
These are (1+sin28) =1.4 times the respective
V-A. values.

Section VII contains the general parametrization
of the CP problem. It is shown that even for gen-
eral Q, g [in the language of Eq. (1.2)] the CP-
mixing parameter o cannot be finite unless there
exists a constraint between the electronic and
muonic multiplets. This constraint is given for
the 0(n) contributions to the mixing. From this
second-order calculation a condition for finiteness
of 0 is abstracted which is then studied further on
its implications to all orders. The condition reads

m(x') = m(y'), (1.16)

and it is shown to follow that then [always in the
language of Eq. (1.2)] Q =45', g=-45'. A con-

is used? These motivations are spelled out in
more detail in Sec. VIA. The starting point is the
recognition that most of the results of physical
interest hinge by and large only on the way in which
left-handed fermions are treated, as was already
stressed in PRL. New insights emerge if one ex-
tends O(4) to O(4) x8 in such a way that all the
representations for the left-handed fermions are
taken over bodily from O(4), in the sense that they
are scalar with respect to 9, while the right-
banded fermions are scalar with respect to O(4)
and are further distinguished by their assignments
within 9.

A main reason why this affects the CP problem
is, once more, the tight connection between the
CP phases and the structure of neutral currents.
We shall show that if O(4) x 8 is used it is no
longer necessary to restrict oneself to the choice
/ =0, g=-,'v, in the language of Eq. (1.2), while
yet one can maintain the forbiddenness of the re-
action Eq. (1.13) (supposing this to be desirable).
This opens a new view on the CP problem.

The rest of this paper is devoted to a special
example of the choice of 8, namely 8 = U(1). Sec-
tion VIB is devoted to the description of O(4)
xU(1). Left-handed fermions as well as all spin-
0 particles emerge as quartets. A further neutral
current appears but one which is "neutrino free."
No right-handed neutral fermions of any kind ap-
pear in any current. The Higgs mechanism is
relatively simple (perhaps too simple). It is ob-
served that any gauge theory of the type O(4) x8
contains a parameter-free prediction for the cross
sections o(v,e), o'(v,e) for elastic v,e and v,e scat-
tering:
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sequence of these values for fII), g turns out to be
that e&e&y current appearing in the theory sepa-
rately satisfies pe universality, yet that this uni-
versality property breaks down when the currents
interfere, that is to O(n'). The validity of Eq.
(1.16) would imply that there is not just the famili-
ar single mass degeneracy between electron and
muon multiplets, the simultaneous vanishing of
their neutrino members; but a double mass degen-
eracy namely the mass equality of their respective
neutral members. The finite expressions for p
and o are given in Eqs. (7.23) and (7.24).

In this way of dealing with CP, the neutral cur-
rent which induces neutrino reactions gives rise
to inelastic processes of the type

v„+nucleon —v „+hadrons. (1.17)

The reactions (1.17) have to be inelastic since the
hadrons can only be produced if a change of
"charm" takes place. The hadronic term in the
current which conspires with the P„v„ term to give
the reactions (1.17) to 0 (G) is precisely the one
responsible for the ~b, I~ =-,' decay mechanism.
Another class of inelastic reactions is v„+nucleon
-y'+hadrons. Again the final hadron system
must carry charm.

Section VII concludes with the discussion of the
question: Can the CP mechanism studied here
account quantitatively for the values of the CP pa-
rameters in K~ decay? Of course by the very na-
ture of the mechanism, ~EI~ =2 for K~-2v is im-
plied. However it is altogether another and dy-
namically very complicated matter to show that a
quantity like q, has the right value. A very crude
argument is presented which shows that, at least,
the required magnitude does not appear to do any
violence to the orders of magnitude of the param-
eters in the theory.

The attempt made here to incorporate super-
weak CP violation in gauge theories demands a
close interweaving of arguments which stem from
phenomenology, from field theory (especially re-
normalization questions) and from group theory
(especially discrete symmetries). It may be help-
ful to conclude the Introduction by providing a
brief road map of what follows. Since the groups
considered all have a common quartet structure
for left-handed fermions, the latter are treated
separately (Secs. III and IV). The union with
right-handed fermions leads to their assignments
as triplets in O(4) (Sec. V), as singlets in O(4)
&&U(1) (Sec. VI), in each ease with distinct prop-
erties of the scalar field system. The main rea-
sons for presenting a class of models rather than
a single one are threefold: (1) to exhibit the re-
normalization problem attendant on particle mix-
ing, which in these models is at the root of CP

violation (Sees. III and VII); (2) to exhibit the con-
nection between CP and the structure of neutral
currents (Secs. V and VI); (3) to exemplify the
role of discrete symmetries (Secs. V and VII).

As a further guide to the two groups studied in
detail in this paper, the following equations pro-
vide the principal tools.

(a) GxouP O(4). The representations are: left-
handed leptons, Eqs. (3.1)-(3.4); left-handed
quarks, Eqs. (4.1) and (4.2); right-handed leptons,
Eq. (5.1); right-handed quarks, Eq. (5.9). The
currents J"',P"', P"' coupled respectively to ~',
W', g are each divided in four parts. These parts
are found in Eqs. (3.5), (4.3), (5.2), and (5.10) for
Zu'; in Eqs. (3.6), (4.4), (5.3), and (5.10) for J"';
in Eqs. (3.7), (4.6), (5.4), and (5.10) for J''0'.

(b) G~owP O(4) && U(l). The representations are:
left-handed leptons, Eqs. (3.1), (3.2), (7.7), (7.8),
(7.9), and (7.19); left-handed quarks, Eqs. (4.1)
and (4.2). The right-handed fermions are scalars.
The currents g ', J' ', O' ', and J "' coupled re-
spectively to R", W', g and a further neutral vec-
tor meson V are: for J"', Eqs. (6.22) and (7.10);
for Z'2', Eqs. (6.23) and (7.20); for Z"', Eqs.
(6.24) and (7.22); for g'"', Eq. (6.20).

The models presented here have the following
physical characteristics:

(1) No aS =1 neutral currents (Sec. IV).
(2) No unwanted magnitude for sS =2 amplitudes

via 2-meson exchange (Sec. IV).
(3) Suppression of K~ - p, P (Sec. IV).
(4) A superweak CP-violating mechanism (lep-

tonic, Sec. III; semileptonic, Sec. IV; nonleptonic,
Sec. VII).

(5) A ~AI~ =—,
' nonleptonic mechanism without

need for ~a I~ = —,
' suppression in charge-changing

currents (Sec. IV).
(6) The v'-2y condition can be satisfied (Sec.

IV and Appendix C).
(7) A prediction for elastic v,e scattering to

O(G): an inequality for O(4) (Sec. V), a parameter
free equality for O(4)X9 (Sec. VII).

(8) A suppression of vp scattering (Secs. V and
Vrl).

(9) A suppression for v&+p-v„+p or v„+b, . In-
elastic reactions are allowed to 0 (G), with y' pro-
duction for O(4) (Sec. V); with charmed hadron
production for O(4) x 9, with or without y' produc-
tion (Sec. VII).

(10) 0 is defined only upon spontaneous symme-
try breaking (Sec. II); so is CP violation (Sec. III).

(11) The models are anomaly-free" (Sec. VI).
(12) It is impossible to introduce in a consistent

way maximal CP violation in the hadron sector, as
was done here in the lepton sector (Sec. IV).

It may finally be noted that the groups O(4) &&9

are not exhausted by the choice 9 = U(1). As was
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II. GENERAL FEATURES OF THE
GAUGE GROUP O(4)

We start from Eqs. (1.6)-(1.8) and define the
electric charge operator eQ by

Q=(i. +p.). (2.1)

It follows that e and the electromagnetic field A„
are given by

stated in PRL, O(4) &O(4) is another candidate.
The only two morals I would like to draw from

this investigation is that one should not settle for
less than the inclusion in gauge models of all we
know (or believe we know') about the phenomenol-
ogy of weak interactions at low energies; and that
we are in crying need for more experimental in-
formation in the developing field of neutrino-in-
duced reactions.

In order to start the description of this mechan-
ism, consider a quartet H of scalar mesons which
transforms as (2, —,') under O(4). H is short for
(V, , H„H„H,). Here and below, quartet mem-
bers are always ordered such that the respective
charges are (+, 0, 0, -)e, corresponding to the re-
spective eigenvalue pairs (t„p,) = (—„-,'), (=, , —,),
(-,', =,'), (--,', --,'). One has also to specify the
Hermiticity properties of H. If H corresponds to
a real representation, then it can be expressed in
terms of four self-adjoint field operators (, q, (,X.
We work in the spherical basis:

H =(1/v2)(g iq, -f —iy, g+ix, $+iq). (2.11)

Such an H will be called a real H Let .($', q', g', }i')
be a second set of self-adjoint scalar field opera-
tors. Then if

H = z($ —iq+i ($'-iq')& g iX+ i (-i —iX'),

g =eW2, (2.2)
g +i}i +i (g'+i}l'), $ +iq i+($' i+q')), (2.12)

(2.3)

Remark: Quite generally, A„and e are fixed for
any gauge group once D„and Q are specified, in-
dependently of the details of the spontaneous-sym-
metry breaking. " Let D„=8„-ig„g„F„A„",where
the g„are real constants, the E„are the Hermi-
tian group generators and the A"„are the Hex mi-
tian gauge fields. Further, let Q =gn„E„, where
the a„are real constants. Then

(2.4)

H will be called a complex H. In the limit of un-
broken symmetry, the real and imaginary parts of
such an H transform separately as irreducible
representations of O(4). [For scalar fields, the
use of such complex representations of a local
gauge group is of course quite familiar for the
standard U(1) case of electromagnetism. ]

Consider the coupling of a generally complex H
to the vector fields, generated by the gauge-in-
variant expression" ~D„H~'. This expression
contains the following terms, among others.

A„=eg o.„g„'A„". (2.5)
(2.13)

w', =-,' [A'„—c'„i(A'„c-'„)],- (2 6)

(2 7)

Equations (2.4) and (2.5) will again be used later
on in Sec. VIB.

Next introduce the definitions

(2.14)

(2.15)

+Hc" HC],

+HctHc],

Z, 2
= 2g (Wq~wq —Wq "W„)(FISH~ -HstH2) . (2.16)

A3 C3

The D„becomes

(2.6)

(2.17)

In the derivation of these expressions, the follow-
ing representation for t, p has been adopted.

t =-,'(71), p=-,'(1@w),

D =s -ieQA ——(f -p )Z
Zg

p p p ~2 3 3 p

--,'ig[w'„(t, —p,) + w'„(f, +p,) + H.c.], (2.9)

t, =t~ +it„ P~ =P~+ZP2. (2.10)

This form of D„ is given in anticipation of the in-
troduction of a spontaneous -breakdown mechanism
designed such that W', W', g are normal modes
with respective masses M, ,M„M, and so that at
least M, WM, .

where 1, v. are Pauli matrices.
Consider now the asymmetric vacuum in which

the neutral fields H, , H, have nonzero vacuum ex-
pectation values (H, ) =a, (H,) = a'. We denote such
a quartet by H(a, a'). The contribution of these
vacuum parts of H to Zpp cCyy cC p yield the vector-
meson mass terms. Since we are interested in W'

and W' as zeroth-order particle states, it is nec-
essary that the H-vacuum part of Z» be zero. It
suffices to have for each quartet separately that



A. PAIS

(H2), (H,) are relatively real. (2.18)

M =2g b,1

M =2g +,2

(2.19)

(2.20)

(2.21)

(2.22)

The purpose of displaying these expressions at
this point is to make a comment on the structure
of the coupling of the vector mesons to left-handed
fermions. We shall use the symbol f~ to denote
any left-handed fermion.

As was stated in Sec. I it will be assumed
throughout that the f~ are quartets with respect
to O(4), and scalar with respect to any possible
extension 9. Let one such quartet be (f„f, , -f„f4)1 . Fol' a spec lflc paI'tlcle symbol a~ the
meaning of a~ is

a~ =—,'(1+y,)a. (2.28)

In the discussion of Eq. (2.18) the following cases
must be considered. (a) One single real H. Here
axes may be chosen such that (H,) is real, without
loss of generality. With reference to Eq. (2.11)
this corresponds to (g) = a, ()() = 0. Equation (2.18)
is now satisfied. However for a real H we have
more specifically (H, ) =(H,), see Eq. (2.11). In
the notation just introduced the quartet is H(a, a).
But then W' remains massless, according to Eq.
(2.14): One H(a, a) is not enough. (b) One com-
plex quartet H(a, a'), a ca' and a, a' real. This
corresponds to (i;) =

& (a + a'), (X') = 2 (a -a'), see
Eq. (2.12). Equation (2.18) is satisfied while,
moreover, M, and M2 are nonzero and distinct.
However, it will turn out that a single complex H
is inadequate for the treatment of fermion mass
problems. For ease of presentation, the latter
problem will be deferred to Sec. 7 for the group
O(4) and to Secs. VI 8 and VII for O(4) x U(1).
There it will become apparent that at least two H's
will be necessary. In PRL I chose these'~ to be
H(a, a') (with a =a' permitted) and H (0, b). How-
ever there is a way which is more economical in
the sense that fewer degrees of freedom are
needed for the Higgs system. Namely take tsvo

yeal H's: H(a, a) and H(ib, -ib), a, b real They.
each satisfy Eq. (2.18). After axes have been
chosen such that a is real, the direction of the
second H relative to the first has meaning (one H
has g) x0, the other (y) w0).

It is instructive to discuss for a moment the in-
complete expressions for M, ', M, ' and (, Eq.
(1.10), which follow if the contributions of H(a, a)
and H(ib, ib) only are considered:

Z, respectively. Here we suppress the four-vector
subscripts p for ease of writing. From Eq. (2.17)
one finds that the f~ contribute

to &"': ='ig[f, (f, +f.) + (f, +f,)f,]»
«&"': -'ig[f, -(f, -f.) -(f, -f.)f,]„
to ~"" -(ill~~)(f, f, -f,f,)„

with the foDowing definition:

(2.24)

(2.25)

(2.26)

tane =a'/b'. type II,

slllce tile alternative defllll'tlolls Eqs. (2.28) (2.29)
imply the interchange of the right-hand sides of
Eqs. (2.14) and (2.15) [and a change of sign for the
right-hand side of Eq. (2.16)].

This point is belabored here at some length in
order to emphasize a feature common to all gauge
theories but perhaps more pronounced in the pres-
ent case, namely that the physical content of the
theory is not defined until the symmetry breaking
is fully specified. In the present instance, the
meaning of 8 is not defined unless and until one has
ascertained that m~ and m~ are distinct. More-
over, the structure of the currents Z"' and g"' by
itself does not specify the value of 8; the latter is
only fuQy determined in terms of the parameters

(ab)~ =a~y„b~ =——,'ay„(1+y, )b . (2.27)

In order that 8 in Eq. (2.21) shall be the physical
Cabibbo angle, it is of course necessary that the
baryon multiplets are chosen such that J"' shall
contain (6%)~ and also J'u' contain (O'X)~. In order
that these respective currents shall correspond to
the ~8=0 and 1 transitions it is furthermore neces-
sary that the asymmetry m~c m„be part of the
scheme, since without this distinction one could
exchange the symbols X and A. so that the physical
interpretation of 8 would remain unspecified.

Let us refer to Eqs. (2.6), (2.7), and (2.21) as
describing the "type I" version of O(4) in order to
make a contradistinction with the "type II" version
of O(4) in which the definitions for W' and W2 are
interchanged:

Wq =2[A.'„—C'„-i(A2 —C2)] (2.29)

with Eqs. (2.1)-(2.3) and (2.8) held fixed. Let us
furthermore change the phase cogeention in the
definition of the f quartet just introduced by re-
p»cing (f„f„-f„-f.)& by (f„f.,f„f,), .
Then the expressions (2.24)-(2.26) remain equally
true for type II as they were for type I. Let us,
on the other hand, hold fixed the vacuum param-
eters a, b. Then type I has the 8 formula given
in Eq. (2.21), but type II has



A CLASS OF GAUGE THEORIES WITH SUPERWEAK CP ~

of the theory if one simultaneously considers the
fermion couplings to vector and to scalar mesons.
For definiteness" we shall stick with the type I
description throughout the sequel of this paper.

The distinction just mentioned is related to the
behavior of the various quantities under the trans-
formation 8:t- p. 8 is the reflection operation
of the group O(4). Inasfar as it acts on a (-,', —,')
representation, 8 is realized by

8= '" ' .i + 4t ~ p (2.31)

R(f„f„f3tf4)=(f„f3tf2gf4)P (2.32)

so that 8 interchanges the neutral members in a
quartet. With reference to Eq. (2.11), R keeps $,
&, g fixed but changes the sign of y, which illus-
trates the interpretation of 8 as the parity opera-
tor in O(4). Returning for one last time to the dis-
tinction between types I and II, the vector mesons
transform under R as

gx gz~ W2 W2~ Z--Z, A-A: type I,

ber =1. Proper normalization demands that the
complex numbers a, , a, , b, , 0, satisfy

Ja f'+[a f'=I Jb J'+(b /'=1. (3.3)

This general parametrization will be discussed in
all detail in Sec. VII. However, in this section
only the case

a~ =i, a2=0,

b, =b, =e'"'/W2
(8 4)

will be considered. This was the special choice
made in PRL. It will be explained in Sec. V why
this choice seems to be the most appealing one on
experimental grounds if the gauge group is O(4).
On the other hand, if the gauge group is O(4) x9 it
will be seen in Sec. VIA that the motivation for the
specialization to Eq. (3.4) no longer applies. This
will then lead us to reconsider in Sec. VII the gen-
eral case of Eqs. (3.1)-(3.3).

From Eqs. (2.24)-(2.26) and (3.1), (3.2), (3.4) it
follows that

J""~= =,'ig[X"(x' + v, ) + ( v, + x~)e

farl ~l g2 g2 Z Z A A. type II

+ y (vp+iy ) + (vq iy ) V]-z,
g+"~ =--,'ig[x (x' —v, )+ (v, x')e—

(3.5)

glL ~glR +ghl +gAR (2.35)

where I (b) refer to leptonic (hadronic) contribu-
tions and L(R) further subdivides each such con-
tribution inasfar as it stems from left- (right-)
handed states. We shall also use the notation f
for any fermion, and f'~ for any left-handed lep-
ton; and similarly for f'a, f~, f~.

III THE fix A FIRST LOOK AT

THE CP PROBLEM

(2.34)

so that for type I (W', W't, A) are associated with
the even-parity subalgebra O(3) of O(4), while for
type II the association is with (W', W't, A).

In the following sections the contributions to the
currents J"""will be discussed. It is convenient
to decompose the contributions to each of these
currents as follows.

(G/&2) V, y„(1 + y, )v„v,y„(1 + y, )e +H.c.
in such a way that

(8.8)

+y "(yo+iv )+ (iv„-yo) p, ]~, (3.8)

=-(ig/v2 )(v, v -X'x'-v y'-yov )
(3.7)

The particular asymmetry of the E~—as compared
to the M —contributions in the neutral current is
a consequence of the special choice Eq. (3.4).
For example it wiQ be evident that if we would in-
terchange the values for (a, , a, ) with those for
(b, , b, ) in Eq. (8.4), J""z would contain (v„v„)~ .
This would then give rise to neutral current events
induced by p neutrinos of a kind which appears to
be undesired, as will become more clear in Sec.V.

low q2 &&x&lL and &&'&'~ co~tribute to the ef-
fective p -decay interaction to 0 (g'):

Z~ = (x', a,x'+a, v„aux' -a,*v„-e)~, (8 1)
M~ = (y', b, y'+b, v„, bgy' —b,*v„, -V)~ . (3.2)

The f'~ are assumed to belong to two quartets,
one (E~) of the electron type, the other (M~) of the
muon type:

(3.9)

where the phase factor has been included for com-
pleteness, not for relevance. Thus it follows
from Eq. (1.9) and from Eq. (2.2) that

Thus two pa, irs of heavy leptons (and their anti-
particles) appear: x', x' with e number =1,
number=0; and y', y' with e number =0, p, num-

37 2 37 2
v'cos8 ' '

&sin8

in units GeV/c'.

(3.10)
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Let us next start the discussion of CP-violating
effects. These are due, potentially, to the occur-
rence of the phase factors i in Eqs. (3.5) and (3.6).
Note that such factors cannot be transformed away
in general by redefining phases (rephasing) for
lepton and/or for vector mesons. It is this im-
possibility of eliminating all CP- and T-violating
phases by rephasing which is at the root of all
violation effects of the kind which interest us here.
However there are three special situations in
which no CP violations are induced in spite of the
occurrence of these phases.

(i) If to 0(G) the contributions from Ju' ~d
from J' ' cannot interfere, then one can separately
rephase iyo-yo in Eq. (3.5) and v„-iv& in Eq. (3.6)
and leave Eq. (3.7) a,s is. Then there is no CP
violation to order G, and not only that. As will be-
come clear in the sequel, the plan of the present
work is to examine what happens, if no other CP-
violating mechanism is introduced anywhere in

the currents except for the one exhibited above in

the lepton sector. Specifically, no further CP
phases will be introduced in the hadronic contri-
butions to the currents 4""' while, in addition,
the strong and electromagnetic interactions will
be assumed throughout to have the conventional C-
and P-conserving properties. The argument just
given can therefore be stated more generally as
follows. To all orders in the strong and electro-
magnetic interactions and to 0(g') =0(G) in the
weak interactions CP is conserved, where J"' and
J"' do not interfere. We shall see that this situa-
tion applies to all semileptonic and nonleptonic
processes, whether they are decays or neutrino
induced reactions.

(ii) Consider higher-order corrections to the
amplitude Eq. (3.8) of such a nature that G is cor-
rected to G(1+e). Here e is at most of order g'.
e may be complex, due to the occurrence of the
CP phases. Even so, no CP violation is induced,
the only result of the correction being to rescale
G to G ~1+e ~'". More generally, any over-all
complex scale-factor correction to any scattering
or decay amplitude is a CP-conserving correction.

(iii) Consider the limit in which the y' has zero
mass, all other lepton masses being whatever they
are [but of course m(v, ) = m(v„) =0]. Then one can
define new orthonormal particle states u, v:

how true CP violation can in fact appear.
Returning to p decay, Eq. (3.8) stems from the

sum of single 8"' and single 8" exchange; Let us
insert into these two graphs all possible virtual-
photon corrections. This can lead to a CP-violat-
ing contribution to the amplitude at most of order
Gem'(p)M ' (M = M, or cV,) which is a super-
weak order. Here argument (ii) is used combined
with dimensional reasoning: If we neglect m'(p, ),
m'(e), q' relative to M', then the M dependence of
the resultant radiative corrections (including in-
duced terms) is (M, '-iM, ') which gives them
the same over all ph-ase as appears in Eq. (3.9).

The strategy to prove Eq (1..11) for y, decay
should now be clear. Any correction which main-
tains V -A as in Eq. (3.8) also conserves CP, by
(ii). (This includes all V -A conserving renor-
malizations. ) A CP-violating correction can at
most appear if the V -A ratio is unbalanced and/or
if induced terms appear with other tensor struc-
ture. I have not found any contributions which do
not satisfy Eq. (1.11). (Estimates are made most
conveniently in the $ =1 gauge. ')

As a further example, consider the box graph dis-
played in Fig. I. It contributes to p. decay; and
with trivial changes, also to &„+e- v, + p. . The
mechanism is a O'Z exchange where W = W or &'.
With the help of Eqs. (3.5)-(3.7) one sees that a
factor i appears in the {W,y', y. ) vertex if W=W'.
No such factor appears for 5"Z exchange.

In order to assess the order of magnitude of
the CP violation one needs to evaluate the box
graph. With minor modifications in the particle
labels this graph has been analyzed in Refs. 19
and 20. (For eonsisteney, the box graphs have to
be treated jointly with the electromagnetic correc-
tions graphs of the same order. ) The important
feature of the graph of Fig. 1 is that all four ver-
tices are of the y„(1+y,) type. The result of the
authors is that the amplitude is again of the t/'-A
form as in Eq. (3.8) as long as

(3.12)

where M stands indifferently for either M, or M, .
In the present context this means that there is

uv2 =v„+iyo, v@2 =yo+iv„. (3.11)

In this u, v description, all CP violation vanishes
everywhere; note that

v p +p v =vu+uv ~

This is very useful if v„,y' appear in virtual
states. The three arguments just presented will
serve as diagnostics for pinpointing where and

FIG. 1. Example of graph which induces true C'P viola-
tion. , but only for q ~M
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effectively no Cp-violation due to WZ exchange,
in the domain given by Eq. (3.12). Here argument
(ii) has been invoked.

The calculations of Refs. 19 and 20 were per-
formed under the simplifying assumption that

(3.13)

where m, denotes any lepton mass, and as before
M = M, or M, . Equation (3.13) is assumed in most
papers on gauge models and will be adopted here
as well."

It is qualitatively evident that electromagnetic
corrections to the box graph of Fig. 1 will in gen-
eral unbalance the V -A. ratio and will also gen-
erate induced terms with other structures. Under
such circumstances one will obtain Cp-violating
effects even in the q' domain given by Eq. (3.12).
But these effects will at most be of order Ge',
that is, in the nomenclature adopted in Sec. I,
they are superweak.

While the restriction Eq. (3.12) will cover all of
the accessible experimental domains for a long
time to come, it is nevertheless conceytually in-
teresting to note that Cp-violating effects may
turn out to be enhanced at extremely large momen-
tum transfers.

At this point it should be emphasized that the
argument just given for the magnitude of CP vio-
lation due to Wg exchange will have to be recon-
sidered when we also incorporate the fs couplings
to vector mesons. Indeed, contributions to such
graphs as the one in Fig. 1 are not in general ad-
ditive in the contributions due to left-handed and
to right-handed fermions. The stepwise discus-
sion of the problem will nevertheless turn out to
be quite helpful, especially because it will serve
to underline the distinctions between the gauge
groups O(4) and O(4) &&9 insofar as the CP discus-
sion is concerned. These remarks apply equally
to the Cp effects due to 8"-W' mixing, to be con-
sidered next.

Due to virtual emission and absorption of lepton
pairs, an effective interaction Q; &Wt'W~ 8„'~ +H.c.
will be generated, where i,j =1, 2 run over the la-
bels which distinguish the two kinds of charged
vector mesons. " To zeroth order, 19„",is of course
diagonal in (i,j), due to the choice of the initial
normal modes. Corrections to the diagonal ele-
ments i =j correspond to mass and wave-function
renormalization of the respective W fields. We
are particularly interested in the off-diagonal ele-
ments which are generally of the form

8"„=-i[A»(q')(q'6„„-q„q,)+B"(q')6„,] (3.14)

and likewise for "21." The A.'s and B's are of
leading order g'. For the region q'«M' of prime

interest we focus on the quantities B"(0) and B"(0)
which give rise to an effective term X in the Ham-
iltonian:

~re + ~im
t (3.15)

p = ——m'(x')[m'(x+)P(x', x+) -m'(e)P(x', e)],

(3.18)

o = ——m'(y') ln A'
2' (3.19)

with the definition

1 m.'
a b b

(3.20)

A is a cutoff in mass units. " Note that the ex-
pressions (3.18) and (3.19) for p and o are inti-
mately tied to the special choice made in Eq. (3.4).
This will become fully clear in Sec. VII where p
and a will be discussed in terms of the general
parametrization given in Eqs. (3.1) and (3.2). Pre
paratory to this more general case to follow, let
us make here the following comments regarding
Eqs. (3.18) and (3.19).

(a) As was seen above, CP-violating effects
must vanish for m(y') - 0. This is verified here
since o- 0 (at least formally) in this limit.

(b) The finiteness of p provides an application
of Weinberg's lemma. To see this, note that
counterterms for W'-W' mixing are provided by

2», Eq. (2.16). Let us repeat that the vacuum
expectation values for the H-fields were chosen
to obey Eq. (2.18) in order that 2» be zero in
zeroth order (tree approximation). When radia-
tive corrections are included the following can
happen.

(a) The vacuum expectation values a, b may
need to be rescaled by a real factor." This does
not affect 2» in the sense that it still gives zero
in the so corrected tree approximation.

(P) We are here in a situation, anticipated by

X*' = p(WJ'W2, +Wt&'„), (3.16)

X~ =iv(Wt'W' —Wt'W') (3.1'I)

where p and o are 0 (g') and have dimensions
(mass)'. K is the off-diagonal correction to the
(W', W') mass matrix. Similar to the familiar
2X2 K-meson matrix, p (v) correspond to CP-con-
serving (-violating) mixing. However, unlike what
happens in the E-meson complex, the mass mix-
ing occurs in a system which is strongly nonde-
generate to zeroth order so that K may be treated
as a small yerturba. tion of the zeroth-order nor-
mal modes.

From Eqs. (3.5) and (3.6) one finds" for p and &,

to 0 (g'):
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steinberg, ' where the structure of the H multi-
plets is such that not only the scale but also the
direction of the vacuum expectation values can
change. The logical consistency of such a redi-
rection was proved in Ref. 22. %ith reference to
the discussion of complex H's [see Eq. (2.12)] it
is clear that such a change of direction can result
in the development of an imaginary part of an ex-
pectation value which was initially real in the tree
approximation. But even if this happens, one still
cannot attain a counterterm with a W', W' depen-
dence which is as in Eq. (3.16). Rather, one finds
a counterterm with a structure as in Eq. (3.17).
It follows that the p parameter is finite, not only
to 0 (g') but to all orders On. the other hand,
since a counterterm for X' does exist, o need not
necessarily be finite, as indeed it is not.

At this point we note that this discussion of the
properties of p and o will need a modification
when the f'" are introduced within O(4) (see Sec.
V), while the f's do not affect p, o for O(4) x 9
(see Sec. VII). In the latter case we shall argue
that while 0 may diverge on the grounds of the
above J» argument, it actually need not do so.

(c) A chirality argument. Insofar as we have
considered only the couplings of the left-handed
f' up to this point, p and o depend only on even
powers of the lepton masses. This can be seen to
follow from the chirality structure of the interac-
tions, in the following wa,y. In all gauge theories,
fermion mass effects can be described as tadpole
couplings linking a fermion line to the asymmetric
vacuum. " For the present case, such couplings
are exemplified in Fig. 2(a). If the f coming into
the tadpole vertex is f~ (f") then the outgoing f
is fs (fz). Since at this stage only fz appear in
the W" vertices, the number of tadpole couplings
on any fermion line segment with specified charge
and other quantum numbers must be even, whence
the dependence on m, ' only. In Sec. VII we shall
make ample use of this property in conjunction
with discrete invariance arguments.

(d) The case g, «g, . All interactions written
down so far are A-invariant in the unbroken-sym-
metry limit. No such invariance is defined for
g, «g, in Eq. (1.6). It is instructive to ask what
happens to charged vector-meson mixing in this
more general case. This question is answered in
Appendix A, where two main results are estab-
lished. First, it is shown that for g, Wg, counter-
terms appear which can serve to renormalize the
quantity p in Eq. (3.16) if such renormalization
were needed. Secondly, it is shown that p indeed
does need renormalization. In fact, whereas p
is finite for g, =g» it becomes quadratically di-
vergent for g, cg, . This demonstrates that the
special choice g, = g, made in PRL actually cor-

(b)

R:L L:R

(c)
X

FIG. 2. Samples of tadpole couplings to fermion lines
in W' -8' mass mixing graphs. (a} is the only one al-
lowed for O(4}&& g, see Sec. VII.

responds to the "smoothest" version of SU(2)
x SII(2).

(e) Scalar-field loops. Since the theory contains
(WHH) couplings, one must also ask what are the
contributions to the 8„", due to loops of H pairs.
As a consequence of mass degeneracies within
each H multiplet one finds that, at least to 0 (g'),
no W'-W' mixing is induced by H pairs.

Let us turn to the physical aspects of the 8",W'

mass mixing. Of course, such a discussion is
marred by the occurrence of the logarithmic sin-
gularity in Eq. (3.19). For the time being, we
shall proceed as in PRL. Namely we shall assume
(as is commonly done for "weak, " i.e., logarith-
mic singularities) that the renormalization needed
does not change the order of magnitude of the co-
efficient 0. Moreover, anticipating the results of
Sec. VII, the order of magnitude of p is indeed the
same as that of 0', namely nm, ' in the finite ver-
sion presented there. This then will be the order
of magnitude adopted in what follows.

Consider the graphs of Fig. 3. They refer to p.

decay and, with a change of arrows, also to v„+e
—v, + p, . Figure 3(a) corresponds to the usual
0(g') contribution. Figure 3(b) gives the leading
mass mixing effect, where the dot on the vector-
meson propagator denotes the "mass mixing ver-
tex" with value = a5'/w; 5 was defined in Eq.
(3.13). For p, decay Eq. (3.12) holds true and we
consider the same q' domain for lepton-lepton
scattering. Then by the CP argument (ii), the in-
terference between Fig. 3(a) and 3(b) is CP-con-
serving. Just as for the mechanism described by
Fig. 1, CP violation can begin to occur only to the
order that electromagnetic effects come into play,
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such as for example the interference between
Figs. 3 (1) and 3 (c); and between 3 (a) and 3 (d).
Again we find that the CI' effect is superweak in
the sense defined in Sec. I. Note furthermore that
the 5' factor suppresses these on-shell effects
even more.

This concludes our discussion of leptonic CP
effects in first go around. We conclude this sec-
tion with a, comment on trilinear vector-meson
couplings. Since the continuous group structure
at hand is SU(2) &&SU(2) there are no triangle graph
anomalies. Finite corrections to such couplings
do of course occur. The only such coupling which

appears in the initial Lagrangian is of type
(W'W'Z), because of R parity. It is readily veri-
fied that the finite correction to this vertex, due
to the couplings given in Eqs. (3.2), (3.6), and

(3.I) is CP-conserving.

(0) (b)

(c)

FIG. 3. A sample of graphs which demonstrates the
superweak impact of CP violation on leptonic processes.
"1"and "2" refer to W ~ and 8'2.

IV. THE f II &; NONLEPTONIC DECAYS;

MORE ABOUT CP

The customary method is followed here to con-
struct the hadronic parts of the currents in terms
of quark fields and to generate effective interac-
tion operators in terms of these currents. These
effective operators are suyposed to mediate the
various transitions involving the usual meson and

baryon states. These transitions are assumed
further to be dominated by rather low quark mo-
mentum transfers q' such that in particular the
inequality Eq. (3.12) applies.

The choice of quark representations within the
gauge group at hand is further delimited by a num-
ber of physical constraints (common to all models)
which have been discussed recently in deta, il by
Lee, Primack, and Treiman. " In what follows
next it will be seen that many of the arguments of
these authors hold with rather minor modifica-
tions in the present work. The constraints in
question encompass the following.

(I) There shall be no ~AS
~

= 1 neutral hadron cur-
rents to 0 (G).

(II) ~aS~ = 2 transitions generated by vector-
meson pair exchange shall have a.mplitudes 5 such
that 8 «0 (G o.), in order that the real part of the

K~-K~ mass difference not be too large.
(III) The amplitude difference 8(Xn- pg)

-8 (Xr7- pg) shall be «O(G a) in order that the
rate for K~ —p, g not be too large.

In the present scheme three vector-meson
masses M, , i =0, I, 2 appear. Bearing in mind re-
lations of the type Eqs. (1.10), (2.22), and (3.10),
we see that the following requirement must also
hold.

(IV) In implementing the above constraints one
must treat (M -M~')/(any vector-meson mass)'

as of order unity, that is, no eancellations be-
tween graphs with different M, deyendences may
be made use of. As we shaD see, this makes each
of the constraints (II), OII) to multiple constraints.

The analyses of Ref. 33 focus on the SO(3) model
of Georgi and Glashow. ~~ It was found that it takes
a set of eight quark states to satisfy the mentioned
constraints by means of a cancellation mechanism
devised by Glashow, Iliopoulos, and Maiani 3'

This mechanism is used here too and the same
number of quarks appears as well. As in Refs. S
and 33, we assume that the quarks additional to
6', 9&, A, carry no isospin and hypercharge. As will
presently be obvious, this guarantees that prop™
erties like CVC are maintained for the conven-
tional hadron stat+s, The vector current in ques-
tion will be contained in 4"'.

The eight f» are assigned to two quartets Q'

a,nd Q'~, as follows.

Q" = (O', —.
'

OI + X +q0W2), =,' OI - Z + ro W2), ~-), ,

(4.1)

(4.2)

The 6', g, A. states are conventional. The other
states, q", r ' are supposed to carry one or
more further quantum numbers collectively de-
noted by C. At least one of these shall be additive.
Appendix C conta, ins a few additional comments on
the implications of C for hadron symmetries.

From Eqs. (2.24), (2.25), (2.26) and (4.1), (4.2)
one finds

J"'~ = -2ig[6'g +4', ) + (& +2~0)q

(4.3)
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J+'~ = --,"ig[6'(A. +A', ) —(X+A.,')q O(cPA'6') O (u'~ 6-') (4.10)

—q+(A. —A. ', ) + (X -Ao)r ]~, (4.4)

where the following convenient abbreviations have
been introduced.

K2 Ao qo+ro
1

&2Ao2 =q' —r'. (4.5)

J'"~ = (ig/V2 )[(3I +X)qo —(3I X)-r'+H. c.]
(4.6)

Let us now turn to the constraints stated at the be-
ginning of this section.

(I) Equation (4.6) shows that it is satisfied, of
course with the understanding that "no ~AS~ =1 cur-
rent" shall mean, more specifically, "no ~hS~ =. 1,
hC =0 current" in models of this kind.

(II) The ~b.S~ =2 contributions in question stem
from box graphs of the general structure encoun-
tered in Fig. I, with the appropriate particle la-
bels and with crossing properly taken into account.
The types of graphs involved are much like those
of Ref. 33, Fig. 3. In accordance with (IV) one
must now examine separately the contributions
which stem from the exchange of (W'W'), (W'W'),
(W'W'), and (ZZ) vector-meson pairs. Since W'

only couples to ',2 (not X), and W' only to A. (not 3I),
there is no contribution from (W'W') and (W'W )
exchange. (W'W') contributes to 8(AA. -K3I), to the
order O(a'6'6 ),

m'(g) -m'(q')
~2

m'(q ) -m'(r )

(4.V)

while (ZZ) contributes to the order O(a'(ao)'),

m'(q') -m'(r')
~2 (4.8)

Then (II) is satisfied provided that

are «I, (4.9)

that is to say, mass splittings within the quark
multiplets are small compared to the vector-
meson masses. See further Ref. 33 for more de-
tailed estimates of the K~-K~ real mass difference
which bear out inequalities of the type Eq. (4.9).

(III) Again, and as in Ref. 33, the leading con-
tributions stem from box graphs. Here we must
use Eqs. (4.3)-(4.6) in conjunction with Eqs.
(3.5)-(3.7). One verifies that the only contributions
come from (W'W') exchange. Two graph struc-
tures appear, related by crossing and with respec-
tive magnitudes

so that (III) is satisfied if once again the inequali-
ties Eqs. (3.13) and (4.9) are invoked. (For Kz- p, g the effect is zero even to this order. )

Next, we discuss nonleptonie ~AS~ =1, AC =0
transitions. To 0 (6) no such processes are gen-
erat"d via the currents J~' and J"'. Qn the other
hand, the interaction J„"'~Z„does provide us with
a nonleptonic decay mechanism to this order. The
effective interaction is

2

~ o. [Xy„(I+y,)q'q'y, (I +y, )& —(q'-r')]+H. c.

(4.11)

pnce again we go to the domain q'«M, '. Since
the local V -A combination is invariant under
Fierz transformations, one can then write Eq.
(4.11) approximately as

G 1 sin28
$ (1+sir &8)'~'

x Ay„(1 + yo)51[q y„(I + yo)q —r y„(1 + yo)r ] +H.c .
(4.12)

Equation (4.12) gives the ~AS~ =1, hC =0 interac-
tion in its local V -A form with all the implica-
tions thereof. " The only constraint on the validity
of Eq. (4.12) is q'«(vector-meson mass)'. No
constraints on the quark and on the scalar fieM
masses are involved of the kinds which appear in
Ref. 9.

Indeed, throughout this work there appears no
reason that I am aware of for not taking the H
masses sufficiently heavy, so that the influence of
the H field on estimates of decay and transition
amplitudes may be considered as small.

The next question [which applies equally to Eqs.
(4.11) and (4.12)] is: Does the interaction also
satisfy ~AI~ =& for the familiar nonleptonic pro-
cesses? The answer depends on two main factors:
(a) the assumed structure of the familiar meson
and baryon states in terms of the quarks intro-
duced here and (b) the isospin properties of the

and r which appear in Eqs. (4.11) and (4.12).
First of all, it is evident that Eq. (4.12) would

not give nonleptonic K and hyperon decays at all
unless the quark content of these states would em-
brace the presence of qoq' pairs and/Or r'r' pairs
If both kinds of pairs occur then one will assign
I=0 to both fj|' and r . If only one kind of Pair oc-
curs, say q', then one needs only to assume that
I(q') =0. Let us first consider the model for me-
sons and baryons given in Ref. 9 in a somewhat
similar discussion of the ~aI~ =-,' rule. Here the
mesons are: 5% for n', 6'X for E' etc., with, in
addition, a "sea" of quark pairs which has I = Y
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= C =0 and which contains q" and x' pairs. The
baryon states are obtained by adding a single ' q'
where q' itself has I = F =C =0. Thus O'Xq' corre-
sponds to Z', (PXq' to the proton, etc. As noted
in Ref. 9 one can also recover further conse-
quences for nonleptonic decays implied by approxi-
mate SU(3) symmetry if one assumes, more spe-
cifically, that the "sea," behaves like an SU(3)-sin-
glet.

Thus it is indeed possible to realize the ~AI~ =-,'
rule for nonleptonic decays from Eq. (4.11}.It is

of some interest that the additional quarks which
have been introduced in this as in many other
gauge models for the purpose of suppression of
unwanted processes, now begin to play a more
positive role. It should be emphasized that the
particular realization of the ~b, I~ =-,' rule by means
of the meson-baryon model mentioned above is
but one example of how this can be done. This
problem demands further investigations in terms
of the embedding of the present model within ha-
dronic symmetries, for example with regard to
static SU(6) properties, as is discussed further in

Appendix C. The model mentioned above should
therefore be taken only as an illustration of the
fact that ~b, I~ =-,' can be implemented.

It may further be noted that both the above model
of the constitution of mesons and baryons as well
as the alternative model of Appendix t are in ac-
cordance with the requirements concerning the
sign and magnitude of the m -2y amplitudes as
stated in Sec. I, since it satisfies Eq. (1.12).

The last main topic of this section is the further
discussion of CP questions. If we confine our-
selves to the contributions from J '' ~ only
then clearly there is no CP violation at all, since
the structure Eqs. (4.1) and (4.2) of Q'~ and Q'~

does not include any CP-violating phases. One
may well ask the following question. Since such
phases were introduced in the lepton multiplets,
why not introduce such phases in the Q's as well?
I have examined this problem by allowing for a
more general definition of Q'~ (holding Q'~ fixed by
phase conventions suitably chosen) in which the
two neutral members of Q'~ each are given (in-
dependent) over all extra phase factors. Then CP
violation enters because of the occurrence of rela-
tive phases between the neutral members of Q'~

as compared to those of Q'~. But now something
has to be reconsidered which has no leptonic ana-
log, namely the implementation of the constraints
(II) and (III) stated at the beginning of this section.
It turns out that these constraints are so severe
that the extra phases just mentioned must be ex-
tremely close to zero. This still allows for the
possibility of tiny on-shell CP-violating mass ef-
fects, but the introduction of effects in this way

seems rather artificial; nor is there any obvious
need for such a procedure. Thus the situation is
quite different for the lepton and for the hadron
sector. In the former case, given the group and
given the choice of lepton representations one is
forced to consider CP-violating phases. In the
latter case no such argument exists and the con-
straints (II) and (III) lead to CP-conserving struc-
tures for the quark multiplets as the most natural
choice.

The combined action of J'~ and J~ in semilep-
tonic decays gives rise to the following effects,
exemplified for the transition X- 6'+ l+ v, . To
0(G) there is no CP effect, the transition takes
place via W' exchange only. To 0 (g4), W,Z ex-
change gives a potential CP effect 0 (G a), but a
further suppression takes place just as for the
graph in Fig. 1 discussed for p decay. The main
effect of W', W' mixing is displayed in Fig. 4(b).
The (X6'W') vertex is drawn as a larger blackened
circle to symbolize the influence of the strong in-
teractions. It is crucial that these hadronic modi-
fications are the same iv Figs. 4(a) and 4(b). Just
as was seen in Sec. III, the influence of the mixing
is to generate an ore~-all complex scale factor in
the decay amplitude. This complex rescaling is
independent of si ong interaction effects. Thus it
applies equally well when we use this effective in-
teraction operator as the transition operator for
K„decays as for K„and K,4 or any other mode.
Therefore there is no on-shell CP-effect to 0 (Go.'}
for any semileptonic K (or hyperon) decays. On-
shell CP violation becomes manifest only when
electromagnetic corrections are also introduced,
as was discussed for Fig. 3. Thus we have shown
that also in semileptonic decays the CP effects
are superweak. The same is also true for non-
leptonic decays, but the proof thereof will be de-
ferred till the end of Sec. VII.

Finally, note that the p parameter in Eq. (3.18)
is modified due to the influence of QQ pairs. The
modification must be finite by the arguments given
in Sec. III. The a parameter, Eq. (3.19), remains
unaltered. From Eqs. (4.3) and (4.4) it follows
that the leading correction to p receives no con-
tributions from A, or X states and that the effect

(o)

FIG. 4. A. —6' + l + v, via W exchange (a); and via
W2-W~ mixing (b).
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due to q' and r states must vanish in the limit
that these two states are mass degenerate. The
resulting addition to the right-hand side of Eq.
(3.18) is

——[m'(q')C ((P, q', q, r, q')

-m'(r')C (6, q+, q-, r-, r')], (4.13)

@ (+, q', q, r, q') = m'(+)0 (q', +) -m'(q') 0 (q', q')

-m'(q )P(q', q )

+ m '(r )P (q', r ),
where Eq. (3.20) has been used.

(4.14)

V. A FIRST ATTEMPT TO INCORPORATE THE f+

A. Phenomenological Aspects

In this section we ask for the consequences of the
assumption that the f" are representations of
0(4), labeled by (m, rz) where m, zz are integer or
half integer. If one tries to treat the f" as (-,', —,')
representations, one runs into numerous diffi-
culties. For example, it is impossible to avoid
unwanted lepton contributions of the type (Pe)s or
(7t„jz)zz to the currents J"".In regard to the Q",
considered as (—,', —,'), a further analysis of the fer-
mion mass problem shows that one can in no way
avoid the occurrence of some zero-mass quarks.

Given the group structure considered here,
there is an alternative procedure which at least
circumvents these problems. In regard to the
leptons one simply avoids the bad current contri-
butions just mentioned by taking the states xz,
x~, e~ to belong to a triplet representation, and
likewise for ys, yso, p,„.For the f""a somewhat
similar method may be followed, namely to use
two triplets and two singlets (0, 0). In fact, in or-
der to continue to satisfy the constraints (II) and
(III) stated at the beginning of Sec. IV, it suffices"
to choose the two singlets to be X~ and A~ . As we
shall see in a moment the constraint (I) will be
sRtlsf led ln Rny eveQt.

The group allows for two kinds of triplets,
namely (1, 0), a F triplet not acted on by p; and
(0, 1), a p triplet not acted on by t. Thus we must
decide in each case which triplet to choose. Be-
fore we coII16 to this lt ls lmportRnt to Qote the
A properties of triplet assignments. Neither trip-
let is separately an eigenstate of A, since the
action of 8 on (1, 0) (0, 1), and on (0, 1)- (1,0).
The implications of this behavior under R is one
of the main topics of this section.

For reasons to be explained we shall next at-
tempt to assign the E" to (1, 0) and the Ms to (0, 1)
as follows (a spherical basis is used):

E"=(x', -x', -e)„,
~'=(P,y', P.y', il p)s,

(5.1)

J{0)E J{0)/I, +J{O)JR (5.5)

where P""~ is given by Eq. (3.V). It is clear that
the R part of J""presents an electron target to a
neutrino beam. %6 are now in a position to ex-
plain why the special choice Eq. (3.4) was made.
Since v„e scattering appears to be suppressed, we
have made use of the phases in Eqs. (3.1) and (3.2)
to arrange things so that elastic v„e scattering is
entirely forbidden to 0 (G). Instead, the inelastic
process v„+e-y'+e occurs. Any other choice of
the phases in Eqs. (3.1) and (3.2) would generate
some z „e scattering to 0 (G). While the present
status" of the v„e experiments leaves room for
play here, it would at least seem most simple to
avoid the v„e problem altogether. In that case v„e
scattering does of course still occur, but with an
amplitude ~ 0 (Go,).

On the other hand, the neutral current does con-
tribute to elastic v, e and v, e scattering. So do the
charged currents and the combined result is [cf.
Eq. (1.10)]

o(v, e) =&a, 1+sin2B+ sin228 3
I + sin28 $2

IJ( ) =38 (I +Hlll29 +
sin228 1

I + Sln28

(5.6)

(5.'i)

4 G'm(e)
3 m

= 0.54 &&10 "E,cm'/electron (5.3)

where the P's are phase factors to be determined
from the conditions that the lepton mass matrix
shall be diagonal and have positive" eigenvalues.
The contributions to the currents are

J'""s= —(ig/W2) (7'e +7'x')s

+ (ig/~&)(P.*P y'p P,*-P,y y')&, (5 2)

g"""=-(ig/&2)(7'e +7'x')s

(ig/-~&)(PgP y'p P,*p-.y y')„(5 3)

J""s= —(ig/v 2 ) (7'x' —ee )„
+ (zg/~2)(y'y'- p p), . (5 4)

Remark: Since E" is (I, 0) it contributes equally
to J"' and J"' since W' and W' are coupled equally
'to i l see Eq. (2.9), M contributes with opposite
sign to J"' as compared to J"' since W' ls coupled
to (-p), and W' to (+p). The relative sign differ-
ence in Eq. (5.4) has a similar origin.

Let us now first examine the full neutral lepton
current
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is the t/ —A value for the total v, e elastic scatter-
ing cross section (E,=neutrino lab energy in
GeV). With sin28 = 0.4 and if $ =1 [cf. Eq. (2.22)]
this yields a value = I.Vc, for o'(v, e)) which is ac-
ceptable" as far as the extremely difficult ex-
periments" permit us to conclude. If $ & 1 then
the value 1.V becomes a lower bound [see Eqs.
(5.20) and (5.21) below].

Consider next the f~. In accordance with what
was stated befox'6 we introduce two triplets which
(for example, see Ref. 38) can be written as

9"=(6',~', ~ )„9'"=(q',q', q ), . (5 9)

For definiteness, let Q'" be (1, 0) and Q'" be
(0, 1). Then

Z"'~ = -(ig/W&)(d'~'-~'r -q'q'+q'q )&,

(ig/&2-)(tr'-Pr +q'q'-q q )„, (5.10)

(ig/-&2)(d'(P Fx --q'q'+q q )„.
The full neutral current Z'o' is the sum of the con-
tributions given in Eqs. (3.V), (4.6), (5.4), and
(5.10}. It is obvious from Eq. (5.10) that the con-
straint (I) given in Sec. IV remains satisfied.

Since the 6'-quark is a nucleon constituent,
provides a nucleon target for neutrinos.

The phase choice Eq. (3.4) is such that no P„v„
current enters in J"'. Therefore processes like
v„+p- v„+p, v„+p -v„+6 do not enter to O(G).
v„does appear in J'o' via v„y' and y'v„. There-
fore inelastic heavy lepton production has an am-
plitude 0 (G), such as for v&+proton-yo+hadrons.
All these statements bear on the current types of
experiments in which the high-energy neutrino
beams are to a high degree of the muonic variety. 4'

On the other hand, the phase choice Eq. (3.4)

does lead to P,v, terms in Z"', see Eq. (3.V).
Thus reactions like v, +proton- v, +hadrons appear
to 0 (G) without the presence of heavy leptons in
the final state.

For the group in hand we have come at this point
to the conclusion of the phenomenological aspects,
but for one question. %6 must ask how the inclu-
sion of the fs affects the CP problem inasfar as
it has been discussed in Secs. III and IV. It was
already stated in PRL that the modifications which
arise do not change in any. qualitative way what
was found earlier in this payer. As before, loga-
rithmic divergences will remain in the $V'-S'
mixing. However, some rather important theoret-
ical issues appear which bear on the meaning of
the discrete symmetry R. For this reason, if for
no other, it is illuminating to spell out the full CP-
problem in O(4} ln some detail. To what was found
in Secs. III and I7 we sI1all Ilave to add the contr1
butions (RR) which are solely due to the f" and
those (RL) which arise from right-left interfer-
ence.

For the box graph, Fig. 1, Sec. III, the modifica-
tions are negbgible. Obviously there is no RB
contribution here at aQ, since neutrinos appear
aplenty. There is a RI. interference term which
is -5' smaller [see Eq. (3.13)] than the O(Go.')
found for the I.I. tex'm.

More interesting is the change in the W', TV'

mixing parameters p and v defined in Eqs. (3.16)
and (3.1V}. We begin with the RR contributions to
0 (g'). Note first that such terms do not contribute
to & at all. The reason for this is that (up to a ~
sign) all lepton pairs couple equally to W' as they
do to W' so that, for any lepton loop, the phases
in Eqs. (5.2) and (5.3) cancel since we deal with
one emission and one absorption vertex. Thus
only the parameter p receives BB contributions
which are found to be:

7r A „, z+m'(xo) z+m'(x') z+m'(e) z+m'(y') z+m'(y+) z+m'(p) ' (5.11)

where the integration variable g stands for the
(Euclidean) (momentum)' in the loop. By the chi-
rality argument given in Sec. III the result is again
a function of (lepton mass)' only [see Fig. 2(b)].
The integral is logarithmically divergent. ~ We
have now a seeming contradiction. In Sec. III it
was stated that p had to be finite by Weinberg's
lemma. Then how can we meet a divergent ans-
wer as in Eq. (5.11)'?

The resolution of this question lies in the 8-in-
variance properties of the theory. The behavior
of the vector-meson fields under A was specified
in Eq. (2.33). If we adjoin to this transformation

the further relation

(5.12)

then Eqs. (5.2)-(5.4) show that the vector-meson
couplings of the f'" are R-invariant. On the other
hand, R invariance dictates that the only counter-
term mechanism for 8"' mixing is given by 2»,
see Eq. (2.16) which cannot counteract a divergence
in the p parameter. But the validity of Eq. (5.12)
implies a ma, ss degeneracy between the electron
and muon multiplet. And, indeed, insofar as such
a degeneracy were to exist there is no paradox
since, in this degeneracy limit, Eq. (5.11) gives
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the answer zero.
A special case of this degeneracy is provided by

the limit in which all lepton masses are put equal
to zero. Since the H couplings to fermions have
coupling constants which are (fermion mass)-
proportional, this means that (1) we have an H-
invariant theory to the extent that we neglect the
Hff couplings, and (2) these couplings cannot pos-
sibly be A-invariant since they would then imply
an unwanted degeneracy of the electron- and muon-
type leptons. This last statement needs explicit
verification, to be given presently.

While we have now answered the question about
p in a limiting case of degeneracy, this answer is
still incomplete since we yet have to find the
counterterm which can renormalize the loop effect
of Eq. (5.11) in the realistic case that there is no
E-M mass degeneracy. This counterterm is
readily located by the following argument. We are
perfectly entitled to postulate the relation g, = g„
Eq. (1.8) as we have done at the outset. This is a
relation between bare coupling constants. If the
theory is not A-invariant, however, there is no
reason why the equality of g, and g, should be re-
spected by the radiative corrections. Moreover
since the theory is not A-invariant we have, by the
rules of strict renormalizability, to write down
all terms that are compatible with the group SU(2)
&&SU(2), not just O(4). This means that we must
first consider the formalism for g~ tg„ then take
g, = g, in the sense of a bare coupling constant re-
lation. If [as for Eq. (5.11)] the need for renor-
malization arises we have to revert to SU(2) X SU(2)
in order to find such counterterms which we would
miss if we had made the unwarranted assumption
that g, = g, remains true in the presence of radia-
tive corrections.

The theory for g, tg, is given in Appendix A. It
contains a generalized expression, Eq. (A.15) for
the quantity 2» (g, =g2) given in Eq. (2.16). It is
found that Eq. (A15) does indeed provi'de the
counterterm necessary to renormalize Eq. (5.11)
so that the seeming contradiction has been elim-
inated. Note that this "contradiction" could not
arise for the f'~ because these were assigned to
(
—„-,). It is a property of O(4) that any representa-

tion (m, n) of SO(4) is also a representation ~ of
O(4) if m = n.

It should be emphasized that it was only possible
to make use of Eq. (5.12) because of the assign-
ments 4' E", (1, 0), and Ms, (0, 1). Indeed this
enables one, in the A-symmetry limit, to consider
the right-handed leptons as the direct sum of (0, 1)
and (1, 0), that is as a "six vector" with well-
defined behavior under R (just like the electro-
magrietic field under the Lorentz group including
parity). In order to underline this point further,

consider the case where both E~ and M~ would be
(1, 0). This implies the following changes: the
over-all sign of the M terms in Eqs. (5.2) and
(5.4) [ but not in Eq. (5.3)] has to be reversed. As
a consequence, the minus sign in front of the M
terms in Eq. (5.11)becomes a plus sign. But this
means that the p parameter now becomes quad-
ratically divergent and that this divergence per-
sists in the zero mass limit for the leptons. No
wonder, since even for m, = 0 the theory is not 8-
invariant.

There is a lesson in all this which, I believe,
may be pertinent in any situation where discrete
symmetries are brought to bear on gauge theories.
In the present instance we have learnt that three
cases should be distinguished.

(a) Strict Jt invariance. This is the case when
all terms in 2 are A-invariant in the unbroken
symmetry limit. As we have seen, this case has
not been realized up to this point. But it will be
realized when we come to O(4) X9.

(b) Approximate 8-invariance. This is defined
by the requirement that the vector-meson-fermion
interaction is A-invariant but the H-fermion in-
teraction is not. These conditions imply g, = g, as
a bare coupling constant relation.

(c) SU(2) x SU(2) without even approximate 8 in-
variance. An example of this has just been given
which shows that this version is the "most diver-
gent" (though still renormalizable) of the lot. A
further example of this case is given in Appendix
A: Start with g, cg, as a bare coupling constant
inequality. Then even the left-handed fermion
contribution to W" mixing becomes quadratically
divergent.

The remaining L,A contributions to the W" mix-
ing teach us nothing substantially new. These con-
tributions can inherently be at most logarithmical-
ly divergent. Such divergences indeed appear both
for p and for 0. The terms are proportional to
mm ', where m and m' are distinct lepton masses,
in aeeordance with the corresponding tadpole
graphs Figs. 2(c) and 2(d).

Thus we find that an approximate discrete in-
variance has led to a suppression of a potentially
quadratic divergence for the mixing parameters
to a logarithmic one. We shall make use of sev-
eral such approximate invariances in Sec. VI. But
first we must consider the Hff -interactions for
the present group.

B. Fermion Mass Questions

We start by verifying the statement made in Sec.
VA to the effect that the H couplings to fermions
cannot be fully 8-invariant. For notational pur-
poses put
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A~a =i B~b . (5.14)

Here we have used one of the identities collected
in Appendix B, see Eq. (B12), from which we also
infer that the ee mass term is proportional to
(Asa iBsb), wh-ile the x' and x' masses are both
proportional to (Asa+i Bsb). The bare masses sat-
isfy

m(e) =0, m(x') = m(x')v2 . (5.15)

It can be verified that Eq. (5.15) does not depend
on the particular real choice of the II quartets dis-
cussed in Sec. II. In fact, Eq. (5.15) is a conse-
quence only of the structure Eqs. (3.1) and (3.4)
for the left-handed E quartet, the structure Eq.
(5.1) of the right-handed E triplet and of the as-
sumption that the H's are quartets. In further ex-
planation of the choice E"= (1, 0), note that had we
taken E" to be (0, 1), one would again have ob-
tained Eq. (5.14) but Eq. (5.15) would have to be
replaced with m(x") = 0, m(e ) = m(xo)v 2 .

Next consider the I couplings

Mip ~ Ms[A+(a, a)+B~H(ib, -ib)]+H.c. (5.16)

With the help of Eqs. (8.2), (3.4), (5.1), and (B18)
one finds that the analog of Eq. (5.14} is

A~a+B~b =0 (5.1|)

x+v2 =E, —iE2, ev2 ~E +iZ" x =E"
R 1 2 P 2P 3

Then Es = (E~ Z"„E",) is a, Cartesian representa-
tion for E" defined in Eq. (5.1). Likewise Ms will
be introduced. Now note that the operator t ER
+ p M" —=X is invariant under O(4) including B.
Then the couplings (ZiXH +H.c.) and
(MiXH +H.c.) are invariant likewise. Here H is
one or the other of the scalar qua, rtets introduced4
in Sec. II. These couplings involve (potentially
dangerous) transitions between muonic and elec-
tronic states. The mass diagonalization demands
at least that such cross terms shall vanish in the
tree approximation. It is readily verified that this
is so only for the null solution in which the corre-
sponding coupling constants are zero, so that in-
deed no nontrivial B-invariant Hff couplings exist.

Continuing with the assignments E"= (1, 0), M
= (0, 1}let us then consider the B-noninvariant
mass generating mechanisms. For the E-case we
have

Ei(t E")[AsH(a, a)+ BsH(ib, -ib)]+H.c.,
(5.18)

where A~, B~ are "coupling constants. " With the
help of Eqs. (3.1), (8.4), and (5.9) one sees that in
the static limit Eq. (5.13) gives a (v, x') cross
term which vanishes if

and the diagonal terms are

(5.18)

where e =exp(—,'iv) W. e now fix the phases: P+=e*,
P, =i, P =-e' and takeA real, Aa) 0. Then the
mass matrix is positive" and

(5.19)

The contradistinction between Eqs. (5.15) and
(5.19) illustrates how the pe nonuniversality intro-
duced initially to cope with the Cabibbo condition
can lead to major dissymmetries in regard to bare
masses for e and p. However, we have now to
face the fact that the equalities Eq. (5.19) are
wholly inacceptable physically.

While one may speculate about possibly large
radiative mass corrections at this point, I have
no wisdom to offer in this respect. Instead, in
order to avoid Eq. (5.19), I explored the only other
course open, namely to examine the consequences
of extending the scalar field multiplet system.

Such an extension is unique. Since Zi = (-,', —,') and
E"= (1, 0) will be retained, the only other scalar
multiplet which can affect the E-mass system is
(—,', ). Likewise for the M system it is (—,', —,').
However one cannot introduce (-,', —,') and (-,', —,') in
an uncorrelated way without spoiling the role of
8" and 8' as zeroth-order normal modes.

In order to show how one must proceed, denote
(A t + Cp)' by Y and symbolize the quadrilinear cou-
pling between a scalar (-,', —,') multiplet and the vec-
tor fields by g, —', )Y (-'„-'„). Such an interaction is
automatically B-invariant. This is not true for
(-,', —,')Y'(-,', —,') since, symbolically, R($, —,')- (2, —,').
Thus one must use the coupling (—,', —,')Y(—,', —,')
+ (k, —', )Y(-,', —,'). Once both (—,', —,') and (-,', —,') appear,
the equal relative weight is automatic. Beyond
this, it is necessary to correlate the vacuum ex-
pectation value of the (—'„—,') and the (-,', —,') in such a
way that 8' and 8" are preserved normal modes
in the tree approximation.

It is described in Appendix 8 how this is done.
In addition two further identities are given there,
Eqs. (B14) and (B15) with the help of which one
can easily obtain the modifications of the fermion
bare masses due to the inclusion of these new
scalar multiplets. With their help it is easily
shown, by identical steps as were followed for Eqs.
(5.13)-(5.19) that a further splitting mechanism is
generated by means of which an equation like
(5.19) can be modified.

The same procedures can likewise be followed
for the quark mass problem. Beyond the mass
invariants which are direct counterparts of those
used for the leptons, eight more appear, namely
(QiH)5I" +H.c. and (QiH}zs+H.c., where Qi is
either Q'i or Q'i [see Eqs. (4.1) and (4.2)] and
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where H is either H(a, a) or H(ib, -ib). In all these
instances it is then a matter essentially of count-
xIlg to show that the mass matrices can be dlag-
onalized and that, where unwanted, mass degen-
eracies do not appea, r. Since the procedure is
stralghtt:orwardy tedious Rnd not 1Dumlnatlngy lt
will not be explicitly carried out here.

Fina, lly, it is shown in Appendix B that the in-
clusion of the additional scalar multiplets modifies
Eq. (2.22) to )&I, see Eq. (B10). This inequality
makes Eqs. (5.6) and (5.7) to inequalities as well:

o(v, e) & 1.7&„

a'(v, e ) & 4.3o, ,

(5.20)

(5.21)

where o', was given in Eq. (5.8). From the com-
ments made after Eq. (B10) it is seen that no rea-
son exists why $ shouM deviate much from unity,
so that these IneguRlltles could be RpproxlmRte
equalities.

No discussion of any gauge model is complete
without R description of the poteDtlRl surfRce which
is consistent with the choice of scalar field vacu-
um expectation values. Strict renormalizability
requires the inclusion of all products of degree
&4 of such fields in the Lagrangia. n, even though it
may not be necessary to have all these terms ap-
pear with nonzero coefficients in the tree approxi-
mation. In the present case there is the additional
feature that one needs to show, in this approxi-
mation, that not only the magnitude of the vacuum
expectation values can be inferred from the exis-
tence of a minimum of the surface but also the
relative direction of four vectors like H(a, a) and
H(ib, -ib). This problem of fixing directions ap-
pea. redfor the first time in the Lee 4'-Prentki-
Zumino" model. The method of fixing directions,
spelled out in Ref. IV, can easily be transposed to
the present case. The idea is the following. Con-
sider two four-vectors o. and P of which it is de-
sired that they sha, ll be orthogonal in the tree ap-
proximation. Arrange the potential so that a cou-
pling term between e and P appears of the form
~(&'P)', where & is positive by decree. Then one
of the minimiza, tion conditions is a.P =0, irre-
spective of the (positive) value of A. . If radiative
corrections necessitate a "turning" of the vectors
such that e'p Is no longer zero then this term
will have to be dealt with jointly with the rest of
the potential in order to find the adjusted mini-
mum. Hy following the method of Ref. IV a set of
ranges of the coefficients in the potential cornpati-
ble with the desired vacuum expectation values is
readily found. This is not to convey the view that
this potential problem is elementary. As do
others, this author believes on the contrary that
this is an area where much still has to be learned.

. O|4)xg; gHE EXPMPLE Q=U~~~

MotlVBt100

Let us first recapitulate what are the main fea-
tures of the model discussed in the foregoing.

(I) Absence of neutral ~LS~ =1 hadron currents
to O(G).

(II) Sufficient suppression of ~aS~ =2 transitions
due to vector-meson pairs.

(III) Sufficient suppression of the K~ - p, p am-
ylitude. These three points were discussed in Sec,
IV,

(IV) v„e and v„e scattering are forbidden to
0 (G) even though a neutral current appears.

(V) Similarly for v„+p- v„+p, v„+p- v„+A,
etc .

(V'I) The neutral current is the sole source of
nonleptonic decay to O(G). The isospin assign-
ments of charmed quarks are such that one can
implement the ~AI~ = —,

' nonleptonic decay rule.
The rather obscure ~AI~.=-,'- nonleptonic interaction
which appears in the "single lV" weak interaction
theory is eliminated.

(Vli) CP violation ls incorporated. On-shell
CP-violating amplitudes are superweak.

(VIII) A modification appears of the elastic
v, —8 and v, —e scattering cross sections which in-
volves the Cabibbo angle and the $ parameter.

The following connected set of questions moti-
vated the work to be reported on in the rest of this
paper.

(a) To what extent are these combined features
unique to the O(4) scheme'? I do not know the ans-
wer in general, but would like to explain that at
least one class of models exists with these char-
acteristics.

(b) A CP-violating parameter appears in the
foregoing, due to 8 ' IQlxlng. This parameter ls
logarithmically divergent and thus needs a renor-
malization. %'bile the statement may seem rea-
sonable that this renormalization does not change
the order of magnitude of the effect, one will
nevertheless wRnt to Rsk lf such reDox'IHRllzation
can possibly be avoided.

(c) The scalar field system needed to generate
masses is a fairly complicated one for' O(4) as we
just saw in Sec. VB. The question arises whether
alternatives exist also in this respect.

It will be clear from the foregoing that the Inaln
results of some positive interest all emerged es-
sentially from the examination of the f~-contri-
butions to the currents. This leads one to follow
a strategy in which these contributions are qual-
itatively unmodified but where the fs are treated
differently. In particular we shall examine here
what happens if the f~ are scalar wi&& respect to
O(4).
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B. Ot'4) & U(1 j, General Features

The definitions of D& and Q are

D„=s„ig(A„ -t + C",
& p) -ig'B& Y, (6.1)

where t, p satisfy the same commutation relations
as before, .while [t, I'] = [p, I'] =0; and

Q=t, +p, + Y. (6.2)

As we shall see in at least one example, such a
treatment is possible. Furthermore in this case
the CP problem can be treated differently, for the
following reason. As we saw in the discussion of
Eqs. (5.4) and (5.5), if the fs are in O(4), then ee
terms enter into the neutral current J"'. This in
turn led to the CP phase choice made in F.q. (3.4).
But if the f" are scalar in O(4), then ee cannot
enter into J"'. This then allows for the freedom
to turn to the general discussion of the lepton rep-
resentations Eqs. (3.1) and (3.2). It is this point
which will be explored in some detail in what fol-
lows.

It was seen in Sec. VA and Appendix A that the
equality g, = g, = g favors the convergent traits of
the theory. This equality will therefore be main-
tained from here on in.

from the further quartet g, —,') "' which we will de-
note by H "'(c) and which completes the scalar
quartets to be used here. H "'(c) has charge states
(++, +, +, 0) and

(H "' (c)) = (0, 0, 0, c) .
This set of H's does what is required and one
finds

2

M, = —;--;— (4b +c ),2

sin'y

(6.6)

(6.9)

e 2

M, = . , (4a'+c'),
s1n'y

4e2
M,'= . , (a'+b'),

sin'y

Se2

slQ 2y

(6.10)

(6.11)

(6.12)

where M. ..are again the respective Z, W', W
masses and M~ is the V mass. Thus we have the
sum rule

M '+ M ' = M 2+ M~2 cos2y (6.13)

which expresses the mixing angle y in terms of the
vector-meson masses, while

From Eqs. (2.4) and (2.5):
4b2+ c'

tan8 = -„2
4a +c (6.14)

(g
2 + 2 gl 2)1/2 (6.3) $=1—

2+ +2~ +c (6.15)

I
„),i, [g (A'„C+„) g+B„] .~g+ g

Thus a mixing angle y appears:

(6.4) We now use a result of Sec. VII which shows that
(up to phase) G is given by the same Eq. (3.9) as
for O(4):

eW2, e
siny ' cosy (6 5)

6 g2 y g»/2
16 M~ M~

(6.16)

We wish to retain the definition of Z:
g3 C3

W2
(6.6)

By orthogonality the further new neutral vector
field, call it V„, is then to be

V V2 =
(
2,2, ~2 [g(4.3+ C~) —2g'BJ . (6.7)

1

g +2g

We also wish to retain the definitions Eqs. (2.6),
(2.7), of W' and W'. (Thus we continue to use the
"type I" version; see Sec. II.) The first question
is to find a scalar field system which supports the
definitions of Z, V, W», W2 as normal modes.

To this end we continue to employ H(a, a) and
H(ib, -ib) introduced in O(4), but must now cb.ar-
acterize their representation as (—,', —,') +' where the
superscript (0) indicates that they have I' =0.
Therefore we shall now call these multiplets
H"'(a, a), H"'(ib, —ib) in order to distinguish them

but where the definition of g is now changed to Eq.
(6.5). Therefore

37.2
M» = —.=

(sinycos8)~ '

37.2
(siny sin8)'~

(6.17)

so that Eqs. (3.10) now turn into lower bounds for
M», M2.

D& becomes

D~ =- ~~ —ieQA~

---. -- ((t, -p, )Z„+ (I/&2)[(t, —p,)W„'

+ (t++ p,)W„'+H.c.]]
—ie[(t, + p, ) coty —I"tany]V . (6.18)

The 8 properties of the vector mesons are extend-
ed to [see Eq. (2.33), we stay with "type I"]
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W&--W', W'-W', Z--Z, A-A, V-V.
(6.19)

Next we turn to the fermion representations and
introduce the following assumption:

All left-handed fermions are quartets (-,', —,')(o';
all right-handed fermions are (0, 0)(o', that is,
they are singlets in O(4) and have Y = Q. As a
first consequence, it follows that no neutral fs
whatsoever appears in any of the currents.

More specifically, the f(~ representations are
taken to be given again by Eqs. (3.1) and (3.2) but
without the restriction to Eq. (3.4), while the f~
are again given by Eqs. (4.1) and (4.2). Quark-
mass terms arise as follows. Q'~H("(c)q„+H.c.,
Q'~H"'(c)rs +H.c. give mass to q, r .
Q'~H"'*(c)(P„+H.c., Q' H"'*(c)qs+H.c.do like-
wise for (f' and q'. To treat the neutral quarks
consider a linear combination with arbitrary co-
efficients of the set of sixteen interactions
Q'~H"'fs+H. c., where i =1 or 2; H"' is H"'(a, a)
or H"'(ib, -ib) and fos is Xs, Xs, qs, or r„'. It
is easily seen that this set of couplings diagonal-
izes the mass matrix. At this point one realizes
the difference between the use of one complex II"'
field as compared with two real Ii""s. The de-
grees of freedom are the same in both cases, but
the number of coupling constants is only eight for
the case of one complex field. As a result one
finds that several quarks remain massless if only
one complex H"' were used.

%e discuss next the question of anomalies in the
trilinear vector-meson vertices due to triangular
fermion insertions o' For O(4), such anomalies
cannot arise due to the group structure. This is
not so for O(4) && U(1), yet anomalies still do not
appear due to the fermion representations adopted
here in which equal numbers of fermions occur
with Q =e and with Q = -e. In more detail the fol-
lowing three types of vertices occur: (1) the 8-
invariant vertex W'W'Z which lies entirely in O(4)
and is therefore finite; (2) the 8-invariants
(W'W' V) and (W'W V) which are readily shown to
be finite as well due to Q = ae cancellations, as it
should be; (3) these two types appear in the (8-
invariant) Lagrangian. In addition there appears
the induced trilinear (W'W'V) which is also finite
since it does not appear in g due to its A nonin-
variance. Its finiteness is then a further applica-
tion of Weinberg's lemma. It should be stressed
that this absence of anomalies has nothing to do
with any choice of phases in Eqs. (3.1) and (3.2)
since the anomaly problem is an affliction which
can be diagnosed already in the zero fermion
mass limit. Therefore we can treat the question
with the help of the representation Eq. (3.11). In
other words, the anomaly problem is disjoint

from the CP problem.
Another quantity which is independent of the CI'

problem is the neutral current J' ' coupled to the
V meson. Its fermion part is

&"'=-~eZ[(f'f' f-f ),cotr

—(f+f+-f f )~tany], (6.20)

where the summation is over all fermions with the
appropriate electric charge. No argument will be
advanced in this paper which delimits y. Note
however the curious circumstance that

r =~(( &'"-= -&eZf Qy„r,f, (6.21)

where Q is the electric charge operator and the
sum goes over all fermions: This is an axial-
veetor current coupled to the electric charge. In
any event, J'(r' does not affect the criteria (I),
NI), (III) stated in Sec. Ip.

The hadronic parts of J""'are

~(()a -'
[(POI ~Ao() + (3I+Ao)

v2 siny

+q'g -A,') + (3I -A,')r ]~,
(6.22)

[(p(X +A') —(X+A')q
W2 siny

-q'(Z -A;) + (7-A;)r-], ,

(6.23)

J"'"= —. [(%+A)q' —(X &)ro+ H.—c.], (6.24)siny

where A,', were defined in Eq. (4.5). These ex-
pressions differ in two respects from Eqs. (4.3)-
(4.6): (1) the current symbols J'(o "' no longer
have to carry the label L, they are the complete
hadronic currents since no fR terms can enter
them; (2) As compared to O(4), the only differ-
ence is a scale factor W2/siny, as was already
noted 4' in PRL. Furthermore, this scale factor
is absorbed in the definition Eq. (6.16).

It is evident, therefore, that the discussion of
Sec. IV concerning the desiderata (I), (II), and
(III) applies verbatim to O(4) && U(1) and is more-
over complete in the sense that no f" modifica-
tions arise. (For K~ - pp we need the lepton cur-
rents as well. As will be shown in Sec. VII the
above statement also holds for that decay. ) Like-
wise, the results of Sec. IV for nonleptonic decays
apply as well to O(4) x U(1). Equation (4.12) re-
appears unmodified. Finally, the hadronic contri-
bution to W" mixing remains as in Eqs. (4.13)
and (4.14) up to a further factor 2/sin'y.
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Note added in proof. In O(4)&U(1), the quark
charges are not necessarily integral. For non-
integral charges, Eq. (6.20) is modified.

VII. THE CP PROBLEM IN O(4) x 8

We saw in the preceding section that the right-
handed hadrons had departed from the currents

J""'and that, otherwise, these currents are as
they were for O(4) up to a redefinition of g. Qual-
itatively, these properties are independent of the
choice of 9. Similar comments apply to the lep-
tonic contribution, to be considered next. We con-
tinue the exemplification with 8 = U(1).

From Eqs. (2.24)-(2.26) and (3.1)-(3.3) one finds
that the complete expressions for J""'are

J'""= --,'ig[(a, —ag)x'x'+ (a, +a))X'v, + (a,* —a,)x'e + (af +a, )Pe

+(b, —b,*)y'y'+ (b, +b,*)y'v„+ (b,* -b, )y'p. +( b,*+b,) P„p]~,.

J+"= =, ig[(a, +a))X'x'+ (a, —a,*)x'v, —(a,*+a,)x'e —(a,* a, )P-, e

+ (b~ + bf) y ya + (b~ —b~ ) y+ v„—(b~~ + b2) yap —(b2 —b, )P& p ]z,
J' "= (igjW2)[(~a, ~

—~a2~ ) (x~x —P v, ) —2a,*a,x v, —2a, afP, x

+ ()b, (' —(b, j')(y'y' -P„v„)-2b~~b, y v„—2b, b,*P„y']~,

(7.1)

(7 2)

(7.3)

(V.4)Rea a = Reb, b

The Cabibbo condition Eq. (1.3) takes the form

which reduce to Eqs. (3.5)-(3.7) if Eq. (3.4) is
used. We now see P„v„currents emerge in J"".

One point needs to be cleared up related to the
constraints (III) of Sec. IV concerning K~- tlap, .
It is easily shown that Eq. (4.10) is unaffected by
the use of the more general currents Eqs. (V.1)
and (7.2): The K~ - tVp constraint has nothing to
do with any particular choice of the CP param-
eters.

From Eqs. (6.22), (6.23) and (7.1), (7.2) it follows
that p. -e universality to O(G) for 6' and. for A, de-
cays implies that

$2 = P2 =pm, ]9 =3 +g qm, q =+1 (7.9)

+ y (y + v~) + (y + P„)p]z,
Z""—,'ig [Ax'(x' —v, ) -—A*(x~—v, )e

(V.10)

+ &y (y —v q)
—&*(P —v

&) p ]1.

(7.11)
d'+" = (ig/v2 )(cos8[(x'x' —P, v, ) -iq(P„y, -y,v„)]

—sine[-tV (v„v„-y'y')

+i (P, x' —x'v, )]j~, (7.12)

and (absorb a factor e'"' in x', v„a factor e'e"
iny', v )

Z""= =,'ig [x'(x'+ v, ) + (x' + P, )e

A. =e ", B=-ice " (7.13)

where the X's depend on the a's and b's. One can
look upon this relation as a quadratic equation for
tano in terms of the A,'s. I choose not to do so but,
instead, to satisfy the relation by putting the A.'s
=0. This gives

Thus 3 emerges as a rotational angle in the "neu-
trino current plane" whose "axes" are (P, v„v„v„).
The special form Eq. (3.5)-(3.7) previously em-
ployed for these currents corresponds to the
choice

Rea, a, =Reb, b, =0, (7.5) (7.14)

Put

[[b,/' —fb, f'] [Ja, f' —fa, f']+lima, a, Imb, b, = 0 .
(7.6)

a, =cos(,'e)e'~~, b,—=cos(-,'8)e'~&,

a, =sin(—,'8)e'~2, b, = sin(-,'0) e't'~ . (7.7)

This is an overparametrization since the a's and
b's are coefficients of complex fields. We now
choose the following convenient phase convention:

.8)

Then Eqs. (7.5) and (V.6) are solved by

The phase convention Eq. (V.8) has been so chosen
that J""has no CP phases at all. This is con-
venient for computational purposes. As Eq. (V.14)
shows, this implies a slight redefinition of y' as
compared to what appeared in Eq. (3.5). The latter
equation was maintained for the sake of continuity
of presentation between PRL and the present paper.
I beg the reader's indulgence for this midway
change of conventions.

At this point we are ready to derive Eqs. (1.14)
and (1.15) for o(v, e) and o(v, e), independently of
the remaining question how to choose the continu-
ous parameter 3 and the discrete parameter g.



648 A. PA IS

Namely, since J'"' contains ee but not v, v, [Eq.
(6.20)] and J'0' contains v, v, but not ee, the scat-
tering amplitudes in question arise to 0 (G) exclu-
sively from the charged currents J ', J . With
the definition Eq. (1.9) for 8, Eqs. (1.14) and (1.15)
follow at once. Also, the definition of G given in
Eq. (6.16) is an immediate consequence of Eqs.

(6.5), (7.10), and (7.11).
We come now to the principal topic of this sec-

tion, the discussion of the W" mixing [at"
q(W') =q(W') =0] for the more general situation de-
fined by Eqs. (7.10) and (V.11). This mixing is
given by

I

+, i m (x')ImAlim, , +m'(y')ImBlim
8n' 8+1Ã x e+m

2

,fm'(x')[Am'(x')p(x'x') A*-m'(e)Q(x'e)]+ ~'(y')[Bra'(y")4'(y'y') —B*~'(i")&(y'&)])

I have examined further the implications of this
constraint by considering a special way to satisfy
it, namely

m(x') = m(y'), (7.1V)

sin3 + q cos' = 0~3 =

33 77r——(n =1)
4 '4

(7.18)

The motivatj, on for doing so is the following.
Clearly it would be desirable to have 0 finite to all
orders and there is no reason that I could find why

Eq. (7.16) would be unmodified in the presence of
higher-order effects. On the other hand, as will
be discussed below, it would aypear that from the
more special Eqs. (7.1V) and (V.18) it may be pos-
sible to abstract an invariance argument which
has bearing on the general finiteness of &.

where the notations of Eqs. (3.20) and (5.11) have
been used. p and o, defined by Eqs. (3.16) and

(3.17), are the respective real and imaginary part
of Eq. (7.15). We note the following.

(1) The divergent part of Eq. (V.15) is contained
in its first line and is purely imaginary. Thus p
is finite independently of the choice of 3 and g in
Eqs. (7.10)-(7.13). This is, once more, a conse-
quence of the Weinberg lemma: Since 2» remains
of the form Eq. (2.16) (with redefined g), the argu-
ment given in Sec. III for the finiteness of p applies
unaltered in the present case as well.

(2) It follows from Eq. (V.13) that ImA and ImB
cannot simultaneously and separately be zero.
[The case of O(4) discussed in PRL and in Sec. III
corresponds to ImA =0, ImB =-1.] It follows that
0 must remain logarithmically divergent unless a
constraint exists between the E~ and Ne M mul-
tiplet, namely [use Eq. (7.13)]

m'(x') sin8+m'(y')qcos8 =0. (V.16)

Observe that Eq. (7.18) has a, discrete set of
solutions and that these can be distinguished only
if one goes at least to 0(g'). I have verified that
none of the arguments to follow depends in any
crucial way on which choice of solution of Eq.
(V.18) is made. For ease ofPresentation only I
shall continue with one particular solution from
here on in:

I3=4m, g=-1. (7.19)

Then the currents are: Ju' as in Eq. (V.10), and

J+"=-2ig[e*x'(x' —v, ) —e (X'-P, )e

+&y (y —vq) —&*(y vq)p-]pi

(7.20)

e i VI/4

J""=-,'ig[x'x'+y'y' —v, v, —v v

(V.21)

—i(P, x'-7'v, -P„y'+y'v„)]~ . (7.22)

The current structure we have now arrived at has
the property that all four currents J"', J"' J"'
J' ' satisfy seParately the Property of pe univer-
sality. Thus all nonuniversality appears only in
higher-order weak effects and in the fermion-mass
problem.

We are now prepared to give the proof of the as-
sertion made in Eq. (1.17) about inelastic hadron
production by v beams. To 0(G) the effect is en-
tirely due to J"' of which the hadronic part was
given in Eq. (6.24), the leptonic part in Eq. (7.22).
In quark language, the reactions v&+ X —v&

+ (q' or r') can take place. But since 5I is a nucle-
on constituent, this means that charmed hadron
production should occur to 0 (G) in v„-induced re-
actions. v„+X-y'+ (q' or r') can also occur.

Returning to the W' -mixing problem, as a re-
sult of Eqs. (7.15) and (V.19) we now have the fol-
lowing finite expressions for p and a:

1~'(x')[~ '(x'» (x'x') ™(e)e(x'e)]+~'(y')[~'(y')4 (y'y') -~'(~)4 (y'u)]j, (7.23)
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-- (m'(x')[-m'(x')P(x'x') -m'(e)P (x e)] + m'(y')[m'(y')y(y'y')+ m'(g)P(y' V)]], (7.24)

where it is understood that m(x') = m(y'), Eq.
(7.17).

These expressions bring p and 0 on rather an
equal footing. Theoretically this is interesting
since we appear to have a counterterm for o, if
need be, but not for p. Qf course this is no para-
dox. The Weinberg lemma says neither less nor
more than that if a counter structure exists, then
and only then is the occurrence of a divergence
compatible with renormalizability. But it is not
said that the presence of such a structure neces-
sarily implies the occurrence of divergences.
This leads one to the theoretical problem whether
the finiteness of p and o can perhaps be understood
because the theory has become, in a sense to be
specified, "more invariant" as a result of the as-
sumed Eqs. (7.17) and (V.18). I would like to pre-
sent an argument to this effect which is based on
a, combination of (1) Weinberg's lemma, (2) dis-
crete invariances, (3) power counting. The meth-
od will first be applied to the finite quantity p, in
order to understand its progression to conver-
gence in two stages. Then we shall turn to o. It
should be noted that this stage-wise progression
has no analog in other applications of.Weinberg's
lemma (which I have seen so far) since there po-
tential logarithmic divergences only are at stake.
Three discrete invariances will be used.

(1) R invariance From Eq. . (2.32) it is seen that
it is necessary for the validity of this invariance
that x' and v, are mass degenerate, and likewise
for y' and v„[see also the discussion of Eq. (3.11)].
Thus the applicability of R necessitates that m(x')
= m(y') =0. But the effective interactions X" and
K [Eqs. (3.16) and (3.17)] are not invariant under
R, see Eq. (6.19), while 233 [Eq. (2.16)] of course
is invariant. ~' Since an invariant term cannot
counter a noninvariant term, it follows that p and
o must vanish insofar as R applies. That is, they
must go to zero as m(x') and m(y') independently
-0. This is borne out by Eqs. (7.23) and (V.24)
but it holds to any order in g. Furthermore, by
the chirality argument of Sec. III both p and o must
be functions of m'(x'), m'(y'). Observe that for
O(4)&8 there are no tadpole graphs at all of the
types given in Fig. 2(b), 2(c), and 2(d). Thus p
and o' must vanish like m'(x'), m'(y'). By power
counting we have gained two powers of momenta
in the Feynman integrals, so that a potentially
quadratic divergence in either p or a can now at
most be logarithmic only.

(2) E invaxiance. The total invariance of the
gauge group is fully specified by its continuous

part and by A. For our discussion it is important
to ask what residual invariances remain, if any,
if we take m(x') g0, m(y') x 0. We shall locate such
an invariance, of the discrete variety, and will
call it a partial discrete symmetry. Here "partial"
connotes that it is a surviving symmetry even if
the full symmetry of the gauge group is broken to
some specified extent.

The partial discrete symmetry now to be dis-
cussed is the transformation

F: I; -p+, p -I;*, Y -Y, (7.25)

where the asterisk denotes complex conjugation.
F is somewhat analogous to the G parity of SU(2).
G involves an exchange of positive and negative
charge in isotopic multiplets, which is achieved
by the charge conjugation factor C contained in
the usual G-parity operator. In the present prob-
lem we can also change the sign of the electric
charge but without the need of the C operation.
Indeed the operator corresponding to E is given
by

E =&rRe '~3+'"'3, so [E,R] =0, (7.26)

where P„ induces Y- —Y. Thus E acting on the
Y =0 fermion quartets gives

F(f„f„f„f4)=(-f4,f„f3 fJ) (V.27)

and similarly" for the action on the scalar quar-
tets H"'. Acting on the leptons E gives x' -e;
y' —p, . Therefore we are entitled to operate
with E even if the full gauge symmetry is broken
and m(x'), m(y') are nonzero, since E leaves f, ,f,
in place. However, F is of use only insofar as
m(x') = m(e), m(y') = m(p, ) This i.s not to adver-
tise such further degeneracies as physically per-
tinent, but rather to find a further mathematical
tool which will help us to examine the dependence
of p and o on the masses of the charged leptons.

E acts on the vector mesons as follows:

(V.28)
Z Z, V

This transformation again leaves 2» invariant.
However, Eqs. (3.16) and (3.1V) show that X" is
E-noninvariant while K is F-invariant. Thus
insofar as E applies, 2» cannot counter 3C" but
it can counter X . Continuing with K", it follows
that p must vanish if m'(x') - m'(e), m'(y')- m3(p, ), m(x'), m(y') held fixed. But the same
need not be true for o; and indeed Eq. (V.24)
shows that it is not true. Then by power counting
we have now isolated four powers of mass such as
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m'(x') [m'(x') -m'(e)]; or m'(y') [m'(y') -m'(u, )]
which suppress the integral for p by four powers,
so that the potentially quadratic divergence has
been suppressed to gain a finite answer. But for
0 we have at this stage still no argument for a
suppression beyond the logarithmic stage.

(3) Uinvariance. This third step constitutes
an attempt to make use of the special realization
Eqs. (7.1V), (7.18), and (7.19) of Eq. (7.16) in such
a way that it generates a third partial discrete
symmetry, U defined by

U=(L M), (7.29)

+ y'(y' —v„) —(y —v„)g]~,
J!'„»= =,'ig [-x'(x' —v, ) —(xo —v, )e

+y (y —v„)+ (y' —v»)», ]1 ~

(7.30

(7.31)

Equations (7.10) and (V.30) show that J""and Jp»
are even under U while J.""is odd. Thus the
term

Z'=i[(J""W' -H.c.)
-ig(v, x' -x'v, -v„yo+ yov„)~Z/2]

is the only part of the Lagrangian that is odd under
U. The entire CP violation stems (to any order)
from an odd number of times in which Z' inter-
venes. The quantity X™defined in Eq. (3.17) must
therefore change sign under U hence, since W', W2

are unaffected, 0 must be odd under U. But then
insofar as U is applicable, the invariance Z» can-
not counter the noninvariant 3C . Thus 0 must go
to zero asm(x') = m(y'), m(e) = m(p, ). By the same
argument as for E, power counting isolates m'(x')
times m'(y+) -m'(x') or times m'(e) -m'(i&) as a
factor and the potentially quadratic divergence for
0' has been suppressed to a finite answer.

In order to get more familiar with this new in-
variance, I have examined a few O(g'} contribu-

where E M is the "universality substitution" in
which each member of the E quartet is exchanged
with the corresponding member of the M-quartet;
likewise for the right-handed lepton singlets. Thus
x'-y', x'-y', v, -v„, e- p, . Because of Eq.
(V.17), the substitution invariance on the neutrals
is inherent to the scheme in any event, even for
nonzero m(x'} = m(y'). Just as for E, the purpose
of considering U is once again to judge the depen-
dence on the charged lepton masses. U is the
identity operation insofar as all other particles
but leptons are concerned. Thus Z» is invariant
under U.

From Eq. (7.21) we see that J"» can be written
(J~2&r +iJ&o&& )/~g

JP."= =,' ig [7"(x' —v, ) —(x' —v, )e

FIG. 5. A set of graphs which contribute O(g ) to 0 ~

A.a =e&b . (7.33)

One finds m(x') = m(y') = 2 ~A ~a.

To conclude this paper we finally ask the follow-
ing question. Let the W" mixing be of the order
given in Eqs. (7.23) and (7.24). Does this enable
one to show that the off-shell effect needed to ob-
tain the known CP violation in K decay has the de-
sired magnitude? Since the present theory is of
the superweak variety, what we are asking is no
less than to see whether one can come to the ex-
perimental value for the imaginary part of the
Ko-Ko mass mixing which is =i~6.10 "~ MeV/c'.

It is obvious that the answer to our question
must be no, in the rigorous sense. Any hadronic

tions to o', namely such which do not require mass
and wave-function renormalizations. As is obvi-
ous, this provides a very incomplete sample, yet
it is perhaps illuminating to report what happens,
since each of the graphs have their own charac-
teristic lepton mass dependence; and that is the
issue. There are higher-order contributions to 0
which have again a single lepton loop, such as
W, W2+Z W, +Z- W, where the middle link
stems from W' ~ ' mixing O(g'). Such graphs also
give a finite contribution to o. Of somewhat more
interest is the set of graphs whose structure is as
indicated in Fig. 5, with a vector boson inside the
loop. This vector boson cannot be a Z because Z
couples to neutral leptons only; and it cannot be a
1/' because V couples to charged leptons only.
Thus it can only be a W' or W'. This leads to a
set of 32 graphs depending on which lepton com-
binations move in the loop. After some algebra
one finds that the contribution to both p and o' are
again finite if m(x') = m(y') and if 8 = —,&T, &} =-1 as in

Eq. (7.19). To recapitulate, the application of
discrete symmetries may perhaps bring the proofs
of finiteness of p and of o on an equal footing.

%'e must now ask for a treatment of the lepton
mass problem which in particular conforms to Eq.
(V.17). It is easily seen that the charged leptons
acquire mass via the couplings to H"'(c) just as
for the corresponding hadron problem (Sec. VI).
The requirements on the neutral lepton masses
are met by the interaction

Ezxo +A*Mayo+)H&o & (a, a)

+(IIK'xo -a*M'yo)H "&(ib, ib)+H c , (7.3. 2.)
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mass difference problem leads one to get involved
with aspects of strong-interaction dynamics of a
kind we have not yet sufficiently learned to cope
with. This hadronic aspect occurs whether or not
the mass-splitting mechanism is generated by
weak (and/or electromagnetic) interactions. How-
ever, one can ask a more limited question: Is it
possible to give a crude estimate which indicates
whether or not the actual magnitude of the imag-
inary K~-K~ mass difference can be obtained with-
out doing any violence to the orders of magnitude
of the parameters encountered?

In order to explore this question let us first con-
sider two mechanisms, both of fourth order in the
semiweak couplings, which contribute to the real
mass difference m„. (a) The box graphs for A61

-Xg discussed in Sec. IV. As was shown in Ref.
33, these graphs reduce to an effective current-
current interaction in the off-shell q' = 0 limit for
the quarks. This makes it possible to apply IPCAC
to the estimate of their contribution to the K, -K,
mass difference. The physical value of this dif-
ference then imposes a constraint on quark mass
differences. One can proceed in a similar way in
the present case, where two contributions appear:
One proportional to oi'b, 'h (W, -W, exchange),
one proportional to o'(a')' (2Z exchange). One
can imagine the various s's to vary relative to
each other and, as already stated in Ref. 33, this
prevents one from drawing any sharp conclusions
for these quantities from the consideration of m„.
(b) The foregoing mechanism goes via a con-
nected graph. There exists another one via a pair
of unconnected graphs: Consider the transition
A.- q' or ~'-X via virtual emission and absorption
of a Z. This induces A. X mixing. For q'-0 the

mixing parameter is -nA'm@, where m is a
typical mass of order m~, m~. XX-SLY. can pro-
ceed via two such mixings. This results in a con-
tribution to m„due to the graph drawn in Fig. 6(c),
where we have taken the liberty to introduce a
"strong" (K', X, X) vertex (of y, type). Calling its
strength f, we will get a contribution to m„
-f'~'(b, ')'mc'm~ '. We shall not dare to com-
pare this contribution to the one of mechanism (a),
since too much depends on f, to say the least.
There is no reason why these contributions could
not be comparable in magnitude.

Turning now to the imaginary mass difference
m;, it is clear that we need to inject CP-violating
mixing due to the leptons. We will get the leading
effect by using this mixing only once." One can
easily see that such single mixing is impossible
in the type (a) box graphs mentioned above. How-
ever, it is possible in the A, X-mixing contributions
of type (b): Employ A. -X via Z once and, for CP
mixing, use the graphs drawn in Figs. 6(a) and

q-or r-

(o)

K K'

(c)

FIG. 6. (a) and (b): CP-violating A,~ mixing induced
by 8' -8" mixing; (c) X -E mixing induced by A,mix-
ing.

6(b) which yield a contribution -a'i5'(a'+a ).
The product of the two mixing parameters involved
in the contribution to m; is a'5'(h'+b, )b, ' which
is one power of c. higher than for m„. Indeed if
type (b) for m„were dominant, the right order forI would follow if 5'(6'+b, )-b.'. In turn, this
allows for ranges in 6 and the ~'s. Thus for all
~'s of same order of magnitude the heavy leptons
should be quite massive (5-1); on the other hand
5 could be considerably smaller depending on b, '/
(L'+b, }. It would be imprudent to draw any sharp
morals from this. Only then would there be trou-
ble if type (a) were much larger than type (b).
All one may conclude is that the idea that m;
arises via the lepton mechanism is not obviously
outrageous.

Finally we discuss what it takes for the ~S = I
on-shell CP-violating amplitudes to be superweak.
As an example consider the process A. -6'+(P +X.
This can come about via a graph which is the non-
leptonic analog of Fig. 4(b) in which a mixed
W'- W' propagator appears IFig. 4(a} has nonlep-
tonic analog]. The effective CP violating tran-
sition operator so generated is of the type V -A
for q'«M' and is O(Ga5'). This operator should
be added to the transition operator Eq. (4.12)
which arises from Z exchange, which is also
V -A and which is 0 (G). In spite of the fact that
both operators are V-A. we may not argue, as
for the semileptonic case, that the effect of the
addition of the W'- W' graph is simply an over-all
multiplicative phase factor. The reason is that
the O(G) operator is subject to hadronic modifica-
tions which may be distinct from those of the
O(Gu5') operator. Thus the extent to which these
on-shell effects are superweak depends on two
factors: (1) the extent to which the hadronic mod-
ifications of the two graphs are similar. On this
I shall not speculate at this time. (2) Apart there-
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from, the on-shell CP effect will be suppressed
the more the smaller 5 is. Note that this possibly
independent constraint is different from the one
met for m where both 5 and the 4's appeared.
All one can conclude is that it is not impossible
for m, ,- to be of the right order and for the on-
shell nonleptonic effects to be sufficiently small.

From Eqs. (AV) one recognizes the special case
g, = g, = g to correspond to the special solution
y = 4//4, /2 = g'a', p = g'b' which leads to Eqs.
(2.19) and (2.20). We now exclude this special
case explicitly. Then

g, g, ('- ')
(g,'-g, ')(a'+b') ' 8)
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APPENDIX A; THE CASE g, & g2

4 ' ' cos2y

(a' +b')p=--
2 2

2+ 2 gl g2
eos2y

Define 8"„and W'„by

W1& V2 =
(A& -iA'„) siny —(C'„—ic&) cosy,

W2&2 = (A'„-iA2) cosy+ (C'„-iC'„)siny,

(A10)

(A11)

(A12)

The covariant derivative is

D„=s„i(g,-A„ t +g2C .p), (A, 1)

where t and p satisfy the same commutation rela-
tions as in Eq. (1.7). The expression (2.1) for Q is
retained. From Eqs. (2.4) and (2.5)

which are the generalizations to the case gl+g2 of
Eqs. (2.6) and (2.7). Then D„ takes the form

2 (g1 t2 —g2 p2)Z~

(g 2 ~ g 2)1/2

~2A~+ g, C

(g 2 +g 2)1/2 '

(g 2 + g 2)1/2

and the neutral Z field now becomes

g2CN
p (g 2+g 2)1/2

(A2)

——[W„'(g, sinyt, -g, cosy p+)
2

+W'„(g, cosyt, + g, siny p, ) +H.c.].
(A13)

Let (f,f,f,f4) denote some fermion quartet.
Then the contribution it makes to the current J"'
coupled to Z is given by

The same H's as in Sec. II are introduced, labeled
H(a, a) and H(ib, -ib). The mass of the Z mesons
is now given by

tif, = (g, '+ g,') (a'+b') . (A4)

The charged normal modes are found by noting
that the vacuum expectation values of the H's gen-
erate the terms

(-."g,'[(A„' )'+ (A'„)'] +-.'g, '[(C„' )'+ (C'„)']](a2+ b')

+g,g, (a'-b')(A„'C„'+A„'C„'). (A5)

Write Eq. (A5) in the form

42(A'„cosy + C& siny)'+ p (-A'„siny+ C'„cosy)2 +"2",
(AS)

where "2" mean the same terms but with A.'„,
C„'-A'„, C'„. It follows that ~, P, and y satisfy

(/2 -p) sin2y = g, g, (a' b'), -
2 2

(c/ -P) cos2y = ' ——' (a'+ b'),

g 2 + 2

/2+p= ' 2 (a'+b').
2

(
2 ~ 2)1/2 [(g1 g2')(f, f, -f4f4)

l 2

—(g, '+ g,')(f,f, -f,f, )] (AI4)

This shows that only for g, =g, does J"' have the
property that only neutral members of quartets
contribute to it.

For the discussion given in Sec. V it is important
to have the quantity which corresponds to Z», Eq.
(2.16) hut now for g, Wg, . One finds

= (w "w'+ w "w')
~ [4 (g, -g, ') sin2y (H, H, +H2tH2 4 H,"H, +H tH )

-2g, g, cos2y (H2tH, +HtH, )]

A consistency check on Z» is that it should vanish
in the tree approximation. This is indeed the case
as is seen from the relative reality of (H, ), (H,}
and from Eq. (AS). Note further that Eq. (A15) re-
duces to Eq. (2.16) for g, =-g, =g, y= —4'1/.

It is evident from Eq. (A15) that 212 can provide
a counterterm to renormalize the p parameter in
Eq. (3.16) if such need arises in a theory which is
not R invariant in the zeroth order. The coun-
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terterm will correspond to a rescaling of the quan-
tity (g,'-g, ') sin2y. The particular case where

g, ' -g, ' = 0 in the tree approximation but where the
theory is not fully R-invariant was discussed in
Sec. V. For this case the divergence encountered
in p is linked to a coupling constant renormaliza, -
tion such that g, ' -g, ' is no longer zero when ra-
diative corrections are taken into consideration.

However, there is a qualitative difference be-
tween the case g, = g, in the tree approximation
and g, 0g, in this approximation. To see this, con-
sider the example of the contribution of the multi-
plet E~ [given Eq. (3.1)] to the W'W' mixing param-
eter. As we saw in Sec. GI this contribution is fi-
nite for g, = g, . However for g, wg, one finds a
contribution to p of the form

(g, ' -g, ') sin2yfquzd

where I...d denotes a quadratically divergent inte-
gral. Iqu6d is independent of lepton mass parameters
and of any special choice of the parameters a„a,
which occur in Eq. (3.1). Thus the expression Eq.
(A16) has no formal zero limit value even in the
zero mass l-imit of all leptons involved.

APPENDIX II: THE (z', 2) and (~, q')

REPRESENTATIONS

These are 8-dimensional representations. The
(&, —,) is described by K,„, i = 1, 2, 3, n =1, 2, 3, 4
and

(I;)„8K;8=0.

L,3 -zL23+L3» -0,
L»~ -zL2~+L32 -0,
L»» +z L2» -I 33

= 0,
L»2+zL22 —L3~ -0 .

(B4)

-g L«(A t+C ' p) iq „sLqs

and compute its value in the tree approximation
given by Eqs. (BS) and (B4). After some calcula-
tion and with the use of techniques familiar from
spin-orbit coupling problems, the L-term yields

--',g'(c'+ c")[C,'+ C,'+ VX,'+ VAqi + (A, —Cs)']

-3g'cc' (A, C, +A, C, ) . (B6)

The K-term yields the same result but with A. —C.
From this it follows that the completed Eqs.
(2.19), (2.20), and (2.22) become

The neutral components are (L,q-iL, ~), L,», L„,
L„+iL„, and

2(c, 0, 0, -c')

(L,„)= --,'i(c, 0, 0, c')

(0, c', c, 0)

Here the (L,g have been chosen such that they are
related by 8 to the (K,„), that is for fixed i the
relation Eq. (2.32) holds; while acting on i: K- L
It is this linking of the (L, ) to (K, ) which will
maintain 8",S' as normal modes.

Indeed, consider the quantity

-g'K~t (A ' t+C p)'
q „SKIES

In the representation for t, given in Eq. (2.1V), Eq.
(B1)becomes

K»2 —zK22+K3» -0,
K»» +iK2» -K32 =0,

K»4 —iK24+K33 =0,

K»3+zK23 -K34-0 .

M, ' =2g'[b'+3 (c'+ c"—cc')],

M, ' = 2g'[a'+3 (c'+ c"—cc')],

M,' = g'[2(a'+b') +3(c'+c")],
so that in general Eq. (2.22) becomes

(88)

(B10)

The neutral components are (K,q-iK, q), K», K»,
K»z+iK», only two of which are independent

by Eqs. (B2). Let (K,„)denote the most general
vacuum expectation value set. Then

2(c, 0, 0, -c')

(K«}= ,'i (c, 0, 0,c')—
(0, c, c', 0)

where the rows are written in the sequence i =1, 2, 3
and where a =1, . . ., 4 within each row. c and c'
are taken to be real.

The (—,', —,') is L, , (p, )„8L,8 =0, whence again
from Eq. (2.17)

(and t'& —,') .
I have not found an argument which determines

the scale of c, c' relative to the other vacuum ex-
pectation values. Thus $ may be close to unity
though not equal to unity. Nor have I found an
argument which implies that c and c' need to be
unequal. With c = c' one can use real representa-
tions. For generality the formulas are displayed
for c4c'.

Finally we write down some identities which are
needed for the fermion mass problem. Let fi
= (f', f', f",f )i be a (—', , —,') representation in the
spherical base described in Sec. II. Let f~
=(f, ,f„f,)s be a (1, 0) representation in a Car-
tesian base, so that the spherical base [as used in



Eq. (5.1)] is

fan=� (f(+ if2}s

Then

2f~t fs(H(a, a'))+H.c.
=(af'f'+a'f f )~&

—af'f'+-,'a'(1'" (1 —y, )f'+H.c.) . (S12)

+ [f"(1 -x,)f'+H c.] 816)

APPENDIX C: ONE-TRIPI. ET MODEI.S
AND THEIR EMBEDDING

The number of quarks deemed necessary for
model building has proliferated in recent years.
This is true both in the discussion of yurely ha-
dronic problems (three-triplet models) and of the
gauge yroblexns. This lends a speculative touch,
since at this time no evidence exists for hadronie
symmetry groups larger than SU(3). However this
may be, the least one must require is to show how
a set of quarks introduced for gauge model building
is not at variance with the requirements of hadron
physics as we know them. In PRL I have called
this the embedding problem. In this appendix it is
noted that the eight quarks introduced in this and
other gauge models, if not too many, are at least
properly embeddable. From the point of view of
SU(3) the quark assignments of Refs. 9 and 33 and
the present paper may be called a one-triplet mod-
el since only O', X, A. are taken as integrally
cl(a(ged SU(3) triplet, the other quarks as SU(3)

For the case that fs is (0, 1) and with the same
definitions as in Eq. (811),

2f~p f„(H(a, a'))+H.c.
=(a'f'f'+af f )&2

+af'f' --,'a'(f,'(1 —y, )f, +H.c.) . (H13)

For f s = (1, 0) we further have

W2 f~„(L;„)f(s +H.c.
=cf'f'-c'f f +c'f f'W2

+(c/~~)(f" (1 —~,)f'+H c ), (»4)
and for fs = (0, 1),

~~fi «( )f(s
=cf 'f'-c'g f +cf f'W2

singlets. It has been noted in Sec. IV that such re-
quirements as CVC and ~'-2y can be taken care
of. The additional question arises not only of the
embedding in SU(3) but also in static SU(6).

The description of the baryon octet; given in Ref.
9 in which the proton is a (phq' state etc. (Sec. 11(')

is adequate for SU(3). This model is not adaptable
to SU(6) since this group demands that the octet
contains three valence fermions with I=2. How-
ever this can be remedied by adopting a "nuclear
model" for the baryons, a suggestion which has
been yut forward some time ago": Let the proton
(for example} have valence quarks (PgX and let
there be a spin-zero SU(3) singlet "nucleus" with
Q = -I. Further, let the main binding forces be
due to a strong attraction between 6', O', X and this
"nucleus. " Then one ean incorporate the 56 de-
cription of SU(6) even in a one-triplet model, since
it does not follow from space syxnmetry that this
nuclear model is unstable. Since, for example, a
system like q q' can serve as a "nucleus, " it fol-
lows that the presence oi SU(3) singlet quarks ob-
viates the strict necessity for three-triplet ver-
sions of baryon structure. The purpose of this
comment is not to take any such models in a too
literal sense but, to repeat, to show that one-
triplet models may at least be viable.

As is evident from Refs. 9 and 33 and this paper,
the minimum extension of SU(3) needed is SU(3)
x U(I). Since five singlets is a large number, one
can speculate about groups in which the number of
singlets is fewer. This is being pursued by Cheng
and the author. On behalf of us both, the follow-
ing simple comments are made.

(1) Extension to SU(4). This is possible it one
has one quartet plus four singlets. Two quartets
are out since it does not satisfy the m' 2y condi-
tion Eq. (1.12), to say the least.

(2) Extension to SU(4}xSU(4)' with the usual
SU(3) as a subgroup of SU(4). This enables one to
accommodate the eight quarks in (4, 1)$(1,4). Here
quartets in the gauge group match quartets in the
hadron gl ouy.

(3) The possibility to envisage baryon states
with distinct "nuclei" made up from distinct spin-
zero structures allows one to speculate about the
origin of states like the Hoyer resonance.

[Finally, note that the quark charges are neces-
sarily integral in O(4), but not in O(4) && U(1). Also,
for fractloQal charges one can have a Quclear
model, but then Eq. (1.12) cannot be satisfied with
one triplet. ]
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