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The 1ongitudinal structure function [Wl (q, v)] of inelastic neutrino and electron scattering
is studied in the deep-inelastic limit in the canonical quark-gluon model. Although Wl {q,v)

vanishes asymptotically in this model, viz (q, v) should scale. Sum rules are derived which

relate integrals over the scaling limit of viz (q, v) and the well-known structure function
I"2(-q /2v) to octet baryon masses, the Gell-Mann-Oakes-Renner parameter (c), and the pion-
nucleon sigma term (0 ). The sum rules are convergent, since leading Regge terms are to
be subtracted off according to a well-known prescription and contain no arbitrary constants
if the residues of e =0 singularities in forward current-hadron scattering are polynomials in
q . The sum rules are derived using light-cone techniques. It is shown that the parton
model and Bjorken-Johnson-Low commutators yield identical results. Similar sum rules are
presented for other interactions and scalar "quarks, " Estimates of c and o~ a11ow numerical
evaluation of the sum rules indicating that the integrals over vR~(q, v) are small. The
pattern of chiral-symmetry breaking in the vector-gluon model is discussed. It is shown
that the dictum that scaling laws may be abstracted from free-field theory leads to difficul-
ties (in that it generates too trivial a theory) if applied to the chiral-symmetry-breaking
structure functions of neutrino scattering. Abstraction from gluon models, however, re-
mains adequate.

I. INTRODUCTION

The scaling observed in the SLAG-MIT electron
scattering experiments' has generated consider-
able interest in calculational approaches to field
theory which ignore the renormalizations and
attendant logarithms of perturbation theory. Light-
cone expansions' with canonical singularities,
Bjorken-Johnson-Low (BJL) expansions, ' ' and
parton models" all account for scaling in inelas-
tic electroproduction, and are probably equivalent
to leading order in the deep-inelastic limit. '' For
the sake of brevity we refer to all three approaches
as canonical field theories. A feature of these the-
ories is that interactions do not appear explicitly
in calculations of inelastic electroproduction.
Their effects are relegated to the otherwise un-
specified matrix elements of bilocal operators or
parton fields which determine the shape of the ob-
served structure functions. An exception to this
is the qua, rk-vector-gluon model' in which inter-
action-dependent terms appear in leading order
in the deep-inelastic limit, but only as gauge terms
which do not alter scaling laws.

Recently it has become clear that interactions
enter in a nontrivial way into the description of
less well-known (and less easily measured) struc-
ture functions. It is well known" that in canonical
theories in which the weak or electromagnetic

currents are constructed from spin--,' fields the
longitudinal structure function Wz (q, v) vanishes
in the deep-inelastic limit, although on the basis
of naive dimensional analyses it would be expected
to attain a finite limit. In most models similar
behavior is discovered for the chiral-symmetry-
violating structure functions [W, (q', v) and W, (q', v)]
of neutrino scattering. ' It originates in the scale
dimension of interactions which violate chiral sym-
metry rather than the spin structure of currents.

In the context of canonical field theories a de-
parture from the naive predictions of dimensional
analysis must be governed by some dimensional
parameter such as a mass or gluon field strength
occurring in the canonical equations of motion. It
is to be expected therefore that the scaling be-
havior of S~, 84, and W,

'

will probe the structure
of masses and of interaction terms in the theory.

This possibility has been realized for the chi-
ral-symmetry-breaking structure functions in the
quark-vector-gluon model. Tests of the vector
nature of the interaction are obtained" as well as
sum rules which relate the structure functions
W4 and lV, to low-energy parameters of chiral-sym-
metry breaking. "'" Unfortunately the predictions
of this program are rather far removed from
experimental confirmation, since they involve
structure functions which are nearly impossible
to measure. "
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In this paper we study the Bjorken-limit behav-
ior of the longitudinal structure function Wz (q', v}

in quark-gluon models. In the text we derive our
results using coordinate-space light-cone expan-
sions. We have checked that all of our results
are also valid in the parton model' and in the
equal-time'~ and light-cone" BJL limits, and we
outline the derivations in the Appendixes.

Our intentions are primarily twofold: first, to
relate W~ in the deep-inelastic limit (via sum
rules) to low-energy properties of the baryons and
parameters of chiral-symmetry breaking without
involving the experimentally intractable structure
functions W4 and W5; and second, to show that an
attempt to extract too much from free-field the-
ory near the light cone leads to too trivial a the-
ory. Specifically, the free-field scaling laws for
leading chiral-symmetry-breaking structure func-
tions, when related to static properties of the
baryons, necessitate the divergence of a (Regge-
convergent) integral over a leading structure func-
tion [vW2 (q', v)] in the SU(2) x SU(2) limit. Exactly
such a divergence occurs in a totally free-field
theory in which structure functions are 5 functions.
Abstraction from a vector-gluon model, on the
other hand, generates no difficulties. It has long
been believed" that there is a limit to the amount
which can be abstracted from the light-cone struc-
ture of free-field theory. We confirm this even
at the level of the leading chiral-symmetry-break-
ing structure functions.

The reader should be warned that all our con-
siderations are formal. That is to say they are
untrue in perturbation theory. We take the ob-
servation of scaling in the SLAC-MIT experiments
as motivation for abandoning perturbation theory,
although the data do not exclude in@' terms with
small coefficients. It should be stressed, however,
that our techniques and conclusions will be inval-
idated by either a breakdown in scaling at higher
energies or a failure of the more conventional
predictions of quark-gluon models. "

Since the derivations of Secs. II and III are rather
technical, we have summarized our results, in
the interest of clarity, in Sec. V, to which the
reader may wish to turn first. In the remainder
of this section we review the previous work on
W~(q', v), present the plan of the remainder of
the paper, and discuss the assumptions on which
our work is based.

Several years ago, Callan and Gross" pointed
out that W~(q~, v) vanishes in the deep-inelastic
limit if the hadronic weak and electromagnetic
currents are constructed of spin--', fields. Sub-
sequently several authors"' "pointed out that
vW~(q', v) scales in the gluon model. Implicit in
the work of Jackiw and Schnitzer" is a sum rule

relating the scaling limit of vW~(q', v) for electro-
production to the proton matrix element of the
quark density operator (weighted by charge
squared) $Q'g. Their sum rule diverges linearly
if„as expected, the Pomeranchukon couples to
W~." Recently Fritzsch, Gell-Mann, and
Schwimmer" independently discovered this sum
rule.

In Sec. II we review the kinematics necessary
for our derivation of this and other sum rules.
Special attention is paid to the systematics of
0. = 0 fixed singularities in current scattering am-
plitudes since an understanding of this problem is
crucial in avoiding possibly divergent sum rules.

In Sec. III we derive three finite, regulated sum
rules for the matrix elements (P g (0)&; g (0) ~P)

(i =0,3,8) in terms of bare quark masses and in-
tegrals over the scaling limit of vW~(q', v) and
vW2 (q', v) in electroproduction and (anti-} neutrino
production. For i = 3 our result is the properly
regulated, convergent version of that of Refs. 19-
21. These sum rules are valid in the canonical
quark-vector-gluon model (and also in models with
no interactions at all). They are convergent re-
gardless of the Regge asymptotic behavior of the
structure functions; they are free from unmeasur-
able constants so long as the residues of += 0
fixed singularities are polynomials in q'.

Also in Sec. III we discuss the expected scaling
behavior of the chiral-symmetry-breaking struc-
ture function W, (q', v). In the vector-gluon model
v'W, (q', v) scales but is explicitly proportional to
the vector-gluon field strength F„„and coupling
constant g. If we follow the dictum that the leading
behavior of structure functions should be given by
free field theory, v-'W, (q', v) vanishes in the deep-
inelastic limit.

Lastly in Sec. III we list sum rules for vW~(q', v)
which occur in scalar- and pseudoscalar-gluon
models, and for yW, (q', v) in models with currents
constructed from only spin-zero fields.

In Sec. IV we relate the matrix elements
(Pg(0)A; g(0) ~P) to baryon mass differences and
the o term in pion-nucleon scattering (&x,). Com-
bined with the vector-gluon-model sum rules of
Sec. III we obtain three relations among baryon
masses, the ratio of the bare masses of 5'- and
A, -type quarks, o „and integrals over the scaling
limit of vW, and vS~ in inelastic electron and neu-
trino scattering. Similar relations valid for the
free-field model, in which v2W, (q2, v) vanishes,
were given in Ref. 12. In the SU(2) x SU(2) limit
those relations imply that either the A. quark be-
comes infinitely massive or otherwise convergent
integrals over vS', must diverge. Such pathologies
are not encountered in the vector-gluon model and
lead us to conclude that at this level free-field the-
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ox'ies cease to be adequate guides to scaling phe-
nomena.

Section V eontRlns R summary of oux' coQelusloQS.
In several appendixes we outline derivations of
our results in the BJL and parton languages. It is
worth noting that these approaches continue to
yield identical results even at the level of nonlead-
ing structure functions.

Before passing to the body of the paper we sum-
marize the assumptions which underlie our work.
We assume

(a) that the leading light-cone signularities of
current-current, divergence-divergence, and
current-divergence commutators are correctly
given by canonical manipulation in the gluon model,

(b) that the operators which arise in light-cone
[or equivalently equal-time (BJL)] commutators
obey gluon-model equations of motion,

(c) that the residues of o. = 0 fixed singularities
in the real parts of kinematic-singularity-free
amplitudes are polynomials in q'.

The consequences of these assumptions have
been discussed in the literature. We note that our
use of (a) and (b) requires finite bare-quark
masses. " This is a reflection of the incompati-
bility of our approach with perturbation theory,
where bare masses are infinite order by order.
Assumption (c) is necessary to exclude arbitrary
constants in the sum rules. It is best motivated
in constituent models, where it follows from the
assumption that the unitarity arguments which rule
out n = 0 fixed singularities in hadron-hadron am-
plitudes also apply to parton-hadron amplitudes.
It then follows that u =-0 fixed singularities in
the Compton amplitude scale and have polynomial
residues. " The handling of u = 0 fixed poles in
sum rules is correspondingly more direct in such
models as illustrated in Appendix A.

Assumption (c) is subject to experimental test
in the case of the electroproduction structux e func-
tion E,'~(x). The u=0 fixed pole in T,/q' has resi-
due

I

I

j t

I

yl

FIG. 1. Illustration of the behavior of I'2 implied by
the assumption that fized-pole residues ale polynomials
in Q . This assumption yields Area (A) -Area (8) =C .

diets a rather definite behavior for E2 illustrated
in Fig. I and discussed at length by Close and
Gunion. "

II. KINEMATIC PRELIMINARIES AND FIXED POLES

Here we define the structure functions for in-
elastic lepton scattering on unpolarized nucleons
and indicate their expected sealing and Regge be-
havior. In addition we analyze the constraints on
possible 4= 0 fixed singularities imposed by scal-
ing and the assumption of polynomial residues in
kinematic-singularity-free amplitudes.

A. Kinematics

We adopt the usual decon1position of the forward
Compton amplitude":

T„,=i d'ye"'(P) T*(J'„(y)Z, (0)) (P)

+ & — 2V &v — 2Qv T2@ pt'y

(2.1)

in photoproduction (q'=0). If the residue is in-
dependent of q', as would follow from assumption
(c), then we obtain the Cornwall-Corrigan-Norton-
Rafar Rman-Raj Rsakar RQ suxn x'ule

did P (&d) = C (d = 2I' q
2 y q2

where v =P q and the matrix element is averaged
over nucleon spin. The Bjorken limit (Ilm~ ) 18
-q', v- ~ with x—= -q'/2v fixed. The electromag-
netic current in the quark model is

where E;~(&u) is the scaling limit of vW, (q', P q)
with all leading Regge (a & 0) terms removed.
Estimates of C~ from recent photoproduction
data suggest C~ = I," in which case Eq. (9) pre-

(our A. matrices are normalized conventionally:
Tr A.

' =2). For neutrino scattering we define
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d'ye"" Z 7'. + Z' y J' 0 I'
e g

T(4)) 8))U 2 T). ('q qv)+~2 +)4 2 q)( +)) 2 q)/ T2 (q qv) 2~2 TS (q qv)M q q

(2.2)

J,'(y) = t(y)r, (I ~.)&'t(y),

x'=--,'(x, +fr, ) .

The quark model (with scalar, pseudoscalar, or
vector interactions) has the following scaling be-
havior:

lim W, (q', v) =E,(x),
Bj

lim —,W» (q ', v) =E» (x),—

V
2

lim —,W, , (q', v) =E, , (x) .
Bj

(2.3)

%e have used T invariance to set the amplitude
(T",") to zero, and have ignored the strangeness-
changing current. Generalization to the full Cabib-
bo current is straightforward.

The structure functions are defined by the ab-
sorptive part of the scattering amplitudes:

W, (q', v) =——ImT&(q~qv).=j

lim —,Wz(q', v) =Eo(—x) .
gj M (2.5)

For fixed spacelike q' a Regge trajectory with
intercept e leads to the following asymptotic be-
havior:

W. ,i(q', v) - v",

W, , (q', v)-v" ',
W (q2 v) v()( 2

(2.6)

E, (x) - 1/x"",
E, o(x) -1/x"+',

E, (x) -1/x",
E, (x) -1/x

(2.7)

where the Pomeranchukon has 0.=1. For future
convenience we tabulate (Table I) the large- v

(small-x) behavior of T& (E&) assuming that the
Pomeranchukon dominates.

The positivity of the matrix W» requires'9

Assuming that this behavior is reflected in the
Bjorken limit as x- 0 we find

Note that W, , (q', v) do not scale as expected from
dimensional analysis [which predicts vW, ,(q, v)
to scale]. This is because these theories are chi-
rally invariant to leading order on the light cone.
Also, quark-gluon models predict that

E, (x) jxE,(x)j,
E(;(x) ~ 0

4'(x) [2xE, (x) —E, (x)] ~
j E, (x) j'.

(2.8)

V 2

)q, (q', q)-=((-,--, )q(q*, ) —q((q', ) (4.4)M'q'

vanishes in the Hjorken limit, "while vs, (q', v)
scales."'" Accordingly we define"

TABLE I. The large-& behavior of T; and small-x be-
havior of F; with Pomeranchukon dominance.

The sum rules of Sec. III involve the amplitudes
T. ..~(q', v), for which we write the following
fixed-q dispersion relations, consistent with the
Regge behavior of Eq. (2.6) (and allowing for @=0
fixed poles, which we shall discuss below):

)
" dv'v'8', (q', v')

l, (q2, v) ~~D~

Amplitude D&

F;(x) ~ x "&
x~0

Structure function

q2/2 V ( V —V

~v'W. (q', v')
l2

q2/g V —V

V
2

q, (q*, q)-=()-M. . &.(4', ')-&, (4', )M~q'

(2.9)

( 20) 4 2 " z(q)v)
V V -V

In the case of neutrinos we take only the isospin-
symmetric part
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Tpv Tpu + T (W~ =—W;+ W "q),

8, Fixed Poles

and for electrons Tq, (q'., v) =0.

be polynomials in q'. Unfortunately the ampli-
tudes T; (q', v) are not free of kinematic singular-
ities. However, they are related as follows to
amplitudes, T; (q', v), which are kinematic-singu-
larity-free [T; (q', v) are defined in Ref. 17]:

It is essential for the derivation of our sum
rules to isolate the n =0 terms in the real parts
of the amplitudes of Eqs. (2.9). Many authors
have discussed this problem (see, for example
Refs. 22 and 23). A review of this subject may be
found in Ref. 30. For any T; (q', v) with expected
Regge behavior v"' q

' (see Table I) an (i. =0 fixed
singularity is defined to be the term in ReT, (q', v)

which goes asymptotically like v ' '. Clearly Eqs.
(2.9) allow for c(= 0 fixed poles (which cannot be
excluded a priori) according to the Regge dictates
of Table I. To isolate the fixed pole in any T; (q', v)

write

W; (q', v) = W& (q', v)+ W";(q', v}

T, (q', v) = T; (q', v), i =1,2, 3

2

T.(q', v) =T.(q', v) ——.T, (q', v) ——r T, (q', v),

(2.12)
T, (q', v) =T, (q', v)+—,T, (q', v) .

ppThe fixed-pole residues T; (q'), defined in anal-
ogy to Eq. (2.10), are by assumption polynomials,
P (q')

The fixed poles in the amplitudes T; are then

T,"'(q') = —B,
2

T," (q') =A+B

such that

lim v' q W, (q' v) = 0.

M
T," (q') =-—~A,

(2.13}

[W& (q', v) must therefore parametrize the leading
Regge behavior with o. & 0.] For simplicity we
shall assume this leading behavior to be a sum of
poles with n&0, which implies

W; (q', v) = g y;(a, q') v"+ q
' for v&0.

n&0

The treatment of Regge cuts and terms in W, (q', v)

with += 0 is given in Ref. 30.
T; (q', v) is constructed from Ws( (q', v) by means

of dispersion relations analogous to Eq. (2.9), in

which the subtraction constants are equal to zero.
(The threshold of the dispersion relations is now

at v=0. ) Fixed-pole residues are given by

1-Dq

T; (q') =—lim —, [T( (q', v) —Ti (q', v)],
P ~()o

q

PP 2 2M

where A and B are the first two terms in P,(q')
=A+(q'/M ) B+ ~ ~ ~ . In writing Eq. (2.13) we have
assumed that T((q', v) scales in the Bjorken limit
with the same power of v as its absorptive part
W, (q', v). This eliminates higher polynomials.
Actually, this assumption is not necessary, as
explained in Ref. 30."

The over-all fixed-pole structure is then"

pp B 2
T)()( =—

2 [v gI()) + q P()P)) —v (P)) qq) + P)) q)) )]
V

+ 2 PP„. (2.14)

Combining E(ls. (2.11) and (2.13) and taking q'--~
we obtain

which yields

q, ( q ') = ——,I d q q )q (q ', v),
0

(2.10) 4 Oo

lim q, T, (q', 0) =4 dx[4xP, (x) —F,(x)],
q -& «oo 0

(2.15a)

T, (q') = T, (q', 0) —4
dv—W, (q', v),

2 oo

lim, Ti, (q', 0) = —4 dx[2FG(x)+F,(x)],
q2 + 0

T, (q')=- —, dvW, (q', , v),
0

T„(q') = Tr, (q', 0) —4 —
Wr, (q', v) .

0

(2.11)

B=2 —,F (x),2
"dx-

0

dxP, (x) .

(2.15b)

(2.16a)

(2.16b)
As mentioned in Sec. I, there is good reason to

suppose the residue of @=0 fixed poles in kinemat-
ic-singularity-free current hadron amplitudes to

When applied to neutrino-induced production Eqs.
(2.15) and (2.16) should be read with F; = E', + Fv.
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In electroproduction Eqs. (2.14)-(2.16) are to be
read with A, T„T,=O.

Note that the combinations of regulated structure
functions which occur in the subtraction constants
of Eqs. (2.15) differ from the absorptive part, due
to the nonpotynomia/ fixed poles in 7» z (q', v} gen-

crated by the polynomial fixed poles of the kine-
matical-singularity-free amplitudes.

Taking the Bjorken limit of the dispersion rela-
tions of Eq. (2.9) and using the asymptotic form of
the subtraction constants given by Eq. (2.15) we
obtain

x"i'm = — d x[
x2' ~(F)x+ ~F( )x] dx', [2 ' xF(x)+F (x')]I, (2.17)

I'"q" T„„2 1 +]2iim, '" = — dx'[F(x') —4x'F ( ')] dx', —„[F(x') —4x'F (x')]IM 0
(2.18)

The combination of structure functions is the
same in the subtraction constants and absorptive
parts because both P„q, T"" and P„P,T"' have no
J= 0 fixed poles, as may be seen from Eq. (2.14).
It is this fact that allows the simple coordinate-
space derivation of the sum rules presented in
Sec. III.

III. SUM RULES FOR QUARK DENSITIES

A. Vector-Gluon Model

In the vector-gluon model the quark triplet,
from which weak and electromagnetic currents
are constructed, satisfies the equation of motion

(&I]'-g4(y) -m)]j)(y) =0 (3.1)

where B"(y}is the gluon field and m is the (bare)
mass matrix

(, 2 Oi
0 pyg. 0
0 0 m~

Assuming charge symmetry we will take m &=m~.
Canonically the leading light-cone singularity of
the quark propagator is given by'

(y-x)„(y-x), [B"(x), B"(y)] =0

for (x-y}'=0. The terms ignored in Eq. (3.2) are
no more singular than 6(y'), as is the anticommu-
tator $[C)(y), [j)(x)] which vanishes in free-field the-
ory.

Derivation of Sum Rules

Consider first electroproduction. From Eq.
(3.2) we obtain

(P I [~„(y),J.(0)]lP)

,'Tr[r]-r-),r. ro] V'(P, y) a'D(y)+R„„(P,y),

(3.4)

where V (P,y) is the antisymmetric vector bilocal,

V"(P,y) -=-.'&Ply(y)r "q'Z(y, o) q(0)-(y-

F(y P,y')P -+'G(y P,y') y", (3 5)

and R&„(P,y} is no more singular than 6(y').
Taking the Fourier transform of Eq. (3.4) and

projecting out F2(x} and Fa(x} we find (4[. =P ~y)-
F,(x) = —xlim W„„g""

Bj

(]j)(y),T])(x)] = -I(y, x) ttD(y x)-
+ less singular terms,

where D(y) =——(1/2x) e(y, ) 6(y'), and

(3.2)

(- 1

l(2, x) -=cap -id f da( ) 2( xxd(1-x-aa) axe)
0

(3.3)

and

dre-'~ F(Z, O)2' (3.6)

Fe (x) =—,lim W~„P"P"2x
Bj

dA. e ' [F(X,O}+2XG(X,O)]. (3.7)2'

That is, the leading light-cone singularity is that
of free-field theory (being independent of the quark
masses) modulated on the light cone by a phase
depending on the gluon field. The phase factor of
Eq. (3.3) is well defined on the light cone if we
work with the gauge in which

At A. =O, F(A.,O) and G(A.,O) are related, by virtue
of the equation of motion (3.1), to the symmetric
scalar bilocal:

S(y P, y') -=-,'&PIT((y)mQ 1(y,0)(j(0)+(y -y)IP&.

(3.8)
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In general, by application of Eq. (3.1),

S (y P,y') = —' " V„(y P, y')+gy" C„(P,y), (3.9)

where C&(P,y) is a bilocal involving explicitly the
curl of the gluon field. At y P =y' = 0, Eqs. (3.5},
(3.8), a.nd (3.9) give

(PIi[(0)m Q'y(0) IP)
I

8
= —iM' —E(A.,O) + 4G (y, 0) . (3.10)

8A, —k=0

A sum rule is obtained by inverting the Fourier
transforms of Eqs. (3.6) and (3.7). Inverting Eq.
(3.6) gives

8 I—E(A.,O) = 2i dxcosAxF, (x.),
0

(3.11)

which is convergent by Regge arguments. How-
ever, the inverse of Eq. (3.7),

a(~, 0) =—J —e'~[)", (x)-)".(x)], (3.12)

must be interpreted as a distribution, since we
expect Eo(x)-1/x' as x-0. Parametrizing the
leading Regge behavior by

yo (~) I
&I"

F(u+2) cos 2w(c[+1) —'

E (x) = E (x) +g y ( o[) I
x

I

n&0

we obtain
Oo

G(zo) =if dx [P~ (x) F,(x)]-
0

As ][-0, G(A.,O), so defined, remains finite.
A Priori either Eo (x) or F, (x) could contain a

term 6(x) which would add to G(X, O) or SF(A, O)/.s][
an unknown constant unmeasurable in electro-
production. In Ref. 30 such terms were shown to
correspond in general to n = 0 fixed poles. They
are forbidden in Eo(x) since it was shown [cf. Eq.
(2.17)] in Sec. II that given the polynomial residue
assumption P„P,W"" has no n = 0 fixed poles. A
term ~ B6 (x) in E, (x)/x' corresponds to the fixed
pole Bq'/M' in T, (q', v) [cf. Eq. (2.16a)] but does
not contribute to either (3.11}or (3.13) since
x'6(x) = 0.

Finally we note that the possibility of Regge cuts
with n, & 0 and a possible a = 0 term in Fo(x) were
treated in Ref. 30. Neither is an essential com-
plication. For cuts the reader is referred to Ref.
30. An o. =0 term in Fo(x) should simply be sub-
tracted off before performing the integral of Eq.
(3.13). No counterterm [analogous to Q„ in Eq.
(3.13)] is generated. In any case G(A. , 0) remains
well defined and finite regardless of the behavior
of Eo(x) near x=0 so long as Eo scales and the
polynomial residue assumption is valid. "

Combining Eqs. (3.10). (3.11), and (3.13) we ob-
tain the sum rule

(PI/(0) m Q'g(0) IP)=2M' 2 Eo(x) dx- F,(x) dx .

(3.14)

The analogous sum rule for neutrino scattering is
obtained from the leading singularity

&(Pl[dt(y), d (0)l IP&+(+—-}], = —»[y], y y y'] Vt(P y)s D(y)+&t. (P,y) . (3.15)

V )(P,y) and S'(P y, y') are defined in analogy with Eqs. (3.5) and (3.8) with Q' replaced by {X',A. ].
8„'„(P,y) is again no more singular than D(y). Note that we have taken the sum of v and v scattering and
symmetrized in p, and v since only these terms enter our sum rules. There is an extra factor of 2 on the
right-hand side of Eq. (3.15), compared with Eq. (3.4), since vector and axial-vector currents contribute
equally to the leading light-cone singularity.

We now consider projections of W».

lim W&„g""= ——F2+(x),
Bj

lim W'„„, =E,'(x)+2 E' (x),

Pjl ll

lim W~+, , = ——,
'

[4 xE,'(x) —E+(x)],
Bj

(3.16a)

(3.16b)

(3.16c)

lim W„'„q = 2 x [2 x F,'(x) E',(x)] . -
Bj

(3.16d)

From Eqs. (3.16a) and (3.16b) we obtain the neutrino analog of Eq. (3.14):
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( P(i(}0) m( X', X ji)(0}(P)=M'I0
Oo 1

dx [I'(x) + 2x F;(x)]— dx I",(x),
0

(3.1t)

where we argue as before for the absence of 6 functions in these combinations of structure functions [cf.
Eq. (2.17)] and for the regularization of the integrals.

Two more results involving F~, (x) may be obtained using the relation

s„d"'(y) = —»myk(y) r.j('(l(y), (3.18)

which follows from the canonical equation of motion. These results were derived in Ref. 13 using a com-
bination of light-cone and ML techniques. For completeness we derive them here from a coordinate-space
approach. From Eq. (3.18) we obtain

&f'l[a&z„'(y), d;(0)] lz) +(+--) = —4ts„[s'(y z, y ) D(y)]+ft+(P, y),
(Pl [8"&;(y),8"&.(o)] I&) +(+ --) = —2 ~' & ~(&, y) 8'D(y)+&'(y &,y'),

where both A,' and A' are no more singular than D(y). Equation (3.19) gives

(3.19)

(3.20)

I ]'q" g '„,
lim

Bj M' 2m
dXe ' S'(A., O) .

Combining this with Eq. (3.16c) we obtain the sum rule

(P(7i(0)m(X', X-jo(0) (P} M' J d [4xx( Px)P(x)j. '
0

(3.21)

We rely on the absence of a fixed pole in this combination of amplitudes [cf. Eq. (2.18)] to rule out terms
like 6(x).

Comparing Eqs. (3.15) and (3.20) we find

lim q "q' W&„= -md' limg""8'&„.
Bj Bj

Combining with Eqs. (3.16a) and (3.16d) we obtain the relation

m 2

(3.22)

(3.23)

Z. Sum Rules

We now present our sum rules in a compact notation. We let J,(Pt) denote the regulated integrals of the
scaling functions E&(x) x "( ' (where N, is given in Table 1) which occur in the sum rules, for a projectile
p (e or v) on a target t (p or n):

N

0

(

2P ~ y ~ z Q l
y

0 C,~O fx&0
(3.24)

For simplicity we continue to assume the leading Regge behavior in E, (x) to be a, sum of poles. Cuts are
treated in Ref. 30. Note that an @=0 term is to be subtracted from E, (x) should it occur, but does not con-
tribute a counterterm. "

We also require the simple integrals I,(Pt);

f, = dxF, (x) . (3.25)

Combining Eqs. (3.14) for eP and en scattering and Eqs. (3.17), (3.21), and (3.23) with the definitions of
J, and I& we obtain three sum rules, which we choose to write as follows:

mg
6M' 0(0)

of
= 2'(ep —en) —I, (ep —en), (3.26)
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m(p

M q(0) I

of

$(0) 0 g(0)

= —2Jo(vP+ vn)+I, (vP+ vn) +, J',(vP+ vn), (3.27)

=2'(ep+en)+~9 jo(vp+ vn) —I,(ep+en) —»~I, (vp+ vn) —18, J,(vp+ vn) .

(3.28)

Note that we have expressed everything in terms of proton matrix elements and neutrino or electron scat-
tering using charge symmetry.

An alternative form of Eqs. (3.26)-(3.28) in terms of J, and J', may be obtained by using Eqs. (3.21) and
(3.23):

Sg g
6M'

1
$(0) I -1

I P(0)
0

m
(p, J,(ep —en)+ J,(ep —en), (3.29)

mg

M

1

$(0) 1 i|(0)
W (p2

M, Z,( vp + vn) +d,( vp + vn), (3.30)

(0
$(0)

I

0 f(0)
2

", [Z,(ep+ en) —,—', J,( vp+ vn)] + ,' Z,(ep+ en-) —~ d,( vp + vn) . (3.31)

Equations (3.29)-(3.31) were derived and discussed
in Ref. 13. Their utility is spoiled by the appear-
ance of J„not only because E5"~ and E5" are hard
to measure but also because E~5 and E,'" are the
structure functions of an experimentally unknown
chiral current with the quantum numbers of the
photon. Only in models where J, vanishes will
Eqs. (3.29)-(3.31) be of any use.

3. F6(x) in the Gluon Model

We first consider the behavior of F,(x) in the
limit m+-0. From the positivity conditions, Eqs.
(2.8), and from Eq. (3.23) we obtain

M F2F,(x) F,(x)
mp

(3.32)

As long as Fo(x) and F,(x) remain finite in the
limit (as expected) F,(x) must vanish at least
linearly with m+.

F,(x) is given entirely by It,' in Eq. (3.19). This
may be seen by considering q" W&„. The first
term in Eq. (3.19) when Fourier-transformed is
proportional to q„, whereas S; is the coefficient
of P, in q" W~+„. From the equation of motion
(3.1) we deduce that A,' must have the form

It.'(P, y) = -4t D(y), gy~ C„'.(P,y) +It„'(P,y),

(3.33)

where R+(P,y) is regular as y'-0 and C„'„(P,y) is

a bilocal (even in y') involving the curl of the gluon
field. The term in C+»(P, y) proportional to P„P,
determines F,(x). From Eq. (3.33) we obtain the
convergent sum rules':

1

dxxF, (x) =0~ (3.34)

dxx'F,'(x) =
2
PE@g(X

(3.35)

B. Free-Field Model

To obtain free-field quark-model predictions
from the results of the previous section we have
only to set the quark-gluon coupling constant to
zero. Since F,(x) is proportional to g it vanishes
in the free-field case. In other structure functions,
the gluon phase integral reduces to unity, but their
scaling behavior is not affected. With F,(x) =0 for
all chiral currents, the sum rules of Eqs. (3.29)-

where

&PIO(y) &,~[8'&.(y) —8'&~(y)] (&', & )t(y) I»
= &P]IP + Pg~y

There is no reason for a to vanish as m - 0, so
from Eq. (3.35) F+(x) will in general vanish lin-
early with m&.

'4

In summary, we have found that F,(x) is propor-
tional to the quark-gluon coupling constant g and
in general vanishes linearly with m+ as rn+ - 0.
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(3.31) are accessible to experiment. They become &PI 4*(0) '0'0(0) IP) = I' [f ( f) -4J ( P)1

i/0) I -1 y(0) = 6m~ J,(eP —en),

(3.36)

where J z(ep) is defined in analogy with Eq. (3.24)
(N~= 2} for the structure function

Ez(x) = lim —,8', (q', v) [(lim W, (q ', v) = 0]
1

0(0) I

V(0) 0

4(0}
of

0(0)
lf

= n( y J2 ( vP + vn) q

(3.37)

= 9mz[J, (eP+ en)

—~~ J, (vP+ vn}].

(3.38}

, in models with currents constructed only of scalar
fields.

(3) Scalar "Par tons" interacting via (neutral)
scalar gluons:

&Pl 4*(0)[m'+gX(0)] q'y(0) IP)

=M'[I, (eP) -4 J~(ep)] .

Note that analogous sum rules hold for electro-
production off neutrons.

It should be emphasized that these sum rules are
only true in models in which interactions are ig-
nored near the light cone. As shown in Appendix
A, E,(x) is not zero in a parton model with vector-
gluon interactions. In ML-limit calculations
(Appendix 8) J,(Pt) enters as a fixed-pole residue
which cannot be shown necessarily to vanish.

In models where E,(x) = 0 bilocal operators pre-
sumably obey free-field equations of motion.
Actual free-f ield theory —where deep-inelastic
structure functions are 5 functions —is an example
of such a model. However, we know no reason to
suppose that all models where bilocal operators
obey free-field equations of motion are trivial,
and we do not exclude them a Priori.

C. Other Models

We list here sum rules analogous to the electro-
production sum rule (3.14) of the vector-gluon
model which obtain in models with other inter-
actions and currents constructed from other than
spinor fields. Neutrino-induced production analogs
are not easily derived in these models because the
divergences of axial-vector currents are dynam-
ically more complex than in the vector-gluon
model.

Our primary interest in such sum rules is the
role they play in interpreting"'" the divergence
of the Cottingham formula for electromagnetic
mass differences. The derivations are entirely
analogous to those of Sec. IIIA.

(1) (Pseudo-) scalar-gluon model.

&Pl/(0) Q [m+8(3', ) p(0)] g(0) I P)

= 2M' [2Jc (eP) —I, (eP)],
where P(x) is the (pseudo-) scalar-gluon field
(the y, is to be read only in the pseudoscalar case).

(2) Scalar "Partons" interacting via vector
gluons:

IV, SCALAR DENSITIES AND STATIC PROPERTIES
OF THE BARYONS

The scalar densities which appear in the sum
rules of the previous section control various low-
energy parameters of SU(2) xSU(2), SU(3), and
SU(3) x SU(3) symmetry breaking. Via these sum
rules we shall relate deep-inelastic scattering
data to baryon masses, the Gell-Mann-Oakes-
Renner parameter (c), and the o term in pion-nu-
cleon scattering (o„). Although difficult to test
experimentally [the relations involve integrals
over the Regge-subtracted structure function
Fc(x)) it is interesting in principle that such re-
lations exist. An experimental test of these re-
lations is far easier than for those of Ref. 13
which involve F~(x) and E,(x}. Moreover, our
results allow us to explore the pattern of chiral-
symmetry breaking near the SU(2) x SU(2) limit.

We consider first the results of canonical vec-
tor-gluon theory as summarized in the three sum
rules of Eqs. (3.26)-(3.28). Later we consider
the free-field model where E,(x) = 0, which was
discussed in the previous section. Our analysis
follows that of Ref. 12.

A. Vector-Gluon Model

Lozo-Energy Symmetry Breaking

In this model the Hamiltonian has the form

ll = /I, + Q Jd 'x ((, (x) pg,. (, ( ~)

2m'+ mg my m)
=H, + d'x ~ u, (x) + ~ u, (x)

(4.1)

where u, (x) =T(((x) A.;g(x) [Tr X' =2]. The sum ex-
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tends over (P-, X-, and A.-type quarks. II, is
SU(3)- and SU(3) x SU(3)-invariant. It contains all
kinetic-energy terms, gluon mass terms, and the
quark-gluon interaction. Both SU(3) and SU(3)
x SU(3) are broken by quark mass terms.

The o term in pion-nucleon scattering (cr„) which
occurs in various PCAC (partially conserved axial-
vector current) low-energy theorems is defined as
follows:

0 =— —
—. d'x I' &"J~ x, O, JO 0 I' . 4.2

(I
0(0) I

1 0(0)
0i

Comparing this with Eq. (3.27) we conclude

(4.3)

T'his is the conventional o term, the value of which
is still subject to considerable controversy~' but
is suspected to lie in the range 10-100 MeV. (The
factor of 2M arises because our states are normal-
ized covariantly. ) In the vector-gluon model Eq.
(4.2) reduces to"

0

2

o, = —,'M~ I, (vP+ vn) —2Z~(vP+ vn) +,Z, (ry+ vn)
Mp

(4.4)

The operators u; (0) (i =1, . . . , 8) form an SU(3) octet Th. e matrix elements of -5mu, (0)/v 3 generate
SU(3) mass splittings inthis model, where 5m=m&-m+. We may estimate the proton matrix elements of
u, (0) and u, (0) in terms of ratios of baryon masses to 5m using first-order perturbation theory —a proce-
dure which would be exact only in the SU(3) limit. The success of the Gell-Nfann-Okubo mass formula
suggests that errors introduced by this approximation are less than 10%. In terms of baryon masses then"

5~(Pl u.(0) IP) = —„'M [2(M. -M&)+3(~, -M, )],
5m(P~u, (0)~P) —= —,

'
v 3 M [2(M -M ) —(M -M )] .

Appropriate combinations of Eqs. (3.26)-(3.28) yield

1 2
(P~u, (0) jP) =6~' — f,(ep en—)+ Z,-(eP-en),—

m(p m(p

(P
~ u, (0) ~

P) = ~ ——[-f,(eP + en) + 2 Jo(eP + en)]~
fV 3 mgmg Mp mg

(4.5)

(4 6)

Equations (4.6) are exact in the gluon model. To obtain a. comparison with the data we shall approximate
the matrix elements by means of Eqs. (4.5). It would seem at first sight that to be consistent we should
assume exact SU(3) symmetry in Eqs. (4.6). However, the success of the Gell-Mann-Okubo formula which
we invoked to motivate the approximation of Eqs. (4.5) does not reflect on 5m/m& or 5m/mz at all. That is
to say, the small magnitude of the corrections to the Gell-Mann-Okubo formula is evidence only for the
approximate SU(3) symmetry of the states —in this case the baryon octet The s.ymmetry breaking in the
current divergences, reflected in the quark masses, need not be small. Just such a situation was envis-
ioned by Gell-Mann, Oakes, and Renner. " %e shall. persist with nz+Wmz throughout and derive results
valid for any ratio mq/mq.

Combining Eqs. (4.5) and (4.6) we obtain then

c+&2M-M~+2(MA-Mz)
3c 6M,

c+2v 2 o W2 —2c 2(M-. M, )+Mz -MA-

(4.7)

(4.8)

where c is the parameter introduced by Gell-Mann, Oakes, and Renner":

~ 1By m(p

pl y+ SB(p

in this model. c = —1.25 was estimated in Ref. 36 from the kaon-pion mass ratio.
We may estimate the baryon matrix element of the SU(3) singlet term which breaks SU(3) x SU(3) sym-

metry, defined by

2 mp+pR)

6~ N(0)
~

1 0(0)
11
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p,, measures the baryon mass shift due to the average quark mass m= —,'(2me+m1). po may be written in
th pp

' t fo

3o, 2m, +m, (Pg(0) l(., y(0) )E)
W2 (c+W2) 2~8 2M,

30~
&2 ( + W2)

+
4&2 [2(Mx —MI( ) +Mr —MA]

9m, 3c+ M2= ~( ~)[2Jo(ep+en) -IR(ep+en)]+ 4~2 ( 2~~)[2(M x MI)-+Mr -MA], (4.9)

where we have used Eq. (4.8).
Equations (4.7) and (4.8) may be evaluated nu-

merically. We use the data"'

c = —1.25,

I,(ep) = dx E2~(x) = 0.16 +0.02,

S(en) =f dxE; (x) =0"(2+002,

and leave Jo(ep+ en) and c„as unknowns. Equa-
tion (4.7) implies

Jc(ep —en) = ~ I,(ep —e—II) +0.001

Z. SU(Z~ x SU'(Z~ L,smut

Here we explore the vector-gluon-model sum
rules of the previous section in the SU(2) x SU(2)
limit. We expect the symmetry limit to be real-
ized by the appearance of massless pions, while
the nucleons retain finite masses. In models such
as the vector-gluon model the limit is achieved
when c is -W2." This corresponds to me=0
while m~ remains finite, and m~= 5m generates
SU(3) mass splittings.

In the SU(2) x SU(2) limit we expect

E,(x), E„,(x)- 0

= 0.02 +0.01,
while Eq. (4.8) yields

(4.10} (4.12)

J'c(eP+ en) = ,'I,(eP+ eII—) +—0.0017c,—0.04

= 0.10+0.0017o'„(MeV) .
Were it not for the possibility of asymptotic

Regge behavior, Eqs. (4.10) and (4.11) [or equiv-
alently Eqs. (4.7) and (4.8)] would be quite useful
in anticipating measurements of Ee(x) Unfortu-.
nately the necessity of subtraction of Regge as-
ymptotic behavior means Ee(x) will have to be
rather well known before these predictions can be
tested.

Although it is not currently possible to experi-
mentally verify the sum rules obtained above for
Ec(lim» (v/M') W1}, it is of interest to see if the
available data for It = o ~/o'r are at least consistent
with the existence of a scaling limit for vR'z. In
terms of Eo(x) and E,(x), It is given by

(4.11)

-M'q' E,(x)
v' E,(x)

in the scaling limit. This ratio is plotted against
x in Pig. 2 using the data of Miller et al. ' It is
apparent that to within the errors the ratio could
be a function of x only and that, for small x, Eo/E2
increases as x- 0. This is to be expected since on
the basis of Regge asymptotics (Table I) Eo/E,

1/x . Tllls descl'1ptloI1 18 as co11818tell't witll tile
data as the more usual prescriptions of A = con-
stant and B= (I'/v'. I

I,(vP+ vII) =2 Jo(vP+ vn),

I,(ep+en) =2Jo(ep —en) . (4.14)

To take the SU(2) x SU(2) limit of Eq. (4.8) it is
necessary to use Eq. (4.13):

2 Jo(ep+ en) -I,(ep e+n)

((2 2(Mx-M~)+My -MA
(4 16)

3Mp 123fp

Similarly the SU(2) x SU(2) limit of Eq. (4.9) is

y,, =sa M~ [2'(eP + en) I,(eP+ en)]-

+-.'[2(M -M, )+M, -M, ] . (4.16)

whereas E",~ (x} and E,""(x) should be unaffected by
chiral-symmetry breaking (they are determined
by chirally symmetric, leading light-cone singu-
larities). As discussed in the previous section,
E,(x) vanishes linearly in the limit me 0. Equa-
tion (3.23) implies that E,(x) also vanishes linearly.
The o-term sum rule of Ref. 13, Eq. (3.21), indi-
cates that o„also vanishes linearly in the SU(2)
x SU(2) limit:

o, ~ P(c+v 2).
c~-W2

As c- —(( 2, Eqs. (4.4} and (4.7) reduce to
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FIG. 2. (& /M Q )R plotted vs x, where R =oz /Cz. If canonical quark-gluon theories are correct this quantity
should scale.

Equations (4.13)-(4.16) comprise the SU(2)
x SU(2) limit of the vector-gluon model. Models
in which F, -=0 for finite an+ have rather different
behavior .

B. Models in Which Fz (x)=0

As discussed in Sec. III, E,(x) vanishes if we let
the quark-gluon coupling constant vanish. In this
event Eqs. (3.36)-(3.38) are valid. Their conse-
quences for chiral-symmetry breaking were ex-
plored in Ref. 12, where the following results
were obtained:

6m(P( gm-m )J,B(eP —en)=Mp[M~ -Mp + B(MA -Mz)]

[cf. Eqs. (4.5) and (3.36)], (4.17)

mto J,(VP+ Vn)
my~p

[cf. Eqs. (4.3) and (3.37)], (4.18)

j4o ~ ' —B [2(M~ -Mp ) +My -MA]
m g~p 2m'

[cf. Eq. (4.9)] . (4.19)

Note that unless mq or J,(vp+ vn) diverges as
mz vanishes, po will be negative (= —145 MeV) in
the limit. Equation (4.17) evidences a rather

(t y' -~)it(x) = 0. (4.20)

Equations (3.36)-(3.38) are valid in such a model.
By virtue of Eq. (4.20), the bilocal operator which
determines E,(x)'~ '" obeys the Klein-Gordon equa-
tion

(CI+m+') (Pg(0)h. ,g(x) IP& = 0.

strange behavior in the SU(2) x SU(2) limit. Since
the mass differences in the right-hand side do not
vanish as m&-0 we require either

m~ ~ M /rn&
m(p~ 0

or

J,(eP —en) ~ Mjm+ .
my~ p

In the first case (mq- ~), o, vanishes quad-
ratically but pp is not necessarily negative in the
limit since the first term in Eq. (4.19) no longer
vanishes. In the second case [J,(eP —en)- ~],
J,(vj+ vn) would be expected to behave similarly
since it too depends only on the SU(2) x SV(2) cur-
rents. o, would then vanish linearly in the limit
and p, p would not necessarily be negative. It would
indeed be bizarre if mq had to diverge as m+- 0,
and in fact the other alternative seems likely to
occur in such theories. To see why J,(Pt) might
be expected to diverge as m+ - 0 in models where
F,(x) = 0 consider the case that it(x) obeys the free
Dirac equation
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A simple (but not unique) solution to this equation
's4'

(P [WI(0) Z, y(x) ~
P) =A.e" t '"' '"

Equation (4.24) defines a suitable model and
yields4'

E," '"(x) ~x6(x-mt/M);

likewise

(4.21)

V. SUMMARY

In order for our description of the relation be-
tween deep-inelastic scattering and static prop-
erties of the baryons to be valid it is necessary
that

(a) the leading scaling behavior of Wz, ,~, is
correctly described by (results abstracted from)
"canonical" field theory,

(b) the relevant field theory is the quark-vec-
tor-gluon model, and

(c) the residues of o. = 0 fixed singularities in
kinematic-singularity-free amplitudes are poly-
nomials in q'.

Our results are only relevant if the well-known
quark-model sum rules and scaling laws derived
by previous authors" [which rely heavily on (a)
and (b)] prove correct. If (a) holds but (b) fails,
analogous results may be obtained in other mod-
els —some of which are listed in Sec. III C. If (c)
fails, as indicated by a failure of the Cornwall-
Corrigan-Norton-Rajaraman-Rajasakaran sum
rule, our results may involve unknown constants,
unmeasurable in lepton scattering.

EP'""(x)~ x6(x-m /M),

from which it follows that Z, (eP —en) and J,(vP + vn)

are proportional to M/my and diverge as my -0.
%e consider the divergence of either mz or 4,

(eP —en) and J,(vP+ vn) in the SU(2) x SU(2) limit
unattractive. These pathologies arose when we
set E, = 0 [they also occur if Z, =0, since it is J,
which spoils the sum rules of Eqs. (3.36)-(3.38)].
We have emphasized that E,(x) depends explicitly
on the gluon field strength and coupling constant.
F,(x) vanishes when the leading behavior of diver-
gence current scattering is assumed to be given
by the leading light-cone singularities of free-
field theory.

If one attempts to abstract E,(x) =0 from free-
field theory on the light cone, rather bizarre be-
havior of structure functions or quark masses
must be countenanced. This confirms the preju-
dice expressed by Gell-Mann" that results which
would be spoiled by gluon fields and coupling con-
stants should not be extracted from free-field
theories on the light cone.

Our main results are the following.
(1) We obtain a set of three sum rules for the

proton matrix elements of the local quark oper-
ators u, ( 0), u, (0), and u, (0) [u,, =$(0) A., g(0)] which
are exact in the vector-gluon model. 4' The sum
rules are given in Eqs. (3.26)-(3.28) in terms of
finite, regulated integrals over the scaling limits
of the structure functions vW, (q', v) and vW~(q', v)

in inelastic electron and neutrino scattering.
(2) We also obtain [cf. Eqs. (3.29}-(3.31)] the

sum rules of Ref. 13 for the matrix elements of
u0 u3 and u, in terms of the Bjorken 1im it of the
chiral- symmetry-breaking structure functions,
v'W(q', v) and v'W, (q', v).

(3) We find that E,(x) [—= Iim»(v'/M )W(q', v)]
vanishes linearly in the proton-quark bare mass
in the SU(2) x SU(2) limit and is explicitly pro-
portional to the quark-gluon coupling constant g
and the gluon field strengths E». E,(x} therefore
vanishes if we accept the dictum that scaling laws
are to be abstracted from free-fieM theory on the
light cone.

(4) We then relate the proton matrix elements
of u, to static SU(3)- and SU(3) x SU(3)-breaking
effects in the vector-gluon model. Specifically the
matrix element (P~u, + v 2u, jP) determines the
o term in pion-nucleon scattering (o,). The pro-
ton matrix elements of the octet operators u, and
u, may be approximated as ratios of baryon mass
differences to quark mass differences. From
these and the sum rules of (1) we obtain two rela-
tions among deep-inelastic electron scattering
data, octet baryon masses, o „, and the Gell-Mann-
Oakes-Renner parameter c [= —v 2(mq-m~}/
(m&+ 2m+)], and -nother relation among o„neu-
trino scattering structure functions, and the 6'-type
quark bare mass. The relations are to be found in
Eqs. (4.7), (4.8), and (4.4), respectively.

(5) Assuming c = -1.25 and o, =-40 MeV, "we
evaluate Eqs. (4.7) and (4.8) numerically, and
obtain

f dxFo (x) —= 0.02+0.01
0

dx Eo~+'" (x) —= 0.17
0

[see Eqs. (3.24) for a precise definition of these
regulated integrals] .

(6) We find that present data on W~(q', v) are
insufficient to test the results of (5). However,
we show that the data are as consistent with

Iim vW, (q', v) =Fc(x)
Bj

as with the more conventional parametrizations
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of W1, (discussed in Sec. IV).
(7) We show that abstraction from free-field

theory of E,(x) = 0 [see (3) above] leads to too triv-
ial a. theory. Specifically, if E,(x) =0 the integral

x Eep-en
(

0 x

(which is Regge-convergent) must diverge as the
6'-type quark bare mass goes to zero, or else the
A.-type bare quark mass must simultaneously be-
come infinite.

In a truly free-field model where E,(x)
=x5(x-mz/M) the integral indeed diverges as
m+ - 0, from which we conclude that models with

E,(x) = 0 are indeed too trivial. Abstraction from
the gluon model [E,(x) &0] encounters no problems.

=0, whIch Is, of course, valId In spin-2 parton
models. ]

80th Tgg and T 1 ecelve contI Ibutlons only from
from the contiguous vertex diagram. (For the mo-
ment we ignore the soft vector-gluon interactions,
which if present modify the contiguous vertex dia-
gram just as they modify the lea, ding bilocal oper-
ator in the light-cone derivation. We return to
them presently. ) To see this we note that the
contiguous vertex contribution to T» may be

ritten a.s

T„„=; d'k Tr jT(P,k) y„S~(k+q)y, 'I, (A4)
I

where T(P, k) is the parton-proton amplitude and
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APPENDIX A: PARTON MODEL

Here we present a parton-model derivation of
the electroproduction sum rule [Eq. (3.14)]. Der-
ivations of all the other sum rules in the text —for
different quantum numbers, spins, and interac-
tions —are straightforward generalizations. We
discuss also the relations involving E~ and E,.

In an attempt to make the present paper self-
contained we shall review the basic formalism
required. We use the notation established by the
Cambridge school (see, for example, Hughes and
Osborn").

To isolate the structure functions E~ and I', in

T„, [see Eqs. (2.1), (2.3), (2.5)] it is convenient
to choose a frame in which q ~ with

+ x V

(A6)

So long as the leading term in Eq. (A5) contributes
in the trace we need keep only the contiguous pho-
ton vertex diagrams. An exception to this occurs
in the vector-gluon model, where the spin struc-
ture of quark-gluon vertex promotes the diagrams
in which interactions take place between the ab-
sorption and emission of the photon. Since

(A7)

YJ.V+ YJ V+ y

the leading term in Eq. (A5) does contribute to T
and Tg~.

Using Eqs. (A2)-(A4) we obtain

M
Eo(x) = ——,P, ' d'k 6(t' —x) Tr T(P,k)=~,2x 2(2)))' P,S'

whence it follows that

1 M
Iim —Im T P+ =—Eo(x)

Bj 23' 2X
(A2)

I I
Ilm ImT~g = Ep(x)

g; 2g " 2x

[We have already used the fact that lims; Wz(q', v)

F,(x) = '; Jd') ()((-x) Tr T(),)) * I,
where d'4 =-,' dxdyd'4~. To proceed we close the
y contour about either the u- or the s-channel dis-
continuity of the four-part parton-proton amplitude
T(P, k) according to whether 0& /&1 or -1«,"0.
The regions

~ t ~

&1 do not contribute since the con-
tour may then be closed without encountering any
singularities. The result is best expressed in
terms of the imaginary part of the parton-proton
scattering amplitude



DEEP-INELASTIC SCATTERING AND STATIC PROPERTIES

)~ ~) f=4 y'"'(I'14s)0) @*4.(v))I') )&&)

(the charge-squared operator, Q', has'been in-
corporated in V for convenience) as

dk d'k „V (P,k)
2(2v)4

(A10)

(
—

), (V, P„k~+ V, k„ka) =P„PSK+g„sX

(A17)

From the ++ and —+ components of this equa-
tion we obtain

1 I—
(

4- dx dy d'k~ (xV, +x V, ) =E (A18)2 (2)) '

E,(x) 1
2x 2(2m)4

dk d'k~ +
V„B(P,k}

(All)

1 xy 2E'
2 (2)))4

dx dy d k ~V+ —V =K+ ——.Jc 1 ~2 2 ~2

Note that Eqs. (A10) and (All) are the complete
answer only if no unknown subtraction constants
(i.e., o. =0 fixed poles or Kronecker 5 functions)
enter into the dispersive representation of the
parton-proton amplitude. That strong-interaction
amplitudes are determined entirely by their imag-
inary parts is a common assumption based on
unitarity arguments. This same assumption en-
sures that any fixed poles in Compton scattering
have polynomial residues and is therefore the
parton-model equivalent to the assumptions made
in the text.

To continue, it is convenient to expand V 8(P, k)
in a spinor basis:

V„B(P,k) = V, (P y)„&+ V2(k y)„&+8~8, (A12)

2M 4x 2' x —F2 g =K

with

The vector-gluon case is more complicated. Ne
begin by rewriting the contiguous-vertex results
(A10) and (All) for Ee and E, as

M Eo(x) P4
2x 2(2)))4

T)(0)= g(y )

(A19}

Comparing Eqs. (A18) and (A19) with (A13) and
(A15) we conclude

where A„8 vanishes when contracted with (y, )„z
and spin-averaged. V, and V, are functions of the
invariants P k and O'. Combining Eqs. (A10)-
(A12), we have dy e'"~+'- P P(0) '

i)(y )

(A22)

E,(x)
4(2s)4 y d k~ V~+x V2

Eo(x) —E,(x) 1
d d ~k y

4(2v)4

To obtain the required sum rule we examine

If., =-f &Ply(O) q'y„s, y(y) IP& I, ,

Consider, next, the diagram in which one vector-
gluon interaction occurs between absorption and
emission of the photon. In momentum space the
leading contribution to T„, is proportional to

d~k d4k'
(X g-x g'-x

so that

E„"=M'K+ 4E'. (A15) (A23)

From Eqs. (A9) and (A12) we obtain by partial
integration

i d' ye'"'(Pg(0) Q y„k(sy)s(P) = V,P„ks
+ V,k„k, ,

(A16)

which implies

where T, is the five-point parton-proton vector-
gluon amplitude depicted in Fig. 3. (a is the
Lorentz index of the B field. } As before, the k
and k' integrations are performed by closing the

y and y' contours about the appropriate discontin-
uities of the five-point amplitude. For p, = v= j-
or —only a =+ survives in the trace and the re-
sult is
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d~'
I T ~g 4( Q X $ ~44 P+y-+&(g-g )P+y g, ~ 0 y g yI y (A24a)

—lmT ~g dt'5(x- g) —, e"""-'"'' ' +'-m)&PIT((0) r &-+(y' )0-(y )I-», (A24b)

where we have used the representation

(T;)~, =g d'& d'y'e" "'"""&PI4(0)&"(y')4.(y)l»

for the five-point amplitude. The $ integral may be performed using the identity

—e "=8(a)J d$

(A25)

to yield, for example,

M'E@(x) P,
2x 2(2w)' iso) p~)lf ))„()')d)'()() ) I'

+ 0
(A26)

with a similar result for E,(x). Multiple interactions simply exponentiate the phase, so that in (A22) i)(y )
should in general be replaced by

exp ig dy' 8+(y') g(y ) .
0

Making the replacement and performing an integration by parts in y we obtain

—,'kf' )" (x)dx=, J' j())r0) —g)))g(y ) P8

8$ y =0
(A27)

Q~ —ie„-gB„.
Thus the sum rule (A20) is modified to read

(A28)

with a corresponding result for fE,dx which cor-
responds as well to the replacement

leading (o.'&0) Regge behavior of Eo(x) arises from
the a&0 Regge behavior of the parton-proton am-
plitude. The dispersive representation of this am-
plitude required in deriving (A10) thus requires a
subtraction for the Regge contribution,

I 2E,(x) —E,(x)]dx
T" (P,k) =

" dm'(m')
m'- (P —k)' (m')" ' dm'

=-. &Plg(0) q'(zy'-g4) y(y) IP) I, ,
= —'&PQ(0) Q mg(0)IP). (A29)

It remains to discuss the treatment of leading
Hegge behavior which naively would lead to a di-
vergence of the sum rule. In the parton model the

I

I

I

FIG. 3. One of the class of diagrams whose sum
generates the gluon phase in the parton model.

(A30)

The first term of (A30) in combination with the
remainder of the parton-proton amplitude leads to
a sum rule of exactly the form given in (A20) or
(A29). The subtraction term in (A30) does not
contribute to the structure functions I'~ and Il„
since it is real, but does contribute to the local
expectation value (PIT()(0)mQ'g(0)IP). lts con-
tribution serves to regulate the sum rule in pre-
cisely the fashion discussed in the text. Details
of these considerations may be found in Refs. 25
and 30.

Finally we discuss briefly the structure function
E,(x) in parton models. As shown above, soft
gluon interactions enter parton-model calculations
in the same way they enter a coordinate-space
approach. In particular the operations which are
necessary to show E,(x) = 0 in free-field theories
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are thwarted in vector-gluon-parton models by
the appearance of the curl of the gluon field after
differentiating the gluon phase integral. E,(x) is
then in general not zero in parton models.

This has an interesting consequence for familiar
parton "intuition. " The relations of Eqs. (8.21)
and (8.23) are easily derived in parton models:

M' dx[4xE4'(x) -E~+'(x)]=mg(P@, (0)g, (0) lP),

limq'Ti, (q', p)= lim q2T~(q', 0)
BJL q 2~

dxEo(x) .

To evaluate the ETC of Eq. (Bl) we use the equa-
tion of motion, Eq. (3.1}, and the canonical ETC

5(y,}{g(y), ic'(0)] = 5'(y}

to obtain

x E,"(x)--,'E", (x) =
4M' x

where the relations hold for each parton species
i individually [begin with hypothetical currents
(l(& (x) y„(1 —y,) (j(( (x) and proceed as usual]. It is
clear that we obtain the naive result

—i d'y(Pl [J„(y),J"(0)] l P) 5(y,) = —4(S+2e"),

(85)

(&I%i(o((((o)I» = m~ f {A81)

i.e., $(1( simply measures the distribution function
f{x)/x of the partons only if JE,(x) dx= 0. In gen-
eral, however, E,(x) &0 (though it may be small)
in vector-gluon models.

S -=&Ply(0) ~ q'g(0) I P& .
We write

APPENDIX B: DERIVATION OF SUM RULES
FROM EQUAL-TIME AND LIGHT-CONE

COMMUTATORS

In Ref. 30 it was shown how to obtain regulated
sum rules from equal-time commutators (ETCs)
via, the BJL limit, q0- i, and from light-cone
commutators via the limit q =(1/v 2)(q, —q,)-~.
Here we apply these methods to derive the sum
rule for the electromagnetic structure functions,
Eq. (3.14).

First, we consider T» in the limit q0-i~, q
and P fixed (BJL limit), and use the ML expan-
sion

so that

slid from Eqs. (Bl)-(85) we find

Ii qm'T" =-8M' 2 ', -1 dxE, (x)
BJL

+3 ' dxF~ x

=-4 8+24+2 ', B .
M (87)

Equation (87) is true for arbitrary P,. Thus

lim T„„=——, d4ye"' {Pl[J„(y),J, (0)] lP) 5(y,)
0 2M' dxE, (x) =B, (88)

T
+ —(Schwinger term) + (polynomial, s) .

q0

(»)
We shall assume that the operator Schwinger

term is zero, consistent with our posited scaling
behavior [Eq. (2.5)] .

It is sufficient to consider the trace, T"&. We
choose for convenience a frame with q=0, so that

Tjf =2 2
—1 T2 q yv +STI q ~p

lim q' T,(q', v) = —8M' dxE, (x),
BJL

(88)

and from Eqs. (2.3), (2.5), (2.9}, and (2.15b) of Sec.
II we obtain

2M' 3 dxEo(x) -2 dxE, (x) =S+2A . (89)

Eliminating A and 8 from Eqs. (86), (88), and
(89) we have

OO 1
8=2M' 2 dxEo(x) — dxE, (x)

0 0
(810)

which is the result of Eq. (3.14). A corresponding
sum rule is obtained from T"„ in neutrino scat-
tering. The o-term sum rule of Eq. (3.21) has a
very simple BJL derivation, given in Ref. 13.

The light-cone derivation proceeds from taking
the limit q - ~ with all other components of mo-
menta fixed (LC limit) and relates light-cone
commutators to amplitudes T, (q', v) in the Bjorken
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limit (q'- —~, x= —q'/2v= —q, /P, fixed).
We have4'

lim T&„———— d ye"'(P([J„(y), J'„(0)])P) 5(x )+(polynomials),

and obtain

xlim —,[2 Tz(q', v) —T,(q', v)] =ix' dA e '""e(X)[F(l(., 0)+4l(.G(A.,O)]
Bj «OO

4 P„P„=x'lim ", " +g„, T"',

(B11)

(B12)

where E and G are the form factors of the vector bilocal on the light cone, defined in Eq. (3.5). To obtain
the sum rule we write subtracted dispersion relations for each side of Eq. (B11). From Eqs. (2.3), (2.5),
(2.9), and (2.15b) of Sec. II we obtain

00 'x" x'
x)im —,[2 T (q', xl —T (q', x)] =2 dx'[2 F~(x') —F (x')]~, „[2F(x') —F (x')]I,0 2 2 XI 2

and for the right-hand side of Eq. (B11)we use the representation of the distribution e(A) which gives
00) 00 I 3 I 00

ix' dl], e '
e(A) Xg(A) = —2ig(0)+ —,„dXe '

Xg(A)
00 0Q X X «0Q

(B13)

(B14)

when g(l() =g(-X). Choosing

g(Z) = —[F(Z,O) + 4XG(Z, O)]

from Eqs. (Bll)-(B15) we find

(B15)

dx[2P~(x) —F,{x)]= —ig(0), (B16)

2Po(x) —&,(x) = —" dze "*Xg(X) .2' (B17)

Combining (B16) with the expression for the scalar density of Eq. (3.10) we obtain the sum rule

(P ~T])(0)m Q']])(0)
~
P) = —iM'g( )0

00 1
=2t[f' 2 dxS;(x) — dxZ, (x),

0 0
(B16)

which agrees with Eqs. (B10) and (3.14).
It can be seen that both derivations presented here relate the scalar density to the subtraction constant

in the dispersion relation for T~(q', v) and thus rely upon the analysis of Sec. II, where the subtraction
constant was related to regulated integrals, assuming Polynomial fixed pole residues-

Finally we remark the connection with the coordinate-space derivation of Sec. III, which used Eq. (B17).
The Fourier transform of Eq. (B17) gives a relation between g(0) and the structure functions, provided
these are interpreted as distributions, so that leading Regge terms may be accommodated. However, as
distributions they may contain 5 functions corresponding to nonpolynomial fixed-pole residues.
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