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The methods of current algebra are applied to the problem of calculating corrections to the

symmetries of the strong interactions in renormalixable gauge theories of the weak and electromagnetic

interactions. The strong interactions are described by a neutral-vector-gluon model, so that their

symmetries are just the symmetries of the quark mass matrix, and are determined by the vacuum

expectation values of the weakly coupled scalar fields. Corrections to these symmetries are calculated to
all orders in the gluon coupling, but only to second order in the gauge coupling e. After putting the

results in a gauge-invariant form, it is found that all divergences cancel in the corrections to "natural"

symmetries of the strong interactions. The weak interactions can produce corrections to
strong-interaction symmetries of the same order of magnitude as the electromagnetic corrections, but

such "order a" efFects occur only as corrections to the quark mass matrix, and therefore necessarily

conserve parity, strangeness, charm, etc. , and may produce only isovector corrections to isotopic-spin

conservation. It is suggested that these wea¹interaction effects of order a are responsible for the
nonelectromagnetic corrections to isotopic-spin conservation which seem to be needed in calculations of
mass difFerences and q decay.

I. INTRODUCTION AND SUMMARY

The gauge theory of weak and electromagnetic
interactions has appropriated many of the physical
problems, mathematical methods, and personnel
that had earlier been associated with current al-
gebra. However, there is still lacking a unified
theoretical framework, which would incorporate
the best features of current algebra and gauge
theories, Our need for such a synthesis is in-
creasingly urgent, for a number of reasons:

(I) It is essential to be able to apply the gauge
theories to processes involving hadrons, especial-
ly because the greater part of our experimental
information about the weak interactions comes to
us from semileptonic processes. Most of the work
along this line so far has simply used lowest-or-
der perturbation theory, ignoring the strong inter-
actions altogether. Eventually, if we want to do
reliable quantitative calculations, we are going to
have to include effects of the strong interactions,
and it appears that current algebra is the only tool
available for this purpose.

(2) There appears to be a conflict between the
assumptions made in current algebra and the
gauge theories as to the origin of the broken sym-
metries of the strong interactions. In current al-
gebra, it is assumed that the strong interactions
obey a group of aPProximate global symmetries,
such as chiral SU(2)I3SU(2) or SU(3)SU(3), which
are spontaneously broken down to isospin and
hypercharge conservation; in consequence, the
pion and perhaps other spin-zero mesons must
have low mass and satisfy approximate low-ener-

gy theorems, more or less like Goldstone bosons.
In contrast, in the gauge theories it is usual to
suppose that the only fundamental symmetries of
the Lagrangian are a set of exact local symme-
tries are spontaneously broken down to electro-
magnetic gauge invariance, but the Goldstone bo-
sons associated with this symmetry breakdown
are unphysical particles, which can be removed
by a gauge transformation. If we accept the view-
point of the gauge theories, then what is the pion,
and why should it satisfy low-energy theorems'P

(3) Many of the successful predictions of current
algebra are based on an ad hot.- identification of the
weak and electromagnetic hadron currents with
the conserved or approximately conserved cur-
rents of the underlying group of approximate
strong-interaction symmetries. On the other hand
hand, the gauge theories prescribe the nature of
the weak-interaction currents almost uniquely, so
that we have a chance of either explaining or con-
tradicting the assumptions made in current alge-
bra.

(4) It is a general feature of the unified gauge
theories that the exchange of virtual intermediate
bosons can produce "radiative" corrections of the
same order of magnitude as produced by exchange
of an equal number of virtual photons. This im-
mediately raises the question of why parity and
strangeness conservation are not violated in or-
der n, a question that must be answered using the
tools of current algebra within the context of spe-
cific assumptions as to the nature of the strong
interactions. In addition, we must now modify the
various current-algebra calculations of isotopic-
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spin breaking so as to include intermediate-vector-
boson exchange as well as photon exchange.

This paper is the first of a series which aims at
the incorporation of current algebra into the gen-
eral framework of the renormalizable gauge theo-
ries of weak and electromagnetic interactions.
The material presented here is an outgrowth of
recent work' ' on the problem of approximate
symmetries in perturbation theory, and, as in
this recent work, our concern here is not with
specific models, but with the general features of
renormalizable gauge theories.

Before descending into technicalities, it may be
useful to run through an outline of the general
ideas which underlie both this paper and future
papers of this series.

The first step is to decide on a specific model
of the strong interactions. Clearly, one necessary
condition is that the asymptotic behavior of had-
ronic matrix elements of the currents should be
mild enough at large momenta so as not to spoil
the renormalizability of the theory. One way to
guarantee this, and the only way to be considered
here, is to describe the strong interactions them-
selves in terms of a renormalizable field theory.
This requires that the strongly interacting fields
appearing in the Lagrangian must be limited to a
set of elementary spin- —,

' baryon or quark fields,
plus either

(a) a massive neutral vector gluon strongly cou-
pled to an absolutely conserved quantity such as
baryon number;

(b) a set of strongly interacting gauge fields, '
with masses produced by spontaneous symmetry
breaking;

(c) a set of spin-zero fields with strong Yukawa
couplings to the fermions'; or

(d) any combinations of (a), (b), and (c).
It turns out that our work is very much simplified
if we adopt case (a), and in the present paper it
will be explicitly assumed that the only hadron
fields in the Lagrangian are spin- —,

' baryons or
quarks plus a neutral vector gluon. We shall see
that the inclusion of other strongly interacting
fields [as in cases (b), (c), or (d)] would raise
serious obstacles to the resolution of some of the
four problems listed above.

In addition to the strongly interacting fermion
and gluon fields, the Lagrangian must contain a
set of spin-I gauge fields and a set of spin-0 fields
(t) „all with couplings nominally of order e. The
gauge group is spontaneously broken through the
appearance of vacuum expectation values of the
scalar fields. In consequence, all the vector par-
ticles except the photon pick up large masses, and
the fermion mass matrix becomes, in zeroth or-
der

q

m = neo+1 ]A.)

Here m, is the bare mass, which must be absent
in theories with chiral gauge groups, I",- is the
matrix describing the Yukawa coupling of g; to
the fermions, and A, is the lowest-order value of
the vacuum expectation value of P, . Note that the
term I', A. ; is of zeroth order, because I', is of
order 8 and A, , is of order 1/e.

Now, it is crucial at this point to realize that
the symmetries of the strong interactions in the
limit e-0 are precisely the symmetries of the
zeroth-order fermion mass matrix (1.1). The fer-
mion-gluon coupling is invariant under all unitary
global transformations on the fermion fields, in-
cluding chiral transformations, so the invariance
group of the strong interactions just consists of
those unitary transformations which commute with
m. It is well known that by a suitable redefinition
of the fermion dields, any mass matrix can be
transformed into a real diagonal matrix free of

y, terms, ' so the strong interactions must neces-
sarily conserve Parity, as well as all quantum
numbers such as strangeness, charm, etc. which
can be expressed in terms of the numbers of dif-
ferent types of quarks. However, the strong in-
teractions do not necessarily obey the underlying
gauge symmetry of the theory, even in a global
sense, because, as shown in Eq. (1.1), the fer-
mion mass matrix may receive a contribution of
zeroth-order in e from the vacuum expectation
values of the nonhadronic scalar fields. Never-
theless, even though the zeroth-order fermion
mass matrix need not enjoy the full gauge invari-
ance of the Lagrangian, it often turns out that it
is invariant under some natural symmetry group
of global unitary transformations on the fermion
fields. ' ' By a "natural" zeroth-order symmetry
is meant here an exact symmetry of the zeroth-
order mass matrix which does not depend on some
particular choice of parameters in the Lagrangian,
but which arises for all renormalizable gauge in-
variant models based on a given set of elementary
fields. Such natural zeroth-order symmetries
can arise either because not all of the scalar fields
which could participate in Yukawa interactions
actually appear in the theory (these are called
"type 1" symmetries), or because X, is subject to
certain constraints (these are called symmetries
of "type 2" and "type 3").' As frequently empha-
sized, natural zeroth-order symmetries are at-
tractive not only on aesthetic grounds, but also
because the weak and electromagnetic corrections
to such symmetries are necessarily finite and cal-
culable. "

It is proposed here that isotopic-spin conserva-
tion is just such a natural zeroth-order symme-
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try. It presumably arises because the gauge in-
variance and renormalizability of the Lagrangian
force some eigenvalues of m, say, the zeroth-
order masses of the 6' and quarks, to be equal.
Models of this sort are by now well known. "

It is also possible that SU(3) or chiral SU(2)
CISU(2) or SU(3)SSU(3) are natural zeroth-order
symmetries of m. They could arise if three
eigenvalues of nz were forced to be equal, or if
two or three were forced to vanish. " However,
the status of these badly broken symmetries seems
much more in doubt. "

Any sort of natural zeroth-order symmetry of m
can be broken in either or both of two different
ways: Higher-order effects of the weak and elec-
tromagnetic interactions will introduce correc-
tions which are at most of order n, and in addi-
tion there may be a gross spontaneous breakdown
of the symmetry due to the strong interactions
themselves. " In the limit e 0, a spontaneous
breakdown intrinsic to the strong interactions will
be manifested through the failure of physical ma-
trix elements (including physical masses) to obey
the symmetries of the zeroth-order mass matrix
(1.1), and will be accompanied by the appearance
of massless spin-0 bosons, one for each broken
zeroth-order symmetry. " These are "pseudo-
Goldstone" bosons" rather than Goldstone bosons,
in the sense that the broken symmetries are not
gauge symmetries of the whole Lagrangian, but
are merely global symmetries of the zeroth-order
mass matrix, even though these symmetries are
supposedly forced on us by gauge invariance and
renormalizability. In consequence, the pseudo-
Goldstone bosons are not eliminated by the Higgs
mechanism" when we turn on the gauge interac-
tions, "but instead pick up masses of order e, in
units of a typical hadronic mass.

As already mentioned, isotopic-spin conserva-
tion is presumed to be a natural zeroth-order
symmetry. There is no reason to suspect that it
will be spontaneously broken by the strong inter-
actions in zeroth order, so we do not expect
pseudo-Goldstone bosons here. However, both
the weak and electromagnetic interactions produce
corrections to isotopic spin conservation of order
Q.

On the other hand, if chiral SU(2)IISU(2) is a
natural symmetry of m, then on experimental
grounds it must be spontaneously broken, giving
rise to a massless pion, which must obey all the
familiar low-energy theorems. The weak and
electromagnetic interactions would then break
SU(2)SSU(2) and produce a squared pion mass of
order n It should be re.called that m, '/ &'mis in
fact equal to 2.3e, so this sort of calculation may
turn out to give the right answer. However, it is

e' d'k F„s(k')(k'+ p') '„s, (1.2)

where I' is a matrix element of two vector cur-
rents and p.

' is the vector-boson mass matrix.
The photon appears as an eigenvector of p,

' with
eigenvalue zero, and gives a correction of order
o.. On the other hand, if F(k') vanished as k'-~
faster than 1/k', then the contribution of an inter-
mediate vector boson of very large mass should
be suppressed by a factor 1/g~', so that instead
of a correction of order a, we would get a contri-
bution of order Gr -e'/p~'. The only corrections
produced by a heavy intermediate vector boson
which would be of the same order of magnitude as
the electromagnetic corrections are those which
arise from terms in F(k') which behave like 1/k'
(times powers of ink') as k -~. According to the
analysis presented in Sec. IV, the only such terms
are those arising from diagrams in which the two
currents are separated from the external hadron
line by a "bridge, " consisting of either two fer-
mion lines, two gluon lines, or two fermion lines
and a gluon line. There is no way that corrections
to a gluon self-energy can affect any symmetry of
the strong interactions, and the corrections to the
gluon-fermion vertex are related by gluon gauge
invariance to the corrections to the fermion self-
energy. We conclude that the corrections to natu-
ral seroth order symm-etries of order o. (as oP-

not clear whether a similar mechanism could ac-
count for the masses of the E and g,

The present paper deals only with the "intrinsic"
breaking of natural symmetries by the weak and
electromagnetic interactions. In future papers the
spontaneous symmetry breaking due to the strong
interactions will be taken into account, with spe-
cial attention to the weak and electromagnetic con-
tributions to the pseudo-Goldstone boson mass
matrix, It will be shown there that the possibility
of spontaneous symmetry breaking necessitates
no changes in the conclusions of the present paper.

Our assumptions are spelled out in detail in Sec.
II. Then in Sec. III the methods of current algebra
are used to express the corrections to a general
hadronic 8-matrix element of order e' as a sum
of gauge invariant integrals. The asymptotic be-
havior of the integrands is estimated in Sec. IV,
and the results are used in Sec. V to show that
each integral contributes a finite correction to
any natural symmetry. " Finally in Sec. VI we
isolate those parts of the weak-interaction correc-
tions to natural symmetries which are of the same
order of magnitude as the electromagnetic correc-
tions. The corrections to the S matrix due to ex-
change of a photon or an intermediate vector bo-
son are of the form
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5m =y4(t„ ts, y4m) C„s+I'(g(, (1.3)

where the t are the matrices (perhaps involving
y', terms) which represent the algebra of the gauge
group, 1, are the Yukawa coupling matrices of

posed to Gr) consist solely ofone ph-oton ex-change
terms plus a tceah correction 5m to the fermion
mass matrix.

This is by far the most important result derived
in this paper. One immediate consequence is that
parity, strangeness, charm, etc. are automati-
cally conserved in order n, because by a unitary
transformation on the fermion fields we can re-
duce the total fermion mass matrix m + 5m to a
diagonal matrix free of y, terms. " In addition,
the weak interactions now appear as the source of
the "tadpoles" which have been needed in theories
of isospin breaking since the work of Coleman and
Qlashow. If the elementary fermions of the the-
ory all have isospin 0 or —,', then 5m consists
purely of BI=0 and AI=1 terms, in agreement
with the well-known observation that photon ex-
change can explain ~I= 2 effects such as the pion
mass difference and the quadratic part of the Z
mass difference, but not AI= 1 effects such as the
nucleon or kaon mass differences. " In particular,
the Sutherland theorem" may indicate that the de-
cay g-3n arises almost entirely from the weak
interactions. "

We can now see why a neutral vector gluon theo-
ry of strong interactions is so attractive. In gen-
eral, when we introduce other strongly interacting
boson fields of spin 0 or 1 into the Lagrangian,
parity, strangeness, etc. may not be natural
zeroth-order symmetries. Even if parity and
strangeness axe natural zeroth-order symmetries,
we would expect the weak interactions to produce
corrections to the trilinear and quadrilinear boson
self-interactions and to the boson-fermion Yukawa
interaction which would be comparable in magni-
tude to the electromagnetic corrections, but which
would not necessarily conserve parity and strange-
ness. No "diagonalization" could be expected to
remove such order Q. violations of parity and
strangeness. Finally, even if the weak interac-
tions did not produce any corrections of order n
anywhere but in the fermion mass matrix, the
unitary transformation which diagonalizes this
matrix would produce violations of strangeness
and parity in the Yukawa coupling between the
fermions and any boson except a neutral vector
gluon.

Although the presence of strong interactions
prevents us from being able to calculate even the
weak corrections of order n, we can still say
much about their matrix structure. In general,
5m has the form

the scalar fields, C is a series of powers of the
matrix lnp", and 6, is a set of fairly complicated
real coefficients. (The prime on p, indicates that
the photon mass is taken to be A rather than zero,
where A is the cutoff used in calculating the ordi-
nary photon exchange term. ) Under assumptions
related to Bjorken scaling, "the matrix C„8 would
be simply

C~s ——&(1n(g "/A })„&, (1.4)

with 6 a dimensionless real number, perhaps just
given by the Born approximation. " In addition,
for natural symmetries of type 1, the second term
in (1.3}may be dropped, so if (1.4) is correct,
the whole "tadpole" would then be uniquely deter-
mined by the intermediate-vector-boson mass ma-
trix and the single constant C. Applications of
these results will be discussed elsewhere.

II. STATEMENT OF THE THEORY

with

Q„=—Bu B„—9 Bu,

u
= ~uA&, —0 „A~u C&8yA~uA

(D~ Q); =—9~ Q;+ i(8~)UQ,.A~~,

(D„P)„=-s„g„+ '(t„)„g A „+ 'g P„B„.

(2.1)

(2 2)

(2.3)

(2 4)

(2.5)

Here C„B& are the structure constants of G, and
L9 and t are the matrices representing the Lie
algebra of G on the P, and g„ fields, respectively,
with

[8„,8s] =i Cnsy 8y ~

[ta, ts] =i C„sy ty ~

(8.),*, = (8.), , =-(8.)„,
tu = t0. ~

(2.6)

(2.7)

(2 8)

(2.9)

We assume that the only elementary strongly in-
teracting particles are a set of spin- —,

' baryons or
quarks with fields g„(x), and a single massive
neutral vactor gluon with field B„(x). The gluon is
assumed to be coupled to quark or baryon number,
taken here to be absolutely conserved. In addition
to the hadron fields, the Lagrangian also contains
a set of gauge fields A &(x) and real scalar fields

P, (x), coupled in such a way as to make the La-
grangian invariant under a gauge group 6, The
gauge couplings of A„„are of order e, and the
Yukawa eouplings of fII),. are no stronger, and
perhaps much weaker.

With these assumptions, the Lagrangian takes
the form"
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Also, m, and I',. are G-covariant and Hermitian
matrices, in the sense that

value, which in zeroth order is a quantity A., sat-
isfying the symmetry-breaking condition

[t,y«m«] =0,
[t„,y«I'(] = -(e„)((y«F&

mp /am pj 4

Y4 ~f +4

(2.io)

(2.11)

(2.12)

(2.12)

»(y)
8 P,.

=0 at y=x . (2.15)

The zeroth-order mass matrices of the spin-0,
spin--,', and gauge fields are then

»(y) (e„)„(p,. = 0 . (2.i4)

Both I',. and t may contain terms proportional to
y, . The polynomial P((p) is real and G-invariant,
in the sense that

sy,.ay,.

m = mp+I') g],
(t(') ((=z ((e, e, h) (.

(2.i6)

(2.iv)

(2.18)

The quantities C~s&, t~, and I9„are all of order e,
while I',. is of order e or less, and g~ is a real
coupling constant of order unity.

The gauge symmetry group G is broken by allow-
ing (P,. to have a nonvanishing vacuum expectation

The effective Lagrangian is obtained by shifting
the scalar field

(2.18)

and introducing a complex spin-0 fermion "ghost"
field &„. This gives an effective interaction'.

&'=-igspr" yB&- ter" tg&.„+ (28&„„- sa„&) „c&((x,x& 'C„,—&—c „a((&a,„x&&z", is&y(-(e„)(&y(a„&
—(e,e„~),(p(a„„A. , —,'(e,. e„—),,0( (p,'w"„a,„0r(-44 (-,f„„4(' 0,' 4' „f(,-„,
—S (( (d((C~ ((y (d sA y

—$ (d(( (d (((e (( e~h) ( (P( (2.20)

where

s'I'(y)
e(t (e 4(et'«

s'I (y)

(2.21)

(2.22)

(h) =(h'+ ~.') ', , + (e„~),(-e,h), (h').
x (th'+ ((') '„s,

t(d (h) =(iy"h„+m) '„

~:,(h) = &(th'+ (")-'.,
t(.„„(h}= q„„(h'+ ((((') ',

(2.24)

(2.26)

(2.26)

(2.27}

with propagators of derivatives of fields taken as
the corresponding derivatives of the propagators
of the fields. For P, w 0 this theory is manifestly
renormalizable, while for $ = 0 it is just what we
should get by applying the canonical quantization
procedure to (2.1) in a "unitarity" gauge in which
all true Goldstone bosons are absent. " In what

and $ is a free parameter which depends on our
choice of gauge. " The correct Feynman rules are
generated by using (2.20) as if -2' were the inter-
action Hamiltonian, but taking the propagators as

d „"„„(h)=(l„,(h'+P') ',
(1 —&)h„h„((h" t ')-'(@"t ')-').. .

(2.23}

follows, we shall keep $ arbitrary, and will check
explicitly that all observable results are t'-inde-
pendent.

The strong interaction part of the Lagrangian in
this theory may be simply identified as that part
of the Lagrangian which survives when we neglect
all quantities of order e or smaller:

Z„„„s= Py" (&„-+igsBq)g /mal ——«G„„G""

(2.28)—2pq B~B",

with m given by (2.1V). [Recall that (2.18) re-
(luires A. to be of order I/e, while I' is nominally
of order e, so the term I', A,, in m is of zexoth or-
der in e, and must be included in the strong inter-
action Lagrangian. ] The Hermiticity conditions
(2.12) and (2.13) allow us to redefine the fermion
fields so that m is a real diagonal matrix free of

y, terms, ' and we shall assume that this has been
done. Parity is thus automatically conserved by
the strong interactions.

Aside from the fermion mass term, the Lagran-
gian (2.28) is invariant under the full group of
unitary transformations on the fermion fields, in-
cluding unitary transformations which involve y,
matrices. Hence, the actual symmetry group of
the stronginteraction consists precisely of those
unitary transformations g- Ug (ohich leave the
fermion mass matrix m invariant, in the sense
t at
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U y4m U=y4m, (2.29)

it being understood that U may contain terms pro-
portional to y, as well as 1. For instance, if there
are n, fermion fields of zero mass, n, fermion
fields of equal nonzero mass, n2 fermion fields
with a different nonzero ma. ss, and so on, then the
symmetry group of the strong interactions is"

U~(no)SU+(no)U(n, )SU(n )S ~ ~ . (2.30)

It is clear that this strong-interaction symmetry
group may have a structure entirely different from
that of the underlying gauge group G. However,
the zeroth-order mass relations of interest here,
whether they take the form of a vanishing or an
equality of masses, are supposed to arise solely
because of the G invariance and renormalizability
of the Lagrangian (and our choice of elementary
particle fields), and not because of any special
choice of parameters in the Lagrangian. There
are various ways that this can come about, which
have been extensively discussed in the recent lit-
erature. ' "However, until the end of Sec. VI we
will not need to specify just how the zeroth-order
mass relations arise. For the present, we shall
simply assume that there are "natural" zeroth-
order symmetry relations which are obeyed by the
fermion masses for all values (in at least a finite
range) of the parameters in the Lagrangian. Our
problem then is to calculate the weak and electro-
magnetic corrections to such natural symmetries.

Before entering on our analysis of the weak and
electromagnetic effects, it will be necessary to
say a word about the renormalization technique to
be used in dealing with the sA'ong interactions.
Normally, as in quantum electrodynamics, one
would define a renormalized mass m~ as the posi-
tion of the pole in the fermion propagator, use m„
in place of the zeroth-order mass m in the free-
field Lagrangian, and compensate by adding to the
interaction a counterterm

(2.31)

tion approach arises when the zeroth-order mass
matrix m is subject to constraints. Simple con-
straints on m, which require some of its eigen-
values to be equal or to vanish, cause no particu-
lar problem, as they merely require the corre-
sponding eigenvalues of m~ to be equal or to van-
ish. However, more complicated linear con-
straints on m may force the renormalized masses
to be subject to nonlinear constraints which de-
pend on the coupling constant g~. For example,
if the gauge group is SU(3), and the fermions form
an octet whose masses arise from the vacuum ex-
pectation values of an octet and a singlet of scalar
fields, then the bare masses will be subject to the
Gell-Mann-Okubo rule:

3mA+ m~ —2mN-2m~=0 .
In consequence, the renormalized masses will be
subject to a g~-dependent constraint:

3m gA+ my~ —2mRN 2mRX

2
= g~, [3A(m„~)+A(m ) —2A(m„„)—2A(m —.)]

+0(g '),
where

1

A(m) —= min[ gs'(1 —x)+ m'x'j(1+ x)dx .
0

When the renormalized masses are subject to con-
straints of this type, it is incorrect to treat the
m„as parameters of zeroth order in generating a
perturbation series (The .same problem arises if
we define m~ according to Bogoliubov, as the val-
ue of the reciprocal fermion propagator at zero
mome ntum. }

This problem is essentially the same as en-
countered by Lee and Gervais" in their study of
the o model, and the solution here is much the
same. We must define an "intermediate renor-
malized mass" m, as

with m defined by the condition that the complete
self-energy insertion, including 5Z, should vanish
at the pole. For instance, to second order in g~',
and neglecting all effects of the weak and electro-
magnetic interactions (except of course for their
zeroth-order contributions to m) the zeroth-order
and renormalized mass matrices are related by

mr —= mZ,
with

Z=- lim

For instance, (2.32) gives, to order gs',

(2.33)

(2.34)

(2.32)

2| 7 I p2
Z=1 —

2
——+ ln (1+x)dx8v 4 o ps'(1 —x)

(2.35)

with A being an ultraviolet cutoff.
The difficulty with this conventional renormaliza-

The intermediate renormalized mass is finite; for
instance, (2.32)-(2.35) give, to order gs',
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However, since Z is manifestly m-independent,
any linear constraint on m immediately imposes
the same linear g~-independent constraint on mr.
There is therefore no difficulty in regarding the mr
as parameters of zeroth order, using mr in place
m in the unperturbed Lagrangian, and compensat-
ing by adding to the interaction a counterterm

5g= —g(m —mz)P . (2.3V)

We shall see that there are advantages in apply-
ing the intermediate renormalization technique,
even apart from the possibility of mass con;
straints. Therefore it will be tacitly assumed
from now on that subtractions in vertices and glu-
on self-energy parts, as well as fermion self-en-
ergies, are defined at zero fermion mass.

III. SYMMETRY BREAKING IN ORDER e2

We wish to calculate the weak and electromag-
netic shift 58» in the S matrix for a transition

~r mz ~+, ln-- 2- 2 2 1+gdx8w', t), '(1-x)+ m 'x'

(2.36)

from a general hadron "in" state I to a general
hadron "out" state E. The strong interactions
will be taken into account to all orders in the cou-
pling constant g~, but the weak and electromag-
netic interactions will be included only to order
8 .

In counting powers of e, it mill be assumed that
ee9 te9 and Casy are all of order e9 while r49
f,», and f,», are at most of order e. However,
we want the nonvanishing elements of the zeroth-
order mass matrices M 9 m, and p. to be of
zeroth order in e9 so X must be taken of order
1/e.

With this understanding, the only weak and elec-
tromagnetic terms in (2.20) that concern us here
are the hadron terms of first order in e'.

O'"„A„„+S, (t), 2

where J" and S,. are the hadronic "currents"

zg-=~/yet„y,
s, =--tr, l,

(3.1)

(3.2)

(3.3)

plus the first-order terms involving P', which can
produce (t)' tadpoles:

-(8( en&)( ef &n,&g ~sf yak ef ef ek t'~a -~8(ess &) g eg (3.4)

The strong interactions wi11 be taken into account by using a "strong Heisenberg representation, " in which
the hadron fields Ic) and B„obey equations of motion and commutation relations dictated by the strong-in-
teraction part of (2.1}:

g„,.„,=-Ity)'(S„+tg, a„)q (t)my ,'-G„„G)'-" —',m, 'a„—a)'. (3 5)

In this representation, the currents (3.2) and (3.3) obey the conservation law (assuming the cancellation of
all Adler-Bell- Jackiw anomalies}

s„z„"=-t(e„x),s,

and the commutation relations

[J'„(x,t), Z8(y, t)] =-i5'(x-y)C 8&J&(x, t)+S.T. ,

[J0(x, t), s, (y, t)] = f3(x- y)(e„)„s,(y, t),

(3.6)

(3.V)

(3.3)

where "S.T."denotes Schwinger terms, assumed here to be c-numbers. (In theories with strongly inter-
acting spin-0 fields, there are q-number Schwinger terms and seagull terms, and in addition the I' prod-
ucts below must be replaced with 7*products. I have checked that gauge and Lorentz invariance are
achieved in such theories through cancellations among these three complications. }

The diagrams for Ger fall in three general classes, shown in Fig. 1. Those diagrams in which a gauge
boson is exchanged between two currents give a contribution

2 2 =(22) 2 (2 —2 ) fk FI'F„„F„(k)k""'2"(2),

where

IF"„, (k)
2(2

fd'*(2'(T(2=-F(F)2.2.(F))IF)F"'*.

Those diagrams in which a spin-0 boson is exchanged between a pair of currents give a contribution

(3.10)
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6gSdq=(2v) 5 (Pdd —Pd) d k 6'(s (k)b(~j(k), (3.11)

where

8:„'(k)=, d'x&zl T(s,.(x)s, (0)) If), e*" . (s.12)

(The subscript C implies that we are to leave out disconnected graphs proportional to the vacuum expecta-
tion value of S, 'because such graphs are included in the tadpole contribution below. ) Finally, those dia-
grams in which a single spin-0 boson tadpole is attached to a single current give a contribution

6,S„,=(2v)'5'(P„-P, )r', 'I ',., T, ,

where

(3.13)

=- »,)-. &Pls, (0) I»

and T~ is the sum of all first-order tadpole graphs:

s, = ,'f I fd='s d~d (s) —,'((ss)'(s (0)), —(8 sss) q" f„d' d","„ss„(k)~ ( '(s
~ Hs), d's d,"~(s) .

(3.14)

(3.15)

We must now combine (3.9), (3.11), and (3.13) into a $-independent formula for 5Szz. To this end, we
note that the conservation and commutation relations (3.6)-(3.8) impose a relation on the matrix elements
(3.1O), (S.12), and (3.14):

k('k'6: „'„,„(k)= (8„~),(e,~ ), 6:„'(k)- (8,8.~), 6'rl- f, k'C.„6:„', (s.16)

&).'=-2(2 )d&Pld), .(0)II).

We can use this result to rewrite (3.9) as a sum of three terms:

5~SFI 5~iSFI+ 5~2SFI+ 5&3SFI

of which the first is just the contribution of the g„„part of 6:
5„,Sd„= (2v)'6'(Pd, P, )q"" d'-k 6'"'„8„(k)(k'+Id') ' 8, ,

(3.17)

(3.18)

(3.19)

and the second and third are the contributions of the k„k„part of 6", arising from the first and second
terms in (3.16):

6„,S,= -(2w)'(1 —])6'(P„P)(8 z), (e—,z), d k 6 „'(k)((k-'+ p') '($ k'+ g') ') „8, (3.20)

6„,S,=-(2v)'(1- t)6'(P, -P, )(e,e.~), Sf ' d'k((k'+ p') '(tk'+ p, ') '), . (3.21)

[The last term in (3.16) drops out in a symmetric integration. j Also, the P-exchange term (3.11) may be
written as a sum of two terms arising from the two parts of A~:

~@SFI ~@J.SFI ~SFI
where

s„s„(s )' ( , s)fsd'sss„'(=s)(s*. sd*)-'-, ,

(3.22)

(3.23)

6@ S =(2v) 5 (P —P )(e„d).) (8()d(.)~ d k 6';~(k)(k ) (t'k + Id ) 8 ~ (3.24)

Finally, the tadpole term (3.13) may be written

rSFI = 5r~SFI+ 5r2SFI ~

where

(3.25)
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il,s = (kw)'ll (P —P )}F,. M ',.
w 2;„f—d 2 (2 ~ M ) ', ~ i(2w)'(9 (6)), —6(999 1)if d'2 (9 ~ 9 )

'

(3.26)

e„s,=(2v)'d(P, -P, ) O, '(e, e„~),. d'k(k')-'(tk'+ i(,') '„, . (3.2V)

We can now put together the separate parts of 5S into gauge-invariant combinations, using the identity

(k'+ )u')(t'k'+ p, ') k'(]k'+ p') k'(k'+ p') '

In this way, (3.20) and (3.24) combine to give

l5 @S —= 5,S + l5$,S =(2r) 5'(P —P )(8„9});(8()h); d k r„(k)(k ) '(k'+ P )
'

while (3.21) and (3.27) combine to give

6„,9„-=6„,9„6„9„=(29)'6'(P, -P, ) }9,". (999.2),.f d'2 (9) '(9' ~ 9,') '.,

(3.23)

(3.29)

Thus 5S now appears as the sum of terms

FI ~A1 El ~ @1~FI ~A $ FI ~A T FI ~ T1 EI (3.30)

every one of which is separately $-independent. [Readers of Ref. 5 will note that the manipulations leading
to Eq. (3.30) stand in a one-to-one correspondence with the manipulations which put the one-loop contribu-
tions to the fermion mass in a gauge-invariant form. ] Explicitly, we now have for the second-order
change in Szi

69 = (kw)'6'(P —P ) f 9!9,„F('w)( 2kd') '„wq" "+f d llF, , (k)(k''+ M')

(9 2) (Fwl'i fd k}wf (l)(k) (l +}I ) 9+}FF (999 l)Ffd k(k ) (9 +lw )

6FM'' fw f 2 l (2 M}((29}'(dw(6)),—6(999)2fFd9(kk)
(3.31)

IV. ASYMPTOTIC BEHAVIOR OF THE
MATRIX ELEMENTS

We shall now analyze the asymptotic behavior
as k-~ of the matrix elements FP~ 8„(k) and

3'„~(k). The results will be used in Sec. V to show

explicitly how the divergences cancel in the sec-
ond-order corrections to "natural" zeroth-order
symmetry relations, and in Sec. VI to pick out the
parts of the finite weak-interaction corrections
which are comparable in strength to the electro-
magnetic corrections.

We are eventually going to do a Wick rotation
before integrating over k, so it is sufficient for
our purposes to consider the asymptotic behavior
of the F (k) with k' imaginary:

k =ik, . (4.1)

We shall let the Euclidean modulus z go to infinity,
where

)(:"x(powers of Inc), (4.3)

where n is just the "naive" dimensionality of the
bridge-current matrix element (rgot the whole ma-
trix element):

with fixed direction k" /)(.
According to a general theorem, "which was

proved long ago in order to supply a missing ele-
ment in the renormalization program, the 5-ma-
trix elements are given for sc-~ by a sum of
terms, in each of which the two J or S currents
are connected to the hadrons in the states I', I by
a "bridge, " consisting of a number of elementary
particle lines. (Figure 2 presents examples of
this structure; the bridges shown are those which
will eventually turn out to dominate the asymptotic
behavior for g-~. ) For a given bridge consisting
of I' fermion lines and C gluon lines, the asymp-
totic behavior of the corresponding term in 3'(k) is
at most

~ = [(k,)'+ (k,)'+ (k )'+ (k )']" (4 2) (4.4)
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The term -2 here accounts for the two J or S cur-
rents.

For our present purposes, we will need to em-
ploy a refined version of the above bridge analy-
sis„provided by Wilson's operator-product expan-
sion. " In order to simplify our calculations, it is
convenient first to integrate over the directions of

k, and also to contract the vector-current indices.
The operator-product expansion then gives, as K

~p~ dg~~~su 8 k E O~ I U~„8~ K, 4.5

(4.6)

Here dQ, is the element of solid angle in four di-
mensions (with J dQ„equal to 2v'), defined by set-
ting the four-dimensional volume element equal to

d O' ='EK dKdQg, (4.7)

The operators 0~ are a set of local operator prod-
ucts, each containing definite numbers E~, G„,
and D„of fermion fields, gluon fields, and deriva-
tives acting in these fields, with all fields evalu-
ated at the same space-time point, say, &=0. Be-
cause of our integration over directions of K and
our contraction of vector current indices, the 0„
are Lorentz scalar operators, a restriction which

greatly simplifies these expansions. The U " and
V " are e-number functions of K, with asymptotic

behavior

U (/c) = O(K & x(powers of In~))

ViN'(a) =O(z &x(powers of Inc)),

(4.8)

(4.8)

with o.» given by (4.4), except that it must be low-
ered by one unit for each derivative appearing in

+N 2+S GN DN '3 (4.1O)

The more complicated an operator 0„, the more
negative will be the corresponding asymptotic pow-
er o.„, so the expressions (4.5) and (4.6) provide
asymptotic expansions for the 6."s, with only a
finite number of terms contributing for any given
rate of decrease at large K. Finally, the U " and
Vi~~ are finite functions, except that they contain
Z factors [like (2.34)] which are needed to cancel
the divergences which arise when we compute the
matrix elements (EION~I).

Inspection of Eg. (3.31) shows that the "danger-
ous" bridges or 0 operators, which can produce
individually divergent terms in the second-order
correction 5S», are those with e ~-2. Also, we
shall see in Sec. VI that all terms arising from
the exchange of heavy intermediate vector bosons
are suppressed by factors of order g„', except
for those terms with n ~-2. Therefore, we shall
restrict our attention here to the terms in the
asymptotic expansions (4.5), (4.6) with n„~=2,
i.e.„with

(4.11)

J L
+ J E r

1 & '~ )

In addition to being Lorentz invariant, the O~ op-
erators must be gluon-gauge invariant. because
gluons couple to baryon number, whi1e all J„& and

S, currents are baryonically neutral operators.
Taking into account all possible Lorentz- and g1u-
on-gauge-invariant O„operators satisfying (4.11),
the expansions (4.5) and (4.6) become, for s-~,

E
+

J 1+

FIG. 1. Feynman graphs for the change in the 8 matrix
due to second-order weak and electromagnetic effects.
The process shown for illustration is a three-quark
reaction. Here straight lines denote quarks, wavy
lines denote intermediate vector mesons, dashed lines
denote weakly coupled scalar particles, looped lines
denote "ghost loops, " and dark circles indicate sums
over strong-interaction graphs.

FIG. 2. Bridge graphs which dominate the asymptotic
behavior of the matrix element P~& ~~(k). Here straight
lines denote quarks, wavy lines denote vector currents
carrying the large momentum k into and out of the
diagram, dotted lines denote vector gluons, and dark
circles indicate sums over strong-interaction graphs.
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dn, p~'„B„k

and

- &E I I.
—0 U'()(~)g g-r ' U "(4(~)(&,+ ia& &„)g
——,

' U(„')(~)G„„Go"] II) (4.12)

dn, Z~' u

U( N) U ( N) V (N) V( N)
~8 80| y

(4.15)

In writing these expansions, we have excluded op-
erators which take the form of gradients, such as
&„((T)r"Ug) or e„(B,G"'), because the states E
and I have equal four-momenta, so such operators
would make no contribution. The U and V functions
have asymptotic behavior of the form (4.8), (4.9),
with c.„given by (4.10) as

ex= -1 Q2=Q3=-2 . (4.16)

We will also need information about the depen-
dence of the Uand V functions on the fermion
mass matrix m. To be specific, we should like to
argue that as long as we are only interested in
terms which decrease as g-~ no faster than g ',
the functions Ut'), U'), V'), and V') areindependentof
m, while U ' and V ' are at most linear in ss.
A persuasive but highly nonrigorous argument
may be given as follows: Suppose we differentiate
E(l. (4.5) n times with respect to m:

-(EI[-0v';,"()(')(-(t(r"vI", (~)(e„+tg&&„)g
—4vIy)(1(.)G„,Go"] II). (4.13)

The U N and V " here are c-number functions of
)(, but U ' Ui', V ' and V ' now have sup-
pressed matrix indices running over the various
Dirac field types, and may include terms propor-
tional to the Dirac matrix y, as well as the unit
Dirac matrix. The reality properties of the cur-
rents imply that the U" and V N obey the reality
conditions

U()f U() U()l U() U() U()na Y4 ns Y4& ne nay na f)fe y

(4.14)

V(1)P V(l) V(2) f V(2) V(3) + V(3)~4 4 ~4y fj fg ~ fi ig

while crossing symmetry imposes the symmetry
conditions

[to(, Uay] =i Co(ao Uoy+i C„y~ Uo~
(a) {2) ~ (&)

0 = C„s~ U ~ y
+ Ca~y~ U 8~

{3) (3)

[t„,v",,)]= -(e„),, v",,'- (e„),, v',.',),
0 (g ) V(o)+ (g ) V(o)

(4.18)

(4.19)

(4.20)

(4.21)

while U ' and V ' may be expanded to first or-
der in X:

the moment ignoring the fact that m is a matrix
rather than a single variable. ) Now, because of
our use of the "intermediate renormalization tech-
nique" described in Sec. II, all renormalization
Z factors are m-independent, so the nth derivative
of W with respect to m may be regarded as an 5'-

matrix element with n additional fictitious zero-
momentum scalar particles in the initial or final
states I, F. Of these n scalar lines, any subset
may be used as part of the bridge connecting the
currents to the states I and E. (That is, any sub-
set of the scalar field operators representing these
n fictitious scalar particles may appear in O~.)
Furthermore, those terms in which r scalar lines
appear in the bridge must have n-~ scalar lines
attached to the connected part of the matrix ele-
ment (EIO„II), so such terms must involve the
(n-r)th derivative of this matrix element with re-
spect to m, and therefore may be identified with
the rth term on the right-hand side of (4.17). How-
ever, when r scalar field lines appear in the
bridge (or r scalar field operators appear in O~)
the asymptotic behavior of the corresponding term
in 6'(z) is reduced by r factors of (4. Referring
back to (4.16), we see that the only terms in (4.17)
which decrease as g- ~ no faster than g ' are the
N= 2 and N= 3 terms with ~ =0 and the N= 1 terms
with x =0 and 1, and therefore conclude that U '
and U ' must be m-independent while U ' can be
at most linear inm. Precisely the same argument
applies to V ").

We can now draw immediate conclusions about
the G-transformation properties of the U and V
functions, for it is only the presence of the I'f Xf
term in m that disturbs the G invariance of the
strong interactions. It follows that the functions
U ', U ', V ', and V ' must be G-covariant,
in the sense that

dQ, „F ~l~„k

U 8
——U„80+ U(i) (i) (i)

( s) ( x) ( i)Vf,- = Vf~o+ Vf~~h.~,
with G-covariant coefficients:

(4.22)

(4.28)

(4.17)

(For the sake of notational simplicity, we are for

(i) ~
. {x) ~ (~)[4~r4UByo]=i asyr4Usyo+& nyor4 e(o

(4.24)
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[ ««, y4 ««y»]
= ~««~y» ~y» t C„y»y4UB&»

(i) ~ (x) (~)

—(8„)»«y4 U ~'y «

[t, r.V';,'0]= (-8 );«r, VIJo (-8 );«r ««o

(4.25)

(4.26)

[ ta«y4V«g»] = (8n)««y4VI«» —(8n)«'«y4V ««»

—(8 )»«r, v', , (4.2V)

We must keep the y, factor in the U ' and V '
commutation relations, because t may contain
terms proportional to y„and therefore may not
commute with y4. However, t„does commute with

y4y", so it is unnecessary to keep factors of y4y"
in the U ' and V ' commutation relations.

These G-transformation rules are all we shall
need in Sec. V to prove the finiteness of correc-
tions to "natural" zeroth-order symmetries. How-

ever, for the purposes of Sec. VI, it will be nec-
essary to go into the structure of the U and V
functions a little further.

First, note that the y, invariance of the gluon-

fermion interaction ensures that although U ',
U«'~, V '~, and V '~ are even inm (which is con-
sistent with their asymptotic m independence), the
functions U ' and V ' must be odd inm, and
therefore purely of first order in rn. One conse-
quence is that the functions U~, and V,z', in Eqs.
(4.20) and (4.21) are of first order in the bare fer-
mion mass matrix m, . Also, as indicated above,
terms of first order in I have an asymptotic be-
havior with one less power of z than given by Eq.
(4.16), so now all Uand V functions are seen to
have the same asymptotic power: As g -~,

U " -«« 'x (powers of ln««),

Vi "l
«« '-X(powers of 1n««),

(4.26)

(4.29)

for N= 1, 2, or 3. (We would expect this anyway
as a result of our symmetric integration. )

In addition, by examination of the various bridge-
current graphs, we can show that the asymptotic
U and V functions have the matrix structure

U„'«I(««) = «« '[ (««)««(y, t y, m t««+y, t««y, mt„)+ b(««)y, {t,tsjr, m + c(««)m{t, ts}+d(««)mTr(t„t««)],

U„'8(««) = «« '[e(««){t, t««}+f(««)Tr(t t««)],

U'„'«'«(««) = «« 'g(««)Tr(t t««),

V ««(««) = ««(p(««)(I'«m I'«+ I;m I'«) + q(««)m {y,I', , y, I'«j+ x(««){I'«y, I'«y, jm + s(««) m Tr(y, i',. y, I',. )

+ t(««)[I'«Tr(1'&m)+I'~ Tr(1', m)]),
V",,'(««) = «« '[ u(««) {y,I'„y, I',j + v(««) Tr(y, I'«y, r, )],
V;~ (««) =««u«(««)Tr(y r,. y, r«),

(4.30)

(4,31)

(4.32)

(4.33)

(4.34)

(4.35)

where a, . . . , g and p, . . . , zg are dimensionless
functions of ««(not matrices), all behaving like
sums of powers of lng as z- ~. Figures 3 and 4
show the lowest-order graphs which contribute to
each of these functions. A detailed derivation of
these results proceeds along the following lines.

U ': The single m factor in U ' must arise
from one of the propagator numerators on the
fermion line which forms the bridge, because y,
invariance ensures that each fermion closed loop
is an even function of m. The two J currents can
be attached to the fermion bridge, producing the
a, 0, and c terms, or to a closed loop, producing
the d term. Diagrams in which a single J „cur-
rent is attached to a closed loop give factors pro-
portional to Trt, which vanishes if as usual we
exclude baryon number from the Lie algebra of the
gauge group G.

U ': Just as for U ', the two J currents must
be either attached to the fermion bridge, giving
the e term, or to the same closed loop, giving the
f term.

U ': The two J currents here can only be at-
tached to the same closed loop.

V ':The one I factor in V ' may arise either
from a propagator numerator on the fermion
bridge line or from a propagator numerator in a
closed fermion loop. In the former case y, in-
variance requires the two S currents to be at-
tached either to the fermion bridge, giving the p,
q, and r terms, or to the same fermion closed
loop, giving the s term. In the latter case, where
m arises from a fermion closed loop, y, invari-
ance requires one of the two 8 currents to be at-
tached to the same loop, and the other can only be
attached to the fermion bridge line, giving the t
term.

V ':Here y, invariance requires the two S cur-
rents to be either both attached to the fermion
bridge line, giving the u term, or to the same
closed loop, giving the v term.

V ': The two S currents here can only be at-
tached to the same closed loop.

In all cases, we use the crossing-symmetry re-
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(p}

4 ~ ~ 04/i ~ ~ ~

(e)

(u)

FIG. 3. Some low-order graphs which contribute to
the functions a(K), b(K), etc. appearing in U (~). Here
straight lines denote quarks, wavy lines denote vector
currents, dotted lines denote vector gluons, and crosses
denote derivatives with respect to the fermion mass.

lations (4.15) to simplify the results. Also, y,
matrices are inserted to keep track of the fact that
t„and I",. commute with an even number of y ma-
trices but not necessarily with an odd number. It
is straightforward to check that U and V matrices
of the form (4.30)-(4.35) satisfy the G-transfor-
mation rules (4.18)-(4.27). Finally, the reality
properties (4.14) require that

and

a, d, e,f, g, P, s, f, u, v, ut are real (4.36)

b*=c, q*=r . (4.37)

So far, all we know about the g dependence of
a(z), b(z), . . . is that they behave as z- ~ like a
series of powers of In&. Since these functions are
dimensionless, and involve no dimensional param-
eters other than g and p. ~, they can also be written
as series in powers of In(z/gs), with dimension-
less coefficients independent of p. ~ as well as z.
The asymptotic behavior of the a(z), b(z), etc. as
c-~ can thus be studied by considering their sin-
gularities in the limit of vanishing gluon (as well
as fermion) mass.

Logarithmic singularities in p.~ can arise in the
U and V functions in two different ways. First,
there are "reducible" graphs, like that shown in
Fig. 5, which contribute the usual infrared di-
vergences in the limit p, s 0. [It should be noted
that although the In(se/p, e) dependence arising
from such graphs appears in the hadronic matrix
element (E(O„[I) rather than in U(" (g) or

(w)

FIG. 4. Some low-order graphs which contribute to
the functions p(ft), q(~), etc. appearing in U (x). Here
straight lines denote quarks, dashed lines denote scalar
currents, dotted lines denote vector gluons, and crosses
denote derivatives with respect to the fermion mass.

V(")(a), there is also a In(a/p, e) dependence which

appears in U " (e) and V ~)(a) rather than in

(E ~O„~I).] Second, there are also logarithmic
singularities in p, ~ arising from the counterterms
used to renormalize the fermion self-energy, glu-
on fermion vertex, and gluon self-energy. " [For
instance, see Eq. (2.35).] It might be that these
singularities cancel if the gluon coupling constant

g~ satisfies something like a Gell-Mann-Low
eigenvalue condition. " However, we would still
have to worry about logarithms arising from re-
ducible graphs.

It is possible that the powers of In(z/u, e) in a(z),
b(g), etc sum up .to a power (see Ref. 31) (z/pe),
with 5 a small positive or negative exponent. This
would make no difference here, provided that

FIG. 5. A typical "reducible" graph, which contrib-
utes a term proportional to inc in a(K). Here straight
lines denote quarks, wavy lines denote vector currents,
the dotted line denotes a vector gluon, and the cross
denotes a derivative with respect to the fermion mass.
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There are arguments based on scaling to the ef-
fect that 5 is zero, so that a(K), t/(K), etc. are
asymptotically constant. " In this case, it ap-
pears that these quantities will be simply given
by their values in the Born approximation, i.e., in
the limit g~ =0. Such problems will not be ad-
dressed in the present work. For our purposes
here, it will be sufficient merely to note the spe-
cial simplifications that would arise if a(K), t/(K},
etc. were constant.

5m o
= UniIO(K)/cdK i

0
(5.2)

5I ] = UCt~ K ICdK ~

0
(5.3)

U (K)Kd/C (5.4)

[a„g]„=-p(5m,+ y, 5r, )y

—$ y" 5Z2(sq + igJ/Bq)p 4—
5Z~Gq

„G"",
(5.1)

where

V. CANCELLATION OF DIVERGENCES 5Z3 = U '~(K)KdK . (5.5)

We can now use the results of Sec. IV to check
that the divergent part of each term in the second-
order correction 5S» is of the same form as would
be produced by adding a renormalizable Hermitian
gauge-invariant Lorentz-invariant term to the La-
grangian. It will then follow immediately that all
such divergences may be eliminated by a renor-
malization of the parameters in our original La-
grangian, because our original Lagrangian is the
most general possible gauge-invariant Lorentz-
invariant Hermitian and renormalizable Lagran-
gian which can be constructed from the given field
multiplets g, P, B&, and A„. In particular, when-
ever we have a zeroth-order symmetry relation
which is valid for all values of the parameters in
the Lagrangian, the second-order corrections to
this symmetry relation will receive no contribu-
tion from the divergent terms in 58», and will
therefore be finite and calculable. "

Let us go through Eq. (3.30) term by term, to
check that the divergent part of each term is of
the same form as could be produced by adding a
possible renormalizable gauge-invariant Hermitian
and Lorentz-invariant term to the Lagrangian.
Our reasoning here will follow' along precisely the
same lines as the corresponding discussion in Ref.
5, which dealt with one-loop graphs in the absence
of strong interactions, so an outline of the argu-
ments will suffice here.

Al: Inspection of Eq. (3.19) shows that the Al
term contains a logarithmically divergent part,
arising from the leading part (4.12}of the vector-
current matrix element, which behaves asymp-
totically like 1/k' times powers of ink'. As long
as we are only interested in the divergent part of
the AI term, we can make the replacement

(k'+ y.') '
//
- 5 ~/k' .

The divergent part of the A1 term is therefore the
same as would be produced by a term in the La-
grangian

[See Eqs. (4.7) and (2.19).] Contracting Eqs.
(4.24), (4.25), and (4.18) gives

[ t„,y, 5m, ]=0,

[t„,y, 5r,.]=- (e„)/I y, 5r, ,

[t„,5Z]=0.

(5.5)

(5.7)

(5.8)

//"
/C,'(~,(K)KdK,

0
(5.10)

5rc = V/II (K)/cctK i
0

(5.11)

OZI = V C~'/1 (K)KdK, (5.12)

&,~1 (K)KdK ~ (5.13)

Contracting Eqs. (4.20), (4.23), (4.26), and (4.27)
gives

Thus (5.1}is G-invariant, as well as manifestly
Lorentz-invariant, gluon-gauge-invariant, Her-
mitian, and renormalizable.

$1: Inspection of Eq. (3.23) shows that the /t/1

term contains a logarithmically divergent part
arising from the part (4.13) of the scalar current
matrix element which behaves asymptotically like
1/k' times powers of ink'. As long as we are only
interested in the divergent part of the p1 term, we
can make the replacement

(k'+ tel')-', ,-5,, /k' .

The divergent part of the $1 term is therefore the
same as would be produced by a term in the La-
grangian

[t ~,Z]„=-y(5m,'+ y, 5r,')y

—/T/y "5Z2 (8 p
+ i gee )ti/ —g 5Z3 G~ G "",

(5.9)

where
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[f„,~,6 m, ]=0,
[fn, r4r5I'a] =-(6 )ar r.6I"r'

[t„,6Z,']=0 .

(5.14)

(5.15)

(5.16)

divergent part V,„(X)of Vr(A, ) is a quartic polyno-
mial in X. Inspection of (5.19) shows that the ef-
fect of V,„(X) is the same as would be produced by
a shift 1n A.:

Thus (5.9) is G-invariant, as well as gluon-gauge-
invariant, Lorentz-invariant, Hermitian, and x�-
enor�malizab.

Ap: Inspection of Eq. (3.28) shows that since
6:r~ rr) vanishes at least as fast as I/O' times pow-
ers of lnlr', the A(t) term is finite.

AT: Inspection of Eq. (3.29) shows that the AT
term contains a logarithmically divergent part,
which is just the same as mould be produced by a
term in the Lagrangian

dK
[~~r &]-= 2rr'-

() K

This is manifestly G-invariant, gluon-gauge-in-
variant, Lorentz-invariant, Hermitian, and re-
normalizable.

T1: It was shown in Ref. 5 that the scalar loop
and vector loop contributions in (3.26) may be writ-
ten as derivatives with respect to A.:

(r Hrr), fd'r()t'rr) r=-, d'rrrlr(rt'+r).
8A, j

In addition, the hadronic contribution to the tadpole
may be written as a X derivative

&Sr(0)&0= sq (5.16)

where 4 is the sum of all connected single-parti-
.cle-irreducible vacuum fluctuation graphs produced
by the strong interactions (i.e., setting e = 0).
Equation (3.26} thus may be written

6„s,=-2f (2v)'64(p, —I, )6:pm-', J

(5.19)

where V, is the "one-loop potential, "' here gener-
alized to include effects of the strong interactions:

oo

Vr(X) =, rr'dry Tr In(rr'+ M')
Q

(5.20)

This is a G-invariant function of A.. In addition,
since each term is quartically divergent, and since
taking a derivative with respect to A. lowers the de-
gree of divergence of each term by one unit, the

[~„Z]„=V,„(y) . (5.21)

Since Vr„((r))) is quartic in (t), this is renormalim-
able, as well as G-invariant, gluon-gauge invari-
ant, Lorentz invariant, and Hermitian.

In summary, we have shown that the divergent
contributions to 58» are all of the same form as
would be produced by adding G-invariant, gluon-
gauge- invariant, Lorentz-invariant, Hermitian,
and renormalizable terms to the original Lagran-
gian, and therefore such divergences can have no
effect on "natural" zeroth-order symmetry rela-
tions.

VI. VfEAK CORRECTIONS OF ORDER Ot

If all particle masses wex'e of the same order of
magnitude, then in general no further approxima-
tions would be possible, and we would have to rest
content with Eq. (3.30) or (3.31) as our formula for
the second-order correction 58». However, it is
at least a reasonably likely possibility that, aside
from the photon all Intermediate vectox' boson
masses are orders of magnitude larger than all
baryon or quark masses. ' In this case, the ratio

/my~ is another small parameter of the theory,
and it becomes useful to pick out those terms in
5S» which are of second oxder in e and of aerotow
order ln m//rrrr. Such terms will 'typically have the
order of magnitude of electromagnetic corrections,
and will be xeferred to here as being "of order a,"
although as we shall see, these terms can be pro-
duced by the weak as well as the eleetromagnetie
interactions. The other terms in 6S» of second
order in e are those of order

e'(m/p~}2- G~m'

-10 ' to 10 (6.1)

and these may be regarded as truly weak correc-
tions.

Let us go through Eq. (3.30) term by term, to
pick out those terms in 5S» that are of zeroth or-
der in /Imar showell as of second order in e.

Al: The A1 term is unique, in that it includes
the true electromagnetic correction due to photon
emission and absorption. In dealing with this con-
tribution, it is very convenient to rewrite the vec-

[D,)).r] „=-M
r~

-- Vr„(A.},oo jg 8~ jso

and this shift in A. is just the same as would be
produced by adding a term to the original Lagran-
g1an:



620 STE VE N WE INBERG

(p )kkgng
= Ok nkknkk = 1 (e.s)

and p.
"is the same as p.', except that the photon

appears with mass A:

tor propagator in Eq. (S.19) as

1 — 1 1 1
k+ 0 A+A + k+

(6.2)

where A is an arbitrary mass, to be taken of or-
der ]U.~, n is the eigenvector of p.

' corresponding
to the photon

1/k' times powers of ink' will make a contribution
which is suppressed by a factor 1/g", and hence
is of order Gz [see (6.1)] rather than of order o..
The only terms in p which are not suppressed by
factors 1/p" are those given by Eq. (4.12), which
vanish like 1/k' times powers of ink' as k'-~.
Thus the part of the second-order correction (6.8)
which is of order a rather than of order G~nP is
just the same as would be produced by adding to
the effective Lagrangian a correction term:

(p.")„8=- (p')„8+ n. „n8 A' . (6.4)

Both terms in (6.2) will make finite contributions
to 68». the first, because the photon propagator
is cut off at momentum A, and the second, because
the arguments of Sec. V only depend on the struc-
ture of the leading term as k'-~, which does not
depend on the form of the vector mass matrix.
The point of our use of Eq. (6.2) is that the first
term is just the conventional photon correction
with a cutoff, to which we can apply all the results
of decades of work on electromagnetic correc-
tions" (such as the Cottingham formula, the
Sutherland theorem, the Mc2 rule, etc.), while
the second term has a large denominator which
suppresses all terms in the vector current matrix
element which vanish rapidly as k'-~. To be
more specific, the first term in Eq. (6.2) makes a
contr ibution

(6.6)

where 6P(k) is the electromagnetic current ma-
trix element:

where

(6.10)

Equation (4.14) gives T„ the reality properties

1 +4Ylkj 4 2 2 3 3 (6.11)

The Y, term may be eliminated by a renormaliza-
tion of the gluon field, and obviously has no effect
on any strong interaction symmetry. The Y2 term
may also be eliminated by a renormalization of
the fermion field:

(6.12)

but the zeroth- order mass term then becomes, to
order 8

y

—Pm y =- y~(1 ——,'T, )y, m (1 ——,'T, )y,

= —y, (m ——,
'

y,T,y, m —,'m T,)y,—.

Thus the total effect of the Al term on "natural"
zeroth-order symmetries in order n is the same
as a term in the Lagrangian of the form (now

dropping the subscript 1)

(6.1s)

J~ —=n~~ J~q .

(6.6)

(6.7)

where

1 1
2 Y4Y2 Y4~ 2 ~Y2 (6.14)

&& d k 6:„q ~, (k)
k +p. ~8

(6.8)

Any term in 5 which vanishes at least as fast as

This is finite because 6,. (k) vanishes at least as
fast as 1/k as k - ~, but there is nothing that can
be done to simplify it without entering into a de-
tailed analysis of the intermediate hadronic states
which contribute to the time-ordered product. On
the other hand, the second term in Eq. (6.2) makes
a contribution

The Y~ have a logarithmically divergent part

(6.15)

but we saw in the last section that U„~ makes no
contribution to the corrections to "natural" zeroth-

'order symmetries. Thus, as long as we restrict
our attention to such corrections, it is permissible
to eliminate the divergences in Y~ by subtracting
a similar term in which (p, ') 8 is replaced with

any matrix proportional to 5„8. It is convenient
to choose the mass matrix in the subtracted term
as A'6 8, then Yj, takes the finite form
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T»= KdK U'-s(K)

x[(K'+ g") '„s —(K'+A') '6-s] & (6.16)

so that the photon term makes no contribution here
here. By using Eqs. (4.30)-(4.32) and (4.37), we
can write (6.14) as

4,m =y4(t. ts, y4m] Cns+y, [t.,[ts, y. m] ]Des
+i y4[t„ts, y4m]E, + m Tr(t„ts)F„s,

(6.17)

less functions of order unity, which behave as I(,

like a series of powers of in&, so the matrices
C and D (as well as E and E) are real dimension-
less matrices of order unity, and are given by a
series of powers of the matrix Inp". [The mass
shift (6.22) is of order um because t„ is of order
e.] In particular, if a(K), b(K), etc. approach con-
stants, either because of a Gell-Mann-Low eigen-
value condition" or for some other reason con-
nected with scaling, ""then (6.18) and (6.19) be-
come

where C, D, E, and I' are the real symmetric
matrices:

C„s = [b(K)+ c(K) —a(K) —e(K)J

C s =8[in(p "/A')]„s,
D„s =X)[ln(p "/A')] „, ,

where

(6.24)

(6.25)

x [(K'+ P.") '„s —(K'+ A') 'b„s] KdK,

(6.18)

D„,=- a(K)[(2+g") ',

6=-'.[b(~)+ c(~) —a(~) —e(~)],
&=--,'a(~) .

(6.26)

(6.27}

The strong interactions then would enter into the
effective mass shift only through the two real A-
independent parameters t'- and S:

—(K'+A') 'b„s] KdK, (6.19) b„,m =(e y,(t ts, y, m ]+my, [t„,[ts, y, mJ])

E s = i[-b(K) - c(K)]

x [(K'+p&s) '„s —(K'+A') 'b„sJKdK,

(6.20)

E0fa= d K — K
0

x [(2+g&s) '„s —(K+A')b„s]KdK'.

(6.21)

We can drop the E term, because it obviously can-
not affect any zeroth-order symmetry relations
obeyed by m. Also, we can drop the E term, be-
cause this term can be eliminated by a redefinition
of the fermion field

(1+it„tsE~s)g &

which leaves unchanged all terms in the strong-
interaction Lagrangian (3.5; except the fermion
mass term. Thus, in calculating corrections to
zeroth-order symmetry relations, we may replace
(6.17) with

4&m =y4j4ts&y4m]Cns+y4[ta&[ts y4m]]D-s.
(6.22)

We note for future reference that the D term could
also be written as a sum of Yukawa coupling ma-
trices, using the relation

(6.28)

The effect of the prime on the p,
' matrix is just

that we are to leave out the photon term altogether
in summing over o. and P.

pl: Inspection of Eq. (2.17) shows that the Yuka;
wa coupling matrix is of order

r- m/X-e(m/p»), (6.29)

1
b„rm = ~I'((8s8„A.), (K+/) (ysKdK.

so the scalar currents S,. are smaller than the vec-
tor currents d„~ by a factor of order m/g~. The
PI term (3.23) is therefore smaller than the Al
term by a factor (m/y, .)', and does not contribute
to the symmetry-breaking corrections of order n.

AQ: The integrand in (3.28) behaves like b '
times powers of Ini(; as I(, -~, so the final factor
(~+ ~') ' effectively contributes a factor of order

(Note that the photon makes no contribution
here, because the charge operator n„8~ annihilates
X.) The factors 8„A. are of order p, ~, so the AP
contribution is of the same order of the pl contri-
bution to 5$~1, and may therefore be neglected for
the same reasons.

AT: Inspection of Eq. (3.29) shows that the AT
term is the same as would be produced by adding
a correction to the fermion mass matrix:

y,[t., [t„y,ml]=(8-8s');'~ (6.23) (6.30)

The functions a(K), b(K), etc. are real dimension- The integral has a divergent part proportional to
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5~8, but as shown in Sec. V, such terms make no
contributions to the corrections to natural zeroth-
order symmetry relations. Thus we may intro-
duce a cutoff, and write

b„m =, r, (g~g X),. [(14 + p. ') '„8

—(Ic'+A') 'b»]ad14 .

Doing the integral and then using (6.23), we find

b„,m = r,.(g, g„X),. ln —,

=32, y, [t„,[t B,y, m]] ln —, . (6.31)
327T' na

There is no effective difference between p,
2 and

p, ", because the charge operator n g commutes
with y4m. Thus the AT term merely provides an
additional contribution to the D 8 matrix in (6.22),
of the same form as in Eq. (6.25).

T1: Inspection of Eq. (5.19) shows that the T1
term is the same as would be produced by adding
a correction to the fermion mass matrix

bm = y41 t„t8, y4m] C„8, (6.35)

or, if a(it), b(tt), etc. are asymptotically constant,

p
I2

&m =8 y4(t„ts, y4m] lr. (6.36)

For zeroth-order symmetries of types 2 or 3,'
which arise from constraints on A, , the presence
or absence of tadpole contributions depends on
whether the constraints apply for all G-invariant
polynomials P(p), or only for quartic G-invariant
polynomials. In the former case,"the T1 term
does not contribute, so 5m here takes the form

For zeroth-order symmetries of type 1,' which
arise from the representation content of the sca-
lar fields rather than from constraints on their
vacuum expectation values, we can drop all terms
in 5m which have the form of a linear combination
of the Yukawa coupling matrices I'„because any
such terms will obey the same zeroth-order type-
1 mass relations as m itself.

This leaves us with only the first part of the A1
term (6.22), so bm here takes the remarkably
simple form

, sv, (~)
5~,m =-I'.M

8A.
(6.32)

bm =(C„,y,ft„t„y,m)+D„', y,[t., [t„y,m]]),
(6.37)

where V, (A) is the quantity (5.20). If the scalar
mass matrix M is of the same order of magnitude
as the vector mass matrix p, , then as shown in
Ref. 5, the T1 term. is (like the Al and AT terms)
of order o.m. The fermion term in SV,/BAis.
smaller than the other terms by a factor of order
(m/p~)', and may be dropped, leaving us with

m+ &„rm+Or, m (6.34)

b„m =—,r,.bf-'„[f„,(~'In~')„
327T

+ 6(g g, z)J(p, 'In@.')„~].
(6.33)

Here, as for the AT term, the photon makes no
contribution. If the scalar mass matrix is some-
what smaller than the vector mass matrix, then
the second term in 5»m may dominate over all
other contributions to the mass shift.

In summary, the symmetry-breaking effects of
the weak and electromagnetic interactions may be
divided in two parts:

(1) There is the conventional photon contribution,
with a cutoff at an arbitrary momentum A of order
p.p.

(2) There is a ueak-interaction contribution,
which arises from intermediate vector bosons
other than the photon, and is equivalent (to order
o.) to a fermion mass shift of the form

bm =(ey4(t ta, y4m]+ n'y4[t„, [ta, y, m]])
~f2.(i. , (6.36)

where

1
'32" .

On the other hand, if the constraints on A, do de-
pend on the quartic nature of the polynomial P(P),
then all three terms in (6.34) may contribute to
bm, though the first part of the T1 term (6.33)
may be dropped for zeroth-order symmetries of
type 2.

As an example, suppose that all intermediate
vector bosons except the photon have the same
mass p. . [This is necessarily the case in any
O(3) model of the Georgi-Glashow type. "] The
A1 term given by (6.17)-(6.21) and the AT term
given by (6.31) obviously vanish if we choose the
cutoff A equal to p, as we are free to do. The T1
term given by (6.33) also vanishes except for
zeroth-order mass relations of type 3. Thus, if
isospin is a zeroth-order mass relation of type 1
or 2, the corrections are purely "electromag-
netic, " but with a cutoff given precisely by the

where a~8 is the sum of an Al and an AT contri-
bution. If a(z), b(z), etc are .asymptotically con-
stant, then this simplifies to
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intermediate vector boson mass:

5S~~ = I2n'~'6'(P~ —P~)

1
&& d'k 6',"~ (k} k,

—k,k 0 +@.
(6.39)

Whatever the form of 5m, once we know that the
"order-u effects" of the weak interactions appear
only in this mass shift, then as discussed in the
Introduction we can immediately conclude that
such effects preserve parity and strangeness con-
servation. There is an interesting question: Does
the exchange of Puo intermediate vector bosons
conserve parity and strangeness in order u', and

satisfy a
~
AS

~

(1 rule in order Gzo. ? Such matters
will be considered in future papers of this series.¹teadded in proof. There are a number of rea-
sons for being dissatisfied with the Abelian gluon

theory of strong interactions discussed here. Such
theories are never "asymptotically free, " in the

sense of D. Gross and F. Wilczek [Phys. Rev. Lett.
30, 1343 (19'I3}] and H. D. Politzer [Phys. Rev.
Lett. 30, 1346 (19l3)]. Also, if the weak-inter-
action gauge group contains a U(1) factor, there
can arise troublesome gluon-photon mixing effects
(H. S. Tsao, private communication). Fortunately,
there is a large class of non-Abelian gauge theo-
ries in which the arguments of the present paper
can be used to show that parity and strangeness
are conserved to order o. (S. Weinberg, to be
published). It appears that when such theories are
"asymptotically free, " the results of Befs. 25 and

26 become valid in perturbation theory.
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A class of gauge theories is discussed in which the AS =0 and the M =1 semileptonic de-
cays are mediated by distinct intermediate bosons, whose mass ratio is related to the
Cabibbo angle 0. Common features of the models are as follows: 0 is well defined only as
the result of spontaneous symmetry breaking; p decay and the semileptonic M =0, M =1
decays are in the ratio 1:cos 8:sin 0 only if CP is maximally violated in the lepton sector;
a breakdown of pe universality related to CP violation; a superweak impact of CP viola-
tion on K decays; the mediation through a neutral vector boson of nonleptonic decays which
obey

~
nI

~

= a'; and an amplitude «O(G) for v&e scattering. Two distinct types of theories are
discussed in detail. (a) The gauge group O(4) reported before. Here the CP-violating pa-
rameter needs a renormalization. To O(G), v&-nucleon reactions are possible only if a
heavy lepton is produced. (b) O(4) &&8, where left- [right-] handed fermions are in O(4) [9]
but scalar with respect to 8 [O(4)]. Here the CP-violating parameter can be made finite if
a constraint between electron and muon multiplets is satisfied. Further consequences for
case (b) are: the v, -e and v, -e elastic cross sections are (1+sin2)() ~) times their respec-
tive V- A values, and v&-nucleon reactions are possible with or without production of a
heavy lepton. However, the final hadronic state is necessarily "charmed. " The example
9 =U(1) is discussed in detail. The role of discrete symmetries is emphasized.

I, INTRODUCTION

A surge of theoretical activity has been gener-
ated by the discovery of a new class of renormal-
izable theories in which the notion of spontaneous
breakdown of a local symmetry plays a key role.
This development opens the strongly attractive
prospect of unifying weak interactions with elec-
tromagnetism. Current investigations are pro-
ceeding on two main fronts. First and foremost,
work is going on to clarify further some difficult

and obscure technical aspects of this new renor-
malization program. Secondly (and hopefully not
too early) attempts are under way to close in on
the local symmetry that is chosen by nature, and
on the representations of the symmetry to be as-
signed to the particles. '

Features common to all these investigations are
(1) the occurrence of a number of vector mesons
with masses that appear to hover invariably in a
region well over 10 GeV/c', (2) the appearance of
scalar mesons mainly needed for the mass gen-


