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A systematic study is made of the properties of spin in the context of null-plane (or
"infinite-momentum") formalism, where the spin projection is invariant under the action
of a Galilean subgroup of the Poincare group. We give explicitly its relations with the
helicity and the canonical formalism. The crossing relations and the structure of kinematic
singularities of the corresponding amplitudes are studied. It is shown that these amplitudes
can be kinematically regularized in a fairly simple fashion. Reduction of direct products
and partial-wave expansions are also discussed and some particular simple properties are
pointed out.

I. INTRODUCTION

The significance of a two-dimensional Galilean
subgroup of the Poincare group and its relation to
high-energy processes (the so-called "infinite mo-
mentum limit" ) have been studied by several au-
thors. This has led to the "infinite momentum" or
"null-plane formalism' for fields. Bacry and

Chang ' and Soper ' have studied polarization by
defining states which transform very simply under
the Galilean subgroup. The same definition of
states and the corresponding parametrization of the
the momenta have been utilized also by other
authors" for partial-wave analysis of a particular
type and has been called the horispheric system or
"O-system. " Bacry and Chang study "kinematics
at infinite momentum" through a transformation.
Soper also emphasizes the limiting properties of
"infinite-momentum helicity states. " To avoid
trivial confusion let us note explicitly that the fol-
lowing formalism is valid for any momentum.
The results in Secs. II and III include the known

results essential for our purposes.
For brevity we will also adopt the term "0

states" for states defined through such spin pro-
jections. We will make a systematic study of their
properties, including crossing relations and kine-
matical singularities of the corresponding scatter-
ing amplitudes. We will compare such properties
with those of the well-known helicity and canoni-
cal states (which we will call henceforth "h states"
and "c states, " respectively). The so-called trans-
versity states often used are related to the helicity
states by a rotation 2m about an axis chosen con-
ventionally to be the x axis. We will introduce
states related by the same transformation to the 0
and c states and will henceforth use the terms
"trans-0" "trans-c, " and "trans-h" states, re-
spectively ("trans-I1" being the usual transversity
states).

For any vector A„we define

A =A. n =(—')'"(4.'+A')

A-„=A n =(2')1/2(A' A'), (1.2)

and the "transverse" components are A. = (A', A').
One can, of course, choose in a more general
fashion any two vectors n, n such that n' =0 = n',
n n =1. But the simple case (1.1) is adequate for
our purpose.

In terms of the indices (n, n, 1, 2), we have

gnn = gnn =~ =-gi~ =.-g22~

and (1 .3)

A B=A„B—„„+A—„B„-A~ B.
(We reserve the notation A [= (4', A', A')] for the
space part of A.)

M„, and P„are the generators of the Poincarb
group and

M~ =e;~q J~, M o =K;,
(1 )1/2 (pO +~3)

s =(p', z'),
B, =(-')"'K +J )

~ —(1 )1/2 (I20 f23)

—(1 )1/2 (If g )

(1.4)

with the notation B= (B, , B,), S = (S, , S,) .
P J3 al ong with P„,B or P—„,S constitute a two-

dimensional Galilean subgroup T These are re-

Let us now introduce some definitions and nota-
tions. To avoid confusion among different formal-
isms, ;;e keep the usual significance of the in-
dices p, = 0, 1, 2, 3, with g~ = -g" = 1 (i = 1, 2, 3)
[i.e., we do not adopt the notations of Refs. 1(a)
and 2(b)]. Let

n„= (-,')'"(1, 0, 0, +1), n„= (-')' '(1, 0 0 -1) .
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lated through the parity operator 6', where

6'(&. , &)6'= (I ., -S) .
For any 4-vector operator A, we have

e' «SAe '"«3= (e A„,A, e A-),n

e'—"'sAe '—"'s =(ii„,A+uA-„, A-„),

where

A—„=(A—„+v A+2A„v2),

A„= (A„+u A+-,'A —„u').

(1 .6)

~(n) ~pe

Jh

e(~) =Age(~),
with

(o. =0, 1, 2, 3),

Ii(P ) =e "'se—(~«3

[as in (2.2)], one obtains:

and e(]) p=0, e(, ) e()) =-6,
~ .

Defining for the rest frame

(2.7)

II. DEFINITION OF THE 0 STATE (2 8)

and

l p, v& =e '"'se '" ~lm, 0;v)

e - ( 4J«se - (e 4I v'B
lm 0,v)

lp, v) =e '""'e""'«Slm, 0;v),

(2.2)

(2.2')

(2.3)

We will start by considering positzve-energy
massive particles. The simple generalization to
include negative-energy states will be indicated
later and the limit to the zero-mass case presents
no problem. Indeed, we obtain directly the well-
known description of the zero-mass states in
terms of the little group E, .

Starting with the rest-frame state (mass m) 0)
with the spin projection v along the z axis,

lm, 0;v), (2.1}

let us define

2 p. 2p.
p~ m

e& =———n&."' m p.
Thus the component to be diagonalized is

1 W——W e
m 9)

which may be verified to be the same as the spin
operator constructed by Soper. '

We see from (2.8), (2.9) the fundamental prop-
erty that for any momentum, though e(» is a sjace
like vector, u)hat is effectively diagonali«ed (since
W p =0) is the projection of W on a fixed lightlike
direction n .

Instead of fixing our attention from the very be-
ginning on momentum eigenstates, we can define,
using the operators P", the spin operators

where

, W2p-„ v' p/p

„W2p„e"= ", v p/p„,
(2.4}

1 . 8'
Z(~) = —W -~ P

M n

~3(e) =
&
W

n

where

(2.10)

Using (1.5) we obtain

(i'lp, v)=el p, v), (2.5)

where g is the intrinsic parity.
Let us first study (2.2) in more detail. In the

language of "tetrads, ""the three components of
the spin operator are given by

W
~(l p v) = 'e(()lp ") ~

But with such a definition of Z, one can consider
directly its action on a more general class of
states, which diagonalize Pn but not necessarily P
and P-„.

Using

1
W e(() (i I 2 3)i [W„,W,] =is„„.P W,

[P„,w,] =0, (2.11)

where

W'~ =-'c P"MP
]1VPX

=-i[Pal, K J]
=(P J, P J —PxK), (2.6)

one obtains the usual spin algebra

~o))i s ~(B)jl ~«ilk~(B)k (2.12)

The above definition may be compared with the
canonical spin operator '
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e(3) =A{P) 0(, )

(2.13)

(2.14)

with

6'~(a)+ = ~(s)

Using this relation one obtains

~(s) e '"'
=+&s)(o p)~&s 1

(2.19)

(2.20)
where A&~, is the pure Lorente trar(sformatton such
that

ft&SI(Os P) = 4(ai( (2.21)

where the Wagner rotation 8(», wr&tten here for-
mally in terms of operators, corresyonds on 4-
momentum basis to a rotation about the axis

a= Qy-Qy —P Q —P Q

through an angle X where

gpss 2a 2

cosX =1 -
2

sin)( =- (2P„+P u ),ml al
(2.16)

where P„=P„+u p +2/-„u'.
This formula is not particularly simple. But

particular cases will be of crucial importance
later on.

Under the action of J„Z(» of course simply
turns like a 3-vector round the z axis. As a con-
sequence we have the following transformation
laws for the momentum basis states of the repre-
sentation [m, s]. Denoting the transformed mo-
mentum in each case by p' [see (1.6)],

e ""lp, u&=e '"'Ip' u&

'IPsu&=IP su&s

e '"''IP, »= IP', »,--
e '-"'-'IP, u& =

I
p' u'&31,'.(tt&si(u p)),

where A&»(u, p) is given by (2.16). This is the
only nontrivial Wigner rotation in this basis.

Starting with the states I p, ( ), we obtain through
similar considerations the spin operator

Using the results (1.6) for P and W, one obtains
(for any ~ and u, u)

t i&~ps{B) {B)&

fv ~8K~ -CV '8e ——m(g ) e ——= Zr(g )
(2.15)

As compared to (2.1V), we have for lp, () similar
results for cE, and K, , with

e '"''Ip, u-) -=IP', u),

e '"'IP, u) -=I-P', u')&.', (f«, i(o, p)) .
(2.22)

We will also need the actions of arbitrary pure
rotations and pure Lorentz transformations. For
this purpose it is sufficient to consider the action
of J', on the states

I p, v)s which combined with the
preceding results gives the rest. .

It can be shown that

e - &Dt J'2 e f g K3 e (f If2 )3lfi ot 8 g e i v 2 tan (a/2 ) $ g (2.23)

e '""lP, u) =
I
p', u'».'.(t~(n, p)), (2.24)

where R(n, p) is given by (2.16) with

ul =-v2 tan-,'n, u'=0.

This angle we may denote by 5-.
Of particular interest for future use is the case

where the momentum lies in the z-x plane:

p' =
I plcos8, p' =

I plsin8, p' =0 .

Then (2.24) gives a rotation, about Ne y axis it-
self, through an angle n- such that

2m' sin'(-,' n)
W2P.[p'+

I p Icos(tt+ n)] '

(2.25)
m sinn[p'+

I plcos (9+ (—,
' n)/cos L

' n)]
Map. [p'+

I P Ic»(tt+ n)l

[where e ~ =cos'(n/2)]
e-((E3e (&is(2)sin ss sl e -(s(2 f (sss/ ss82)1 (2 23 )s1,

[For this purpose it is helpful to use a represen-
tatlo11 of SL(2, C) by 2 x 2 IIlatl'ices. Also the ap-
parently singular point e =m causes no problem;
in subsequent related applications, unambiguous
finite results are obtained on approaching m from
either side. ]

From (2.17),

8-„
~(s)3 =—

~n

(2.18)

the corresponding results for
I p, I ) are obtained

from (2.21) and (2.23').
Let us now consider the explicit forms of the

generators for the states
I p, v&, corresponding to

the irreducible representation [m, s]. [The results
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(2.26)

when (with s, =- s/&P', i =1, 2)

[s, , P'] =1, [s„,P„]= 1,
Pi

[s, , p-„] =—,
(2.27)

[s., P-. l = -P

for
~ p, v) are obtained through parity transforma-

tion. ]
The simplest forms are obtained if we consider

P, Pn as the independent components and

(P)'+ m'

2Pn

one generates the algebra of E2. For discrete
spin, this reduces to Z, , =0, Z, =W„/P„.

III. RELATION WITH SPINOR REPRESENTATIONS

The relation of the above representations with
the covariant spinor representations can be studied
in exactly the same way as that between the canon-
ical and spinor representations. "

For the important case of spin —,', starting with
the Dirac representation we note that the spinor
matrix corresponding to the transformation (2.2)
can be obtained (using the appropriate representa-
tion" of the y matrices) as

[p], 0

The corresponding scalar product may be taken to
be

Q=
[Pl

(p, vi p', v') =2P„5 (p„-p„')8 (p -p')5vv'. (2.27')

Then it can be shown [by considering infinitesimal
forms of (2.17)] that:

J = i(p'8-2 Ps~)+Z-~,

Z, = iPa„,
Bi ——-iP„Bi,

(2.28)

where

2p„/m 0
pn

&2P, /m

„, 1 -vYP /m

[Pl =

0 vYP„/m

[p = (-'P»(p~~ip2)]

(3.1)

S, = i(p—„B~-+P 8„)——Z~ ——Z2,
n

P' m
S = i(P—s -+P's )+ —Z + —Z2 n 2 n P 3 Pn n

Here Z are the usual (2S+1)x (2S+1) matrices,
generators of the rotation group (e.g., Z =ax for
s =-,' in terms of the Pauli matrices). It may be
verified that calculating W" from (2.28) and sub-
stituting in (2.10), we get simply

~(a) =~ (2.29)

Z =W ——nP +5 . —"W'„ i 8'„
n n

for this representation. 2'" [Instead of (2.27), if
we consider, as usual, P', P', P as independent
components, the corresponding results, easily ob-
tained, are somewhat less simple. ]

In (2.28) m is to be replaced by em, where e =p'/
~
p'~ if we consider both signs of energy. This is

also true for other definitions involving m. This
ensures that states with momenta p~ and -p]" trans-
form in the same way, which is important in con-
sidering crossing relations. '

Also putting m =0, we recover exactly the rep-
resentation studied in Ref. 9 for the case of dis-
crete spin. For the sake of completeness, we
mention that for zero-mass continuous spin [Refs.
7(b), 10], by defining

7 0
Z =2

We have also for the transformed Dirac equation

Q '(r"p„-m)Q =[r'(p"P„)'"-m], (3 3)

exactly as for the canonical case." This result
follows directly from the covariance of the y ma-
trices.

The solutions of the Dirac equation diagonalizing
W„/P„ in the Dirac representation are given by"

where

[P], x, , [P]. c 'x, '

[Pl x, ' ' [p] cx, (3.4)

1 0
X+ 0 t X

0 1
C =i7'2 =

Analogous transformations can be carried out
for spinor representations for arbitrary spin
(Soper' and Ref. 11).

Starting with the Dirac representation of M~",
the transformed generators

(3.2)

correspond to (2.28) (for the same choice of in-
dependent variables), with
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IV. RELATION WITH HELICITY AND
CANONICAL STATES

We have defined, for the representation [m, s],

Ip V) e (s'Be itdeelp V)

where v = p/p„, e"=)t2 p„/m. The helicity states
are defined as"

I p, ~& =It(p)e "-elo, )
&

-iy Jee -ie I2 e irpze e-i ))zelda) / P (4.1)

(4.2)

where (8, (I)) are the angular coordinates of p and

ta~n = lpl /p'.
Hence (suppressing for our present puryose the

6 functions corresponding to the 4-momenta),

&p ~lp, v)=«, ~le'""ft '(p)lp, v&

e((s(v ))ds ( 8)X. ft

where putting o. = -8 in (2.25), denoting (-()) by
simply -8, we obtain

states tend rapidly to the c stat;es as Ipl -0. It is
known that while h states possess certain conve-
nient properties at high energy, the c states pro-
vide the most direct generalization of nonrelativis-
tic formalism at low energy. The 0 states thus
gather together the convenient ProPerties of the h

and c states, in this respect.
Let us now define the following states:

trans-&: Ip, && =
I p, )()$),1(2)( 2e 2v), (4 t)

trans-c:
I p, (T& =

I p, o&m.,(e)(s $7(y 2((), (4.6)

trans-0:
I p, v) =

I p, v)u„e (-,')(, —,'((, =,'e) (4.9)

(For the sake of uniformity we have denoted the
usual transversity states as the trans-h

I p, )(&).

These are often convenient for studying scattering
amplitudes in the zx plane. For (e = 0 (p' =

I p I
sin8,

p'=0, p'=Iplcos8), we obtain from (4.2)-(4.9),
~V

(p, ~lp, v) =e""6;
(4.10)

(p |tip v&
e-((e-e)()6

p'cos8+Ipl . - m sin8
p'+lplcos8 ' p'+lplcos8

Some useful results are

cso-' 8=
P'+ IPI '"cos-'8
p+p 2

sin-,'8 =, ', ' sin 8 (p'= Iplcos8),
P +P

or

„„8 p'-lpl ' „„.,p' +Ipl

(4.3')

When considering scattering amplitudes in the
zx plane we will adopt the convention that if the
angular coordinates of p are (0, 8), those of -p
are (0, 8 + (() and not ()(, )r, -8).

Let us note that for p, =0,

e"~ lps, v) =e"~s(e '" s(e ("z3)e "~ e")~ l0, sv)

e(s (s)e( tsKs[ ( I )s -v
Ip v&]

=(-1)' "I-p -v)

or

re
0 tan2 (9 . (4 3I I)

Ip ")= (-I)""e'"'sl -p, -v)

-(-1)""Ipv')d' ( s)-
(4.11)

(4.11')

We will often use the case y =0 (p in zx plane).
Let us also note that for 8 = zv (p in xy plane),

cos8 = v, sint) = (1 —v')'i', (4.4)

where [from (2.25)]

2rn2

where v= Ipl /p', i.e., the rotation corresponds
directly to the Lorentz contraction factor.

The canonical states are defined as (see Aypen-
dix A of Ref. 8 and Ref. 11)

Ip, o&=e '»'lo, o& (ta-~n=lpl/p', p=p/lpl)

2ml pl sin8

p, '-lpl'cos'8'

In terms of h states, one obtains

(p, )(I p, v) = d ~~ „(-8), (4.12)

Hence

=R(p)e '" R '(p)lo, o'&, (4.5)
where

„,8, p'«s8 —
I plp'-

I pl«s8
&p, alp, v&=&o, clat(P)e*" 'ft '(p)lp v&

e((s(a-a)ds (8 8) (4.6)
m sin8

p'-
I pico«

(4.13)

From (4.2) one obtains the property noted by
Soper ' that the 0 states tend to the h states as
Ipl -~. But this is not the only interesting limit-
ing property. From (4.6) one can verify that the 0

The results corresponding to (4.6) and those to
(4.10) [for I p, v) defined as in (4.9)], are obtained
by substituting 6)' for 8.

Corresponding to (4.3') and (4.3")we now have
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cos-8'= i P i cos-8p'-p' 2 j

P'+ I&I
'"„.„i8

(4.13')

(4.13")

V. CROSSING RELATIONS

The crossing relations for the 0 and trans-0 amplitudes can be derived directly from the basic principles
or deduced from the known relations for the h, c, or trans-h amplitudes. '" In what follows, we will only
point out certain basic results, relying heavily on the formalism of Ref. 8. It is simplest to start from the
crossing relations between the c.m. s- and f- ch annel trans-h (or transversity) amplitudes in the zx plane

(Figs. 1 and 2) .
In Ref. 8 the conventions are so chosen as to make the crossing matrix really diagonal. Replacing the

indices 7; of Ref. 3 by X; (according to our present conventions), we have

((P, l(„P X, ~
T ~P, l(„P,Z,&),„„=(-1)"e'" &'14 ' "& "~ "2 ~2 "&13'"4"4 (P, A»P, X, (T(P~X4, P, X,&

(5.1)
(here rl is an over-all phase factor)

The angles X; are given in Ref. 8 and additional remarks about the phase factors and the continuation
path are given in the Appendix.

From (4.10) and (5.1) we obtain (with 8, = s + 8„8,' = v + 8, )

(e ~(""a 5s"s e4&"4 Q p, p p (T(p p„p p&),„, — (-1)~e'~("x+"4& '(&&"i &2"2 xsss+x4"4

xe-*- "~ '~""'2". ('P, p„p, p, l Tip, p„p,p

For the 0 amplitudes, d matrices replace the
exponentials, exactly as for the h amplitudes.

The kinematical significance of the angles in
(5.2) may be seen as follows. Proceeding as in
Ref. 3 [starting, for convenience, with case P'
=(P, -P,)'= t&0], if we first apply the transforma-

P(f) e&tut3 elg'8

with

e = v 3P„/Wt, v=P/P„

(P=P(~) -P(,) ),

(5.3)

FIG. 1. 8-channel center-of-mass frame. g+p2 = 0
= pe + p4. (First configuration. )

FIG. 2. t -channel center-of-mass frame, p +p&
—

p4

+p2.
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we obtain a zx plane amplitude with P,'=A~&
~ P;

and v&
=

v& . Then we have to apply a rotation
around the y axis to attain the configuration of
Fig. 2. This rotation alone gives the kinematical
angles involved in (5.2).

Also, as compared to the result (2.27) of Ref. 6,
we have for the 0 states,

[ p] I. X [ p] —e &&( &/3)&3
( 5.4)

Noting the foregoing two points, we may derive
directly the crossing matrix for 0 and trans-0
amplitudes by proceeding as in Ref. 8.

Let us finally note that we again obtain very
simple crossing relations for the 0 and trans-0
amplitudes for the "Breit" frame introduced in
Ref. 8. These may again be written down at once
from the corresponding results for the h, and
trans-h amplitudes. '

VI. KINEMATICAL SINGULARITIES

The structure of kinematical singularities of the
0 amplitudes has several interesting aspects. It
can be derived in many ways, e.g. , from the
known results for the h and trans-h amplitudes,
or by using the crossing relations, or by directly
using methods analogous to those of CTMN" or
Trueman. " Instead of going into full details we
will take the case of unequaL masses as an example
and will summarize the results with a few com-
ments, comparing them with the corresponding
results for other well-known amplitudes. The re-
sults have been verified by deducing them from
different points of view.

Let us define the zx-plane s-channel c.m. amp/i-
tudes (Fig. 1):

M „(s,t) =(P3v3, P4v~ I T IP3vi P3v3), (6.1)

3g..., .,;(s t) =(P.v„P.v. I
T If,v„P,v, ), (6 2)

corresponding to the states IP;, v;) [(2.2)] and

IP„v,.) [(2.3)], respectively. The corresponding
trans-0 amplitudes will be denoted, respectively,
by Mv ~ v ~ (s, t) and%~ ~; v (s, t)

The parameters p,'. , Ip;I, cos 8, , sin 8, are ex-
pressed in terms of the invariants s, t by very
well-known expressions. " The particle "i"has
mass m, and spin S; (3 = 1, 2, 3, 4).

We will now examine the kinematical singulari-
ties in s for fixed t for the case of unequal masses.
The following singularities are found for the am-
plitude (6.1). [The results for (6.2) are of course
entirely similar. We will combine them at the
end. ]

(a) Physical region boundary. This boundary is
given by 4 =0 where C is the well-known Kibble
fur.ction.

As 4-0,

or simply to

(6.3)

where M' andM are regular at 4 =0.
An exactly similar result holds for the c ampli-

tudes where we have (in evident notation)

M (s t)- (~4)aa, o o

(6.4)

s =(m3+ m, )', s =(m, +m, )'

and for trans-h amplitudes, one obtains factor-
izable singularities.

The Oamplitudes can be shozvn to be regular at
s = (m, + m, )' (for the configuration of Fig. 1). The
c amplitudes are regular at s =(m3+ m~) and be-
have as (P,'+ m, )

' j (j =4, 3 as m, ~~ m, ) at s
= (m, -m~)3. Thus we have the simplest behavior
for the 0 and trans-0 amplitudes.

Let us now consider the points (for Fig. 1) s
= (m, a m, )'. One convenient method of exhibiting
a factorized singularity is to pass to the configu-
ration of Fig. 3. If M and M' denote the amplitudes
corresponding to the configurations of Figs. 1 and
3, respectively, we have the trans-0 amplitudes:

where

At

&& es (e,v-, + e2v-2-e3v-3-e424) (6.6)

m) sin8 - p, cos8+ Ip, I

p,'~ Ip, Icos8 ' ' p,'~ Ip, Icos8 '

(6.7)

cohere the "+"sign corresponds to j =1,3 and "-"

These may be compared with the result for the h

amplitudes

M) x z z (s, t)- (sin —,'8) "'
3 4' I 2

x (cos 8) t ).i- x3+ x —k )

My y y y (s t). (6.5)

Thus for the 0 and c amplitudes, the results are
even simpler than for the h amplitudes.

For the trans-0 amplitudes, the situation here
is complicated just as for the trans-h. amplitudes.

(b) s =0. Like the h amplitudes, the 0 amplitudes
are also regular at s =0. The same result then
evidently holds for the trans-0 amplitudes.

The c amplitudes are not, in general, regular
at s=0.

(c) Thresholds and pseudothresholds. It is known
that the h amplitudes have complicated behavior at
the points
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)) 3R, , „„(-p;), (6.11)

M",,'.., ...,(p;) = [M...,„...(p;) ~ (-1)'*"""'
~ -U3-II4I -VI-V2(pi)1 ' (6.12}

For parity-conserving reactions the right-hand
side of (6.12) is equal to

where )) = g . 4q;, )), being the intrinsic parity of
the particle "i".

Let us define

[ VgV4 VtV2(p() ) VSU4 I/ll/2(P4)] t

then on turning once around the point s» =0,

(6.13)

VgV4~ UIV2(p't) VSV4~ VIU2(P'I) ' (6.14)

FIG. 3. s-channel center-of-mass frame. (Second con-
figuration. )

sign to j= 2, 4. Now in (6.6) M' is regular at s
=(m, + m, )'. Hence M behaves as the coefficient
in (6.6) near these points.

For the trans-c amplitude the corresponding re-
lation is simpler, namely,

(d) P„~;~ ——0, P—
„~&~

——0. As compared to the h and c
amplitudes, the 0 amplitudes have a new type of
kinematical singularity, due to the special role
played by the parameters P„and P„-, respectively,
in the definitions (2.2) and (2.3). But fortunately
these are simple factorizable ones. Thus for the
configuration of Fag. I sxngular~ties arxse at the

points p„«& =0, p-„«& =0 for i =3, 4. The amplitudes

P„(,) 'U P„(,) '4M„... ,,„,(s, t)

Ma a, a a (st t) Ma a, a a (st t)
3 4' 1 2 3 4' 1 2

& e(O&+ a2- a3- O4)x e (6.6')
~3 ~4

Ptl(3) PU(4) +vsv4, vtvm(st f)

(6.15}

In fact this amplitude is essentially the same as
the xy-plane c amplitudes. ' From (6.6) it can be
deduced that

(6.8)

where

are regular at these points.
Let us note that for

p„(&) =0 or p„—(,) =0 (j=3, 4),

4 =-m) S,2
2 2

(6.16)

(6.16')

s —Bl ] + m
g

s — s1
~

—pl )

is finite at s =(m, + m, )'.
A similar result holds for 3R, „, „,„,(s, t}. Again,

as regards branch-point behavior, it will be con-
venient to write the amplitudes using the parame-
ters p;. We note that on turning once around the

point s» = 0,

Recently Leader and Pennington" have found it
quite useful to treat the amplitudes as a function
of the invariants s and n' (instead of s and f},
where

n' = -C/s'. (6.17)

From (6.16') we note that if in modifying (6.17) we

keep fixed

2-4) s», (6.18}

and similarly

3R, „...(p;}-K, , „,„(-p;). (6.9)

But for zx-plane amplitudes, using (4.11), we have

(6.10)

For parity-conserving reactions, this is also [us-
ing (2.5)] equal to

then (for the massive particles we are considering)
the points (6.16) cannot be attained. For large s,
s»'- s'. This gives a kinematical motivation for
the choice of the denominator in (6.18).

t'e) Regula~ized 0 anzPlitudes. We start with the
two amplitudes M„,(p;) and%„, (p, ) [(6.1), (6.2)].
Putting together the foregoing results [and noting

the behavior of the factors P„(, ,), P„—(, ,) in (6.15)
for s- 0 and s»-0], we obtain the following two

regularized combinations:
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C
- I V7+V2 V3 V4l/2 ($ +$2+$3+$4+6'$) ($3+$4)/2

S72 S

+ [p {n3) pn(C) Mv3v&, v&v2(pi)

where,

for QS; =2n, e, =0, e =1,

and

(6.19)

(6.20)

0, „and 0„', , respectively, we have [from (4.2)
and (4.12), with {p =v+8, and y'=v+8,']

(6.23)

VII. REDUCTION OF DIRECT PRODUCTS AND
PARTIAL-WA VE ANALYSIS

o. . =Ha x
d' ). ({{')(-I)""'5., -~

Thus the singularities due to the half-angles [-,8,
in (6.21)] are eliminated while those due to P„{»
and p„—~3~ are introduced.

for Q S; =2n+1, e, =1, e =0.

For parity-conserving reactions we may use (6.11)
to substitute q%, .(p;) in the second term of (6.19).

Thus finally we see that for the general mass
case we have discussed, the 0 amplitudes can be
regularized quite easily. In fact the results are
simpler than for the h amplitudes and do not fail
for the case BF-B'F' (as in the case fork ampli-
tudes). We did not even assume parity conserva-
tion in (6.19).

The fact that we are using [in (6.19)] a combina-
tion of the amplitudes M, . and%, , causes no spe-
cial inconvenience. Since compact and analogous
transformation formulas [(2.17), (2.22)] are avail-
able for both types of states, such a combination
can be handled as easily, say, as the combination
of two@ amplitudes. However, if we want to, for
some particular reason, express one type of 0 am-
plitude as a linear combination of the other type,
it can be done using (4.11').

(f) Elastic mN scattering. When the masses are
not all unequal, several particular cases of im-
portance arise. Since the 0 amplitudes for all
such cases can be treated easily by starting from
known results for other amplitudes, instead of
listing all the possibilities systematically, we will
only briefly consider the important case of elastic
mN scattering.

In Fig. 1 the particles 1 and 3 are now pions
(mass p) and particles 2 and 4 are nucleons (mass
m ). For the he lie ity amplitudes one has'

H„=H = (cos-,'8, )E, ,
(6.21)

H, = H, = (sin28, -)E, ,QS

where in terms of the well-known invariant ampli-
tudes A and B,

s —mS =A+a'
7 2m

In this section we will briefly indicate the rela-
tion of the present formalism to certain known

techniques for reduction of direct products of
states and partial-wave expansions of scattering
amplitudes.

For massive particles two well-known methods
of reduction employ l-s and helicity coupling,
respectively. Moussa and Stora' have given re-
sults for these two couplings valid for arbitrary
tetrads. Let us take the direct product lP„v, )
&& lp„v, ). For simplicity we will consider c.m.
frame, namely, p, + p, = P = 0.

I et us start with the l-s coupling. Using the
general result of Ref. 6 (Sec. II, a, 5) and adopting
tneir notation, one finds that the calculation of
the coupling coefficients

&[p,], v„[p,], v, IP'], v, j, &, s, p')

for the states lP, v) [or similarly for [P, v)]
amounts to first transforming them to the c-states
[using (4.6)], and then using I-s coupling for the
c-states. This corresponds to the fact that the
l-s coupling arised naturally for the c-states and
has the simplest expression for them.

For a similar reason the general result for he-
licity coupling applied to [P,v„P,v, ) amounts to
transforming lP„v,) to lP„A.,) [using (4.2)] and
then using the standard result for the helicity
states. The above two couplings may then of
course be utilized as usual to expand the Oampli-
tudes in the conventional l-s or helicity partial
waves.

A particularly interesting application of 0 states
is in crossed-channel partial-wave analysis for
lightlike momentum transfer. In this formalism,
instead of the usual direct- (s-)channel partial-
wave analysis of

(pgvn, p4vnl~lpgvg, p2v2),

one reduces the direct products

1 AF, = — —(s + m ' —{J.') +B(s + V,
' —m ')

2 2 m J

(6.22)

and

lpga 3, —p~v~)

Denoting the amplitudes M... „,, and%... ,,, by I-p,v„p, v, )
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for the case

t= (P~ -Pi)'

= (P~ P~-)'

=0. (7.2)

&P.v., P,v, I7'IP,v„p.v. &

= (P,'v„P4v, ITU(A)IP'v, P2v, ), (7.6)

where A= A 'A,

In particular we may choose A» = A34 such that

U(A}= e 'a'+e ' r', (7.3)

with suitable values of v and (d.
Thus, for example, to start with, one may write

&psv3, P4"4 I &IPP u P2v2)

=&Psvs Pc 4~ ( s4) ( i2 )~Pl i P'v2&

(7 4)

where A», A34 are independent transformations
of the type (7.3) such that

A „(P„P.) = (P,', P,'),

A34(P3P P4) (P3 y Pg) '

Hence,

(7.5)

The result can be found in Ref. 3 and the partial
waves correspond effectively to Fourier -Bessel
transforms.

So far we have been considering partial-wave
expansions starting from reduction of the direct
products of states and the use of the language of
little groups. More general types of expansions
of amplitudes are nowadays often introduced. For
example, a generalization of the above -mentioned
crossed-channel expansion for t 40 (but for spin-
0 particles) is given in Ref. 4.

In fact if we do not insist on an interpretation
through reduction of direct product of states and
little groups, various types of partial-wave ex-
pansions can formally be introduced (for arbitrary
values of the momenta) by using the orthogonality
properties of different functions (such as Bessel
functions which are useful for studying certain
models). In these types of expansions, certain
necessary integrability properties are to be pos-
tulated.

One way of introducing group-theoretical expan-
sions is to parametrize the amplitude by certain
transformations of the Lorentz group (which serve
to bring the momenta to suitably chosen standard
values) and then expand the amplitude as a func-
tion of those transformation parameters. " Without
going into any detail, let us just note some agree-
able properties of the Oamplitudes concerning
such parametrizations. These are consequences
of the simple action of the generators B, K„and
J, as given in (2.17) and the fact that a 4-momen-
tum P can be brought to any arbitrary value P'
(with P" = P') by a transformation of the type

P] + P2 P3 + P4

=0

to relate the c m am. p.litude in a one-to-one fashion
to amplitudes for arbitrary values of P = P, + P,

P3 P4'
More generally one can choose A», A34 so as to

reduce, for example, p, -p, and p3-p4 to suitably
chosen standard values. For xy-plane amplitudes
we can further use J3 to rotate the whole configura-
tion, introducing only a phase factor.

We can exploit this simplicity also in the reduc-
tion of direct products (many particle states) in
calculating coefficients of the type

&P&.vt ~ ~u vu ' ' '
& Pns vn) (7.7)

VIII. REMARKS

The Galilean subgroup of the Poincare group
plays a basic role in null-plane formalism, which
is of interest in high-energy processes, and leads
naturally to a definition of spin projection which
we have studied at length. We have tried to point
out many interesting properties of the 0 states
and 0 amplitudes. We have concentrated on the
study of massive particles since a smooth limit
to zero mass leads directly to well-known descrip-
tion in terms of the little group E,.

For helicity projection, one diagonalizes effec-
tively the projection of W'on a timelike vector
(1, 0, 0, 0). For 0 projection, one diagonalizes the
projection of Won a lightlike vector (1,0, 0, a I)/W2.
Similarly one may also study the projection of S'
on a spacelike vector, say, (0, 0, 0, 1), for physical
particles (and not only for p"p& & 0 where it is

(f denotes possible extra parameters which we
need not specify for the moment, but which are
supposed to have been expressed in an invariant
way}.

Let U(A) be given by (7.3) and A P = P' and AP,
= P& ', then for arbitrary values of P„
&Ps vl ~IPlt vlt ' ' '& Pnvn) = (P s vt g [P» v». . .

& Pnvz)

(7.8)

Thus, for example, we can directly relate high-
energy Clebsch-Gordan coefficients to the c.m.
ones (where p = 0) without introducing superposi-
tions. This simplicity is not obtained for h or c
states.
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known). Now that not only do we have many inter-
esting models for amplitudes, but also direct
experimental determination of certain important
cases are becoming possible, "a systematic com-
parison of the properties of different amplitudes
(for both direct and crossed channels) may become
of interest. Different amplitudes may provide a
relatively simple description under different con-
ditions. We hope to study these aspects more
thoroughly elsewhere.

APPENDIX: PHASE FACTORS
IN CROSSING RELATIONS

(&P.l „P.l, [TIP,l „P.q&) ...~
i"- "&&p,~„p,~, ~T~ p,~„p,~, &

xd~lx, (X,)dx;x,(- X.)d~'~, ()4)d~;~,(-X4) .

(A1)

This corresponds exactly to (12) of Hara" upon
making the correspondence

(A, B, C, D) (2, 4, 1, 3),

if we put (with e =-1 for E+B-B+Eand B+E-E
+B processes)

] ~(g) i 7I2$3
(A2)

The factor & can be obtained explicitly in our
formalism by choosing the negative sign in (2.27)
of Ref. 8 in agreement with the continuation pro-
cedure of Hara.

Comparing with the result of CTMN, ' noting that

In Ref. 8 we did not give the explicit form of the
overall phase factor q. Concerning this point it
is interesting to compare the results of Ref. 8
with the corresponding ones of other authors,
using the crossing relations for center -of-mass
helicity amplitudes which have been studied by
many.

The crossing relations for the helicity amplitudes
corresponding to (5.1) is given in Ref. 8 as

their y, and X have opposite signs, we find apart
from the condition

f 7f[a(P) +2+ + 2841e =e (A3)

an extra helicity-dependent phase factor
(X'- X. X3 —Xg) (A4)

The origin of this factor is easily traced. It
represents a rotation m about the n, axis and is a
consequence of the fact that their n, axis (Wz in

their notation) acquires a negative sign after con-
tinuation (this axis being common to all the par-
ticles). Our formalism implicitly defines the n,
axis in the t channel with such an additional rota-
tion, which is not only quite legitimate (amounting
to a choice of phase conventions for the states),
but has the additional advantage of making the
transversity crossing relation really diagonal. In

the CTMN' formalism the transversity indices
have the crossing property

(i= 1, 2, 3, 4).

As compared to the original derivation of
Trueman and Wick, 'o there are again several
differences concerning phase factors (e.g., con-
vention regarding "particle 2" and behavior of
helicity states under crossing) [see Eqs. (3.13),
(3.14) of Ref. 8.]

In fact, in our formalism (referring now to
equations in Sec. II of Ref. 8) if we put Eq. (2.40)
directly into (2.25) [using, like CTMN, the result
of Bros, Epstein, and Glaser, so that their
o(p) =17'] we obtain finally,

n = o(p)+ 2(S, +S~). (A5)

This is to be compared with (A2) and (A3). In our
case (A5) the crossed particles play a symmetrical
role (1 and 4) as do the uncrossed ones. It is to
be noted that we have directly followed the rele-
vant 2x2 matrices [(2.25)-(2.27) of Ref. 8] in the

process of continuation, whereas CTMN follow the
helicity frames, which necessitates a separate
determination of q.
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We combine chiral and "scaling" Ward identities in an analysis of the axial-vector current anomaly.
This leads to a proof of the Adler-Bardeen theorem. The "scaling" Ward identities we used may be

properly called "response equations"; they are slight generalizations of the Callan-Symanzik equation.
Our discussion is given for a class of theories which includes the cr model and massive vector-boson

theory.

I. INTRODUCTION

Much has been learned from a systematic ex-
ploitation of chiral Ward identities. On the other
hand, the scaling Ward identities of Callan' and
Symanzik' have provided us with relatively little
information. It is then natural to ask if these two
types of Ward identities may be combined in any
sensible way. In general the answer appears to
be no, which is not to say that under specific cir-
cumstances the combination would not prove to be
a potent one. Indeed, one of us has shown' that an
example of such a set of circumstances may be
found in the theory of axial-vector current anoma-
lies. 4

In field theory the scaling Ward identities mere-
ly translate what is essentially a trivial statement
in the unrenormalized cutoff language into the re-
normalized language. But precisely because of
this they are of great help in disentangling dia-
grams in renormalized perturbation theory. Un-

fortunately, their usefulness is severely limited
by the fact that the so-called scalar insertion term
that appears in them in general cannot be evalu-
ated. These terms are thus often dropped in ap-
plications by going into the asymptotic Euclidean
region and by appealing to Weinberg's theorem. '
This tactic reduces the Callan-Symanzik equation
to the renormalization group equation of Gell-
Mann and Low, ' with a costly loss of information
content. One may ask if this loss may be avoided
under certain circumstances. A limited answer
was given in Ref. 3 and will be elaborated in this
paper.

We outline our argument here, deferring the de-
tails to Sec. II. Consider the current correlation
function

R „„(k,q)=—i Jd'xd'ye'"*'"'
~ (ogre&(o)v„(x)v, (y)io)

=—e„„~,k "q'f(k', q', (k+q)').


