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Unitary multiperipheral models with two input trajectories are presented. It is shown that the

nonleading output trajectories play a crucial role in determining the high-energy behavior of such models.

I. INTRODUCTION

All simple multiperipheral models share the
problem that increasing the strength of the par-
ticle production mechanism eventually violates
the Froissart bound. In a recent paper' (hereafter
called I), a class of models was introduced which
dealt with this difficulty by explicitly incorporating
s-channel multiparticle unitarity. These models
are specified by defining the amplitude W„ for two
particles ("protons") to emit or absorb n particles
("pions") from a single chain which is exchanged
between the two protons. If the links in the chain
are Reggeons, the model described in I is a uni-
tarized multi-Hegge model.

A general feature of such models is that the
checkerboard diagrams (Fig. I) (where particles
are emitted from any chain and absorbed by any
other) give rise to a new type of cut in the angular
momentum plane, This unitarity cut enforces the
Froissart bound by cleverly arranging that any
poles to the right of one are on an unphysical sheet

Bnd thus do not contribute to the scattering ampli-
tude.

Although the details of the cut are fairly compli-
cated and model-dependent, the existence of such
a cut can be traced to the simple fact that pairwise
interaction between N chains, as shown in Fig. 1,
leads to an output Regge pole whose position is pro-
portional to ,'N(N —I), —the number of pairs of
chains. Thus the sum over any number of chains
will be a formally divergent series; this diver-
gence, as shown in I, leads to the unitarity cut.
Any multiperipheral model with pairwise interac-
tions which does not expressly forbid multichain
exchange will therefore have such a cut.

One defect of the models presented in I is their
neglect of all low-subenergy effects. Sugar' has
recently studied unitary models which include the
effects of producing pairs of particles with low
subenergies at any point along the chain. In this
paper an attempt will be made to include low-sub-
energy effects along the lines laid down by Chew
and Pignotti' (hereafter called CP), who invoke
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FIG. 1. A checkerboard diagram.

duality to argue that these effects will be approxi-
mately simulated by including lower-lying meson
trajectories in addition to the Pomeranchuk tra-
jectory. Following CP, only two trajectories will
be included: A higher trajectory a~ (the Pomeran-
chuk trajectory) and a lower effective meson tra-
jectory n~.

The introduction of lower-lying trajectories,
not surprisingly, leads to nonleading output Regge
trajectories in addition to the leading trajectory.
However, essentially the same counting argument
as before shows that the nonleading output pole po-
sitions also grow with N as N'. Thus, there are
divergences associated with the nonleading poles
as well, which could well qualitatively change the
conclusions of I.

There are two cases which are simple enough to
be solved exactly. The first is where o~ = o.~, but
the associated coupling constants g~ and g„(de-
fined in Sec. II) are different. The second case
arises when n~ and n„differ, but gp=0, so that
the Pomeranchuk trajectory never emits particles.
In both of these cases, one of the effects of sum-
ming over all poles is to introduce an infinite num-
ber of unitarity cuts spaced apart by n~ —1. If n~
= 1, these cuts all coalesce. A similar phenome-
non occurs for the poles.

In the first soluble case, if np = 1, the summa-
tion over nonleading poles produces an energy-
independent phase which is the leading behavior
of the elastic S-matrix element, and a constant
total cross section emerges. In the second case
a similar phenomenon occurs if o~ = 1 and o.~& 1

+g~ . Since a phase satisfies elastic unitarity, in
this situation there is no particle production to
leading order in energy. However, this phase does
change the conclusion of I that the multi-Regge re-
gion of phase space always gives an energy-de-
creasing contribution to the total cross section if
the input trajectory is unity or less. If, on the
other hand, a„&1+g„', particle production does
occur. The elastic cross section, however, would
then necessarily be larger than one-half of the to-
tal cross section.

The outline of the paper is as follows. In Sec. II
the CP model is written down in the notation of I.
The Z operator, defined in I, which takes into ac-
count emission or absorption of any number of

The kinematics is defined in Fig. 2. Working in
the center-of -mass system, with the beam direc-
tion along the Z axis, a general four-vector q,
with q'= m', can be specified by its momentum in
the x-y plane, q, and its rapidity,

The Mandelstam variable s = (P, +P,)'=M'er,
where M is the proton mass. The kinematic va.ri-
ables will be taken as I;

and the pion coordinates q,-, y, .
In I, it was shown that the 8 matrix is diagonal

in B, the coordinate conjugate to A. Note that for
elastic scattering 6 =p,' —p„and hence the momen-
tum transfer t=(P, —P,')'=-n'when s is large.

The basic input is the amplitude 8'„ for the scat-
tering process shown in Fig. 2. Following CP, the
scattering occurs by exchange of a fixed pole z~,
with A. = I' or M. The vertex function is taken to be

pa
"o

—qp isa

Pb

qn Vn

Pb

FIG. 2. The amplitude W„.

pions from one chain, is specified for the CP mod-
el. As an illustration, the elastic scattering am-
plitude arising from exchange of two chains is cal-
culated.

Amplitudes involving more than two chains are
complicated by the combinatorial complexity. The
powerful Green's-function method of I is intro-
duced in Sec. III to carry out these calculations,
and the necessary N-chain Hamiltonian II„ is de-
rived. The bound states of the N-chain Hamilto-
nian are the Regge poles arising from N-chain ex-
change. In Sec. IV the soluble cases are discussed
in detail for two-chain exchange. In Sec. V this
discussion is generalized to N chains, and the sum
over N is carried out. The J-plane structure of the
resulting amplitude is also discussed in Sec. V. In
Sec. VI the inclusive and exclusive cross sections
are briefly discussed, and in Sec. -VII a short sum-
mary is given. In an Appendix, a proof is given
that both leading and nonleading poles grow with
N like N'.

II. UNITARIZED CHEVf-PIGNOTTI MODEL
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separable, i.e., if a pole of type X converts to a
pole A,

' by emitting a pion with transverse momen-
tum q, rapidity y [ Fig. 2(a)], the vertex function
will be taken as g~~ g(q). ' If the two protons are
separated by impact parameter 8, the coupling of
a trajectory of type 3(. to the proton will be h„(8).
Therefore the amplitude for the process shown in
Fig. 2 is

(a)

q, y

FIG. 3. Vertex functions.

n
d'&e "'W.(Y 8 «»i) = d'&e "'1.,(8) II texp[~. , (y(-y(, ~)]~(yi-y;„)] II I g(q. ) g., g~, ]I.„(&),

k=0

(3)

where yp= -y„„=gF in the center-of-mass system. The operator Z„defined in I, which handles emission
or absorption of I pions, is then

d' '~' "
d n

f 11 ',". Il ","~.(~,~;.„-.„~,(:n ( (-.„~,( "(--.„~,((: (4(
0 ~ ~ ~, ~(( (-"1 (=1

The sum in Eq. (2) runs over 3(., = P or M. In Eq. (4), a (q, y) is an operator which creates a pion of trans
verse momentum q, rapidity y, when acting on the "vacuum, "which is the 2-proton state. The commuta-
tion relation is [a(q, y), a (q', y')] = (2m)'4m&'(q —q) &(y —y).

To simplify these formulas a bit, define

&(() f 2 .(;(t((~(t(, ()

Normalizing g(q) so that

f d q
(2w)

then [A(y), A (y')]=4mb(y —y'). Z„may then be rewritten as
y/2 n

z„(Y,B)=.-' g II,", w. (Y, B;y„3,):II[&(y,)+&'(y, )]:,
where

W„(Y, B;yg, ~$) =f k, (8) II exp[~k, (yl -3i, l)le(yI —y;, 1) II. (gx, ,gx;»x„(8) ~

For the case where no pions are emitted,

Z, (Y, 8) = e g h~ '(8) exp((x„, Y) .
Xp

In impact-parameter space the 8 operator is given by

S(Y, B) = exp[iz(Y, 8)],
where

Z(Y, B)= P Z„(Y,B).
n =0

It is now a straightforward matter to compute the contribution to the elastic S-matrix element arising from
ladder graphs (two-chain exchange) (Fig. 4):

s,",""(Y,B)=2, &olz'(Y, B)lo&= 2, P (olz„'lo&.
n=0

For m ~ 2 one finds

(10)

i2 i 2

—,(o(z„'~o)=, 8 '" II y' p p w(YBy„3)w((YBy„x).
XO, , X.n Q, .. . , X„'
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Introducing x, =y, —y, +„ i =0, 1, ~ ~ ~ n, this can be rewritten

Z2
~ 2 co /2

2, (OI&.*(lo)=2, 8 *' /l 4' 4«(E»; —,(') E &,,(r))h„(B)g„g„«a[a,+a;)~J)
0 7t kp Xp'

f =p

1/ -1
I& Z, z., *s.,*e )I(~i,. +~„)~ I & ) » (8)) i (B)((i (i „~ )(( i„+~i )~ 1) ((2)
5=1 Xt, Xt ~n

Taking the Laplace transform,

l
(&0 ~ 2

d Y—,e ' "(0
~
Z„'(Y, 8)

~
0) =—,(i) H'(l, B)X(/)" ',

0

x [1 —X(/)] '. These poles would be two-Reggeon
cuts in a model where the Regge poles are moving.

A detailed discussion of these results will be
postponed until Sec. IV.

where

( 8)
1 ~h„(B)hg.(B)g„g„

4'll l + 2 —CV), —Qy ~

X, X'

2 2

~(/)
1 8'x 8') '

4g l+2- Ay- A) ~

X, X'

(14)

Taking into account the cases n=0, 1, the Mellin
transform of S,"2 "(Y,8) is therefore

S~ «(/ 8) = dYe-&rSa «(Y, B)
0

2

(M,(/, 8) +H(l, 8)[1—X(l)] '),

(15)

where M, (l, 8), which arises from exchange of two
trajectories with no pions produced, is

1 ~ hg'(B)hg (8)
4» ~ l+2 —(&(„—o.'&,

X, X'

The dynamical output poles are determined by the
cubic equation

1 =X(/)

1 gP + gP AM + RM
4 2 2 2 4

4F l+2 2QP l+2 QP QM l+2 2QM

The poles of M, (/, 8) at l+ 2 = n„+ o.z will in gen-
eral occur as output poles, though in special cases
these may be canceled by the term [H(l, 8)]'

III. A t-CHANNEL INTEGRAL EQUATION

A t-channel integral equation similar to that
derived in Sec. IV of I may be used to sum the
series in Eq. (15). The advantage of the integral
equation is that it easily generalizes to N chains.
The situation is complicated here by the fact that
the Reggeons on either side of the ladder can be
P or M trajectories. Thus each Reggeon can be
thought of as a two-state, or spin--,' system.

Consider Fig. 5, which is a section of one of the
ladder graphs in Fig. 4. As may be seen from
E(/s. (12)-(14), the free propagation of Reggeons
1 and 2, in states X, and A.„ is represented by a
factor (4») '(l+2 —nz, —n&, ) '. Define single-
Reggeon state vectors ~+) and ~-), where ~+) and

~
-) correspond to P and M. The two-Reggeon

state is
~ XP,). (The labels + and P are here inter-

changeable, as are —and M. ) Define the single-
particle spin operator J, by

(18)

and also define J',"=J, , +J, „where J, , is J, for
Reggeon i. The free-particle propagator can be
written

G(2& — (l H(a&) -x1
0 4 0

1 l+2 —o~ Q (~+4 ()
i=1

2
—n g(l-&., )

=—[/+2 —(np+o(„) —(n~ —n~)J(,"] '. (19)

I

+
2

X)

X~

X')

X'2

X~

X2

FIG. 4. Ladder graphs. FIG. 5. A section of a ladder.



536 STEVEN P. AUERBACH

For N Reggeons this generalizes to

G(N) (f H(N)) -11
0 4 0

with

[—f+N- ,'x(n—P+n„)—(nP —nN)z(N)j ',
(20)

FIG. 6. Attaching the ladder.

~h"'(B)) = g h„,(B)h,,(B)~),X,).
Xl, k2

(23)

N

g (N)

f=l

The two-body potential between Reggeons 1 and
2 is an operator V» which produces a transition
from

~ X,X2) to
~

X',12) with amplitude g„g1 g„g1 .
Thus

Thus,

$2'""(f, B) =—(i)'{h"'(B)
~

G"'(l)
~

h'"(B)) .

For N-chain exchange the general result is

S22'(l, B) =—,(i)"(h' '(B)
( G (l) ~h (B)),

(29)

(30)

The two-body full Green's function satisfies

G(2) G(2) + G(2) V G(2)
0 0 12 (23)

Defining the full two-body Hamiltonian H'" by G"'
= (4N) ( &

—ff'2')

H(2) H(2) + V
1

0 4 12' (24)

To generalize this discussion to N Reggeons, de-
fine the potential

y(N) P g 1Y

r=2 s=l
(25)

with V„, defined by an equation similar to Eq. (22).
The N-body full Hamiltonian is

~12 Z
Xl, X2, Xl, X2

Writing the projection operators in Eq. (21) in
terms of the angular momentum operators J„„
J, , and J, V12 becomes

~12 ( 2( gP gN ) (gP gN )~x, 1 gPgN~x, lj

l. 2(g P+gN )+(gP gN ) x, 2+2gPg N~x. 2j. '

(22)

with ~h'"'(B)) the obvious generalization of ~h(')(B)).
The inverse Laplace transform of Eq. (30) is

S(N)(y. B) (i)N{hN(B)
i

eYN
i
hN(B))

t
(31)

which explicitly shows that the eigenstates of H'"'

are output Regge poles in S2(N2)(l', B).

IV. DIAGONALIZATION OF H(2)

The diagonalization oi H'N' is difficult to carry
out in general. Even the case N=2 is a bit com-
plicated. For any N, O' N' has 2 eigenstates, and
thus there are four eigenstates for H"'. Of these,
one is antisymmetric and three are symmetric
under interchange of Reggeon 1 with Reggeon 2.
The antisymmetric state, which turns out to be at
l = nP + n„- 2, independent of the coupling con-
stants, does not occur in S,","', because ~h")(8))
is symmetric. H'" can be diagonalized in the sym-
metric subspace; the resulting eigenvalue equa-
tion is equivalent to Eq. (17).

For certain values of the parameters, however,
H'N' can be exactly diagonalized. To see this, note
that

H(N) H(N) + V(N)1
4~

(26) (gP' —gN') J, + 2gPgNZ„= (gP'+g„')(cos8 J, + sin0 J„),

Finally, the N-body Green's function G'"' is de-
fined as where

(32)

G(N) (f ff(N))-1
4w

(27)
2 2

cos8 =gP
gP +AS

(33)
Now consider Fig. 6, which represents Reggeons

A., and X2 attaching to the proton. A moment' s
thought shows that the appropriate factor h„,(B)
xh1 (B) is obtained when the diagonal matrix ele-
ment

(h' (B)~G (O~h( (B))

is computed, where

sing APgN2
2 2

gP - g'SS

Defining

J, =cosL9 J, +sin0 J„
e-f 8Jy J ec8Jy

g

then

(34)
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2+ 2y2
V„=(g g" ' (1+2$, ,)(1+2@,,).

Using (34), Z, can be rewritten as

J, =cos8 J, —sing J„,
and therefore

lf =((2P +(2@-2) +(GP —(2(()(cos8cl2 —sl118 el„)

2 2 2
+(RP 8» (1 + 2g )(1 +2/ )

( 2+ 2)2
2( 1) ~ gP 8'((

4m
(39)

and t"e th~ee lowest states I+-)( I
-+) and

I
--)

all have energy E =2(n —1), since V» vanishes for
these states. To compute the expectation value
needed in Eq. (29), note that

@P I+&+I(»l -& =I(P I +&+ll» I

where

(40)

kJ2 =kp cos28+Q g sln28 y

pE g =Q ~ Cos 2 8 —hg sin 2 8 y

Clearly, there are two cases where H"' can be
exactly diagonalized, namely, z~ =e„, or sin8=0,
for in these cases J„drops out entirely. The eigen-
states of H(" will then have the form

I R,I(2&, where

II(&=e (8~2II(&.

For example, if e~ =e„=n, the highest eigenstate
I++) Ilas 81181gy'

not fixed, in general has a nonvanishing residue.
A second case when H"' is exactly diagonalizable

occurs when g~ =0, so that sin8=0 and cos8=-1.
In this case h„=k„and h„=-h~, and so

{h(2)(B)
I

g(2&(i) I@(2)(B)&

has a p oi«2( („21-)+g„'/4(( with residue Il„',
a pole at ((2P + (2» —2} with residue 2hP Il»2, and a,

pole at 2(QP —1) wi'th residue kP .

V. EXACTLY SOLUBLE EXAMPLE

In the two ca,ses discussed in Sec. IV, P" is
exactly diagonalizable for all N. In the following
discussion only the case g&= 0 will be treated
explicitly; the results for the case a&= n& will be
mentioned at the end. This case was chosen for
detailed study because when g& = 0 the ladder dia-
grams of this model precisely correspond to one
of the cases studied by CP. In general, CP allow
only the transitions P-M, M-P, and M-M.
However, in the case chosen by them to compare
with experiment, they allow only M -M and set
the other transition probabilities to zero. Thus,
their ladder diagrams have only meson trajectories
as rungs; in the present model this occurs when
g~= 0.

When g~= 0, H~"~ has the form

= 2N((2P+ (2» -2) -((2P -(2(()~.(x)

g 4 S
+," Q g (1+ 2Z, „)(1+W. ,)

$

(g 2 +g 2)l/2 (

sln2 8 i 2 2%1/2 '
&g~ +g~ r

Therefore,

The function

&I ("(B)
I
G"'(l}II "'(B)&,

(42)

All eigenstates of H~" ~ are of the form
I&„&„.. . , A»&. Let IN, r) denote any of the
N!jr!(N -r)! eigenstates, where r I('s are -and
(N r) A.'s are +. -Since the operator 1+ 2 8, van-
ishes when applied to the state I =), the potential
V~" ~ effectively counts the number of pairs of +'s.
Thus IN, r) has energy E»,

E»,,= 2N(c(P+ (2» -2) -((2P -c(2()2(N-2r)

(44)

then, has a pole at l=2(n —1)+(g~'+g„')'I4w, with
residue [((1P(B)]4, and a pole at l =2(n —1), with
residue [2!lP'(B)!'2„'(8)+((1„'(8)]. This is in agree-
ment with a direct calculation using Eq. (15). Note
that the pole at l =2((2 —1) in S222""(I,B), which
would be a two-Heggeon cut if the input poles were

Also

&I'"'(B)IN, &
= [(I-(B)1"[I.(B)]""

(45)

Using Eq. (31) and taking into account the degen-
eracy of IN, r),

S„" (Y, B)=i"g, , exp y (N-r)(nl( —1)+r(o(P —1)+ (N-r)(N —r —1)(„) - .„"[I'2,'(8)]" [!'2„'(B)]' "

r! (N r)!- Bw
(46)

Summing Eq. (46) over Nj . one obtains'
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S»(Y, B)= g [ih~'(B)]"e ""~ ' g, exp Y (N r-)(n„—1)+ "
(N r-)(N-r —1)

(N r-)! am

= exp[ihJ'(B)e ~ ' ] g l" " ' "- exp Y n„1-— " N+N' (47)

It follows from Eq. (44) that for N sufficiently large, the eigenvalue E„,is the leading pole, E„,is the
next-to-leading pole, etc. Thus the first term in the sum over r in Eq. (47) is the sum over leading poles
(for N large), the next term is the sum over next-to-leading poles, etc. For fixed r, E„„grows with N
like N' and thus the sum over N for fixed r diverges. The divergent power series in Eq. (47) is, however,
precisely the elastic S-matrix element calculated in I, i.e., it is the sum of all checkerboard graphs with
only the meson trajectory u& exchanged. According to I, it should be interpreted via the "Gaussian inte-
gral trick": In Eq. (47) use the identity

N Fe -x2 2Ng Yl/2xdxe e (48)

S»(Y, B) = exp[ih~'(B)e "~ 'r]S,", (Y, B), (49)

where

S,", (Y, B) = dxe "'

x exp [ih (B)er&~N & & &+&& «]

and do the sum over N before doing the x integral.
The result is

is forced onto an unphysical sheet. Clearly, in
this case, when a pole at n„+ L(n J —1) collides
with the cut at n, + L(nI —1), the pole is forced
onto an unphysical sheet. However, collisions
between the pole at n„+ L(n J —1) and the cut at
n, + L'(n~ —1), where L'& L, have no effect on the
pole.

When n&& 1+ g' the leading pole in S2"2 is atJ= 0
(N= 0) and S,", approaches unity for large Y. Thus,
for large Y,

S»(Y, B)-exp[ihz (B)e"& ' "]. (»)

with

~u
~=rSs '

(50) Note tha. t the phase factor in Eq. (51) arises from
the sum over r in Eq. (47), i.e., the sum over non-
leading poles.

The total and elastic cross sections, in the nor-
malization of I, are

The phase factor exp(ih~'(B)e "~ "r) has a trans-
parent physical interpretation. Since the Pomer-
anchuk trajectory never emits pions when g~= 0,
it couples only by repeated exchange between the
protons. Consider any checkerboard diagram
involving N chains of n„exchange [Fig. 7(a)]. The
effect of exchanging LPomeranchuk trajectories
in all possible ways in addition to the meson ex-
change [Fig. 7(b)] is to multiply the diagram of
Fig. 7(a) by a factor (ihJ'ei"I' "r)~/L! . Summing
over I., the phase factor in Eq. (49) emerges.

Now consider the J-plane structure of S»(Y, B).
As shown in I, if n„& 1+ g', S,", (Y; B) has poles
at J = n„= N(ne —1) + N(N —1)g' for all non-nega, -
tive integers ¹N,= (1+g —n„)/2g', and a cut at
J = n, = —(1+g' —n„)'/g'. Expanding the phase
in Eq. (49) in a power series, S»(Y,B) clearly has
poles at the points J = n„+ L(n~ —1) and cuts at
the points J = n, + L(nJ —1), with I a non-negative
integer. If ot&= 1, the cuts all coalesce into a
single cut at n„and a similar thing happens with
the poles.

One of the most interesting features of S,", , as
discussed in I, is that when a pole nN collides
with the cut n, (as a result of varying g), the pole

o„, = 2 f d 8 Re[1 -S»(Y, B)],

o., = f d'& Il -S»(Y, B)I'.
(52)

M
«\ il - "~l

M

I 3 ~ ~ ~ N

M M M

P P . . M
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2.. .

M M M

2 3. . .

FIG. 7. The modification of a meson checkerboard
graph by Pomeranchuk trajectory exchange.

Since S» is just a phase, 0„,= 0„ to leading order
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in s, and

8 p d Bkp B Qp&1

-2 d'B 1-cosh'' 8 np= 1 . 53

When ~p&1, the energy dependence of o„,depends
on iii,(B). If hi, (B)= he ~~o, then

ri
I
T

II

o'„,-2wRo (np —I)~Y . (54)

If n„& 1+ g' (Ref. 7), the total and elastic cross
sections will no longer be equal. As one example,
which is illustrated in Fig. 8, suppose that o'.p = 1,

h (B)= I~6(B~ —IBI),

h„(B)= h„8(B„—[B[),
(55)

o„, = 2wB„'+ 2w(Bi.' B„')(I-—cosh~'),

+ tot ~el &BN ~

2
(56}

where B„&B~.' Using the techniques of I it can
be shown that, due to the rapid oscillations in the
integrand of Eq. (50), S&~(Y, B)= 0 when ~B ~

B&„,

whereas clearly S,",(Y, B)= 1 for ~B~&Bs. In other
words, the incoming wave is completely absorbed
when (B~ &Bz. For B„& jB~ &Bz elastic scatter-
ing occurs, and therefore

FIG. 8. In the inner shaded disk of radius B~ the
incoming two particle state is completely absorbed and
pion production occurs. In the cross-hatched region the
incoming state is scattered elastically.

All of the particle production comes from the re-
gion [B &BE, where S» vanishes. If follows from
Eq. (53) that o„,& o, & —,'o„, , and that o„and o„,
are constants.

Very similar results occur in the other soluble
case op= n& = n. For example, the elastic 8-
matrix element is

S»(Y, B)= exp(ih B')e~" '~" ', exp(Y[(n —1 g')Ã+ 1P—g']),
0 I

(57)

where g' = (gz'+ g„')'/8w. The sum in Eq. (57) is to be interpreted by the Gaussian integral trick. In this
ease, o. = 1 implies 0„, = o„= constant. In both of the soluble cases the extra phase factor changes the
conclusion of I that the multi-Regge region gives an energy-decreasing contribution to o, t if the input tra-
jectory is one or less.

VI. INCLUSIVE AND EXCLUSIVE CROSS SECTIONS

(58}

In this section the inclusive and exclusive cross sections will be briefly discussed for the soluble cases.
These can all be deduced algebraically, so as a first step certain commutators will be evaluated.

When gp= 0, for n& 2, Z„simplifies to

dy,Z. = e'"" ""[h (B)]'(g~')""—, II ': II I&(y )+&'(y )]:-Y/2 f = y 4~ j = 1.

Therefore

[ (0, Y), Z„] = g„'g(q)Z„ (59)

I

The inclusive cross section for one-pion produc-
tion is

and thus

[a(q), y), Z(Y, B)] = g 'g(i)[Z —Ii '(B)e'r "']
=—g~ g(a)Z~ ~

Zz, defined in Eg. (60), is the Z operator for
meson trajectories alone. Therefore

[a(q y) S(Y B)] = ig„'g(tl)S(Y B)Z„(Y B)

(60)

(61)

~l(q, q„"., q. ls(Y, B)lo) P,

(62)

where the invariant phase space is d q= d'qdy/
2(2w)'. Reducing out one pion and using complete-
ness and Eq. (30),
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d'HZ —, n «do'

dq n=o

from the soluble cases it seems likely that they
will be important.

x /(q„. . . , q„f[a(q, y), S(Y, B)] /0) /' ACKNOWLEDGMENT

d B (0) [S,at][a, S] ~0)

= g»'g'(i) d'&&0I [Z»(X, B)]'I0&

g 4g2( )e?(ii»-1+@ )r d2Hh 4(B) (63)
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APPENDIX
This is independent of the rapidity of the produced
pion, and thus, if n„= 1-g', the multiplicity will
grow like logs.

The simplest way to derive the exclusive cross
sections is to note that

Z( Y, B) = h~'(B)e "& ""+Z„(Y, B),
which implies the operator relation

S(1;B) = exp[i hp'(B)e "~ " ] exp [iZ„(Y, B)].

(64)

(65)

The scattering amplitude operator in B space is

It will be shown here that the leading and non-
leading eigenstates of H" grow like N'. More
precisely, denote the eigenvalues of H by E& „,
with E„,, o-E~, ~ o-E„,,N. For fixed ~, the
bounds

a++ bP &E», &a„.N+ b, iN (Al)

will be proven. The main tool will be the minimax
principle". I et & be a Hermitian operator on an
n-dimensional vector space V&, with eigenvalues
~, ~ X, ~ ~ ' ~„. I et V„be any x -dimensional sub-
space of V~. Then

M(Y, B)= 2is [1-S(Y,B].
v„ t g&e~ v„&4' l0')

(A2)

The term 2is contributes only for elastic scatter-
ing, and hence the phase exp [ih~'(B)e~"& '~"] is
irrelevant for the production amplitudes. The
production amplitudes are thus identical to those
calculated in I, which in fact all vanish at large
energy if nz& 1+g . For the case nz&1+ g, the
calculation of the production amplitudes seemed
too complicated to carry out analytically, and so
unfortunately nothing can be said about them here.
The cross sections for the other soluble case
n& = n& can be discussed using similar arguments.
A relation analogous to Eq. (65) can also be de-
rived for this case.

In words, this means pick any subspace V„, and
minimize (glH~g) /(g~g) over that subspace. Then
find the subspace V„which maximizes the number

This maximum is the xth eigenvalue from the top.
For x = N the minimax principle is precisely the
Rayleigh-Ritz variational method.

Consider first the highest eigenvalue E~,. The
minimax principle gives a lower bound: For any

VII. SUMMARY AND CONCLUSION
&0 IH'"'I 0)

(p lg&
(A3)

The main point of this work is that the nonleading
output Regge pole positions from N chain exchange
grow like N' and thus are potentially quite impor-
tant in determining high energy behavior. Their
growth with N was shown explicitly in Sec. V in
the soluble cases; in the Appendix it is shown in
general. The nonleading poles therefore always
give rise to unitarity cuts by themselves. In the
two exactly soluble cases, summing over the
nonleading poles in the case a& = 1 in fact produces
an energy-independent phase factor which deter-
mines the total cross section at high energy. It
is not clear in the general case what the net
effect of the nonleading poles will be. Judging

Now (dropping the —for rotational convenience)

H" = —', N(n~+ n„—2)

+ (nz, -n„)(cos8Z, —sine'„)

+ —,'g' Q Q (1+ 2J, „)(1+2 J, ,),
1'=2 s=l

(A4)

H», o- ~N(n J + n& -2) + eN(n J —n») cos8

+ 2g2N(N —1)

(A5)

where g' = (ge'+ g»')'/4m. Choose the state ~g)
= ~++ +), and note that (+ + '' + tJ„) + . +)
= 0. Thus
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~(N) ~N y S

F"= ,'N(n—~ + n„—2)+ (uz —o.„)coseJ,
N

+ —,'g'P Q (1+24, „)(1+2J,, ),
r=2 s=I

(AS)

To get an upper bound for E& „split the Hamil-
tonian into

as advertised in Eq. (Al).
It is trivial to get an upper bound on E„„,

namely, E& „~E„.To get a lower bound, the
minimax principle is needed. As an example, the
eigenvalue E& 2 will be studied; the same method
applies generally. From Eq. (A2), if V„ is any
two -dimensional subspace,

V "= —(n I —n„) sine &„.
iy~&cw, &414?

(A10)

Let iE„,) denote the normalized eigenstate with

eigenvalue E& I. Clearly

E„,= &E, ,iF"iE„,) + &E„,i V "iE„,).
By the usual rules for adding angular momenta,
~ has eigenvalues between —&& and &N, and so

(Eg, , l V "IEg, ,) - l(o'~ —o'~)»nelkN (AS)

Also, expanding iE„,) in eigenstates of F ", it is
clear that &E»i IT" iE„,) is bounded above by the
highest eigenvalue of H, which is E». Thus

Pick the two-dimensional subspace of vectors of
the form

ig) = ai —++ ~ ~ +) + bi + —++ ~ ~ +). (All)

E» ~ ~N(sg+ Qg —2) + (Q p —Qs) cose g(N —2)

+ a'-'(N -1)(N -2), (A12)

Once again, &piZ„I q) = 0, and in fact, &piHip)/&pip)
is independent of a and b. Therefore

E'n, i-E~, i -E~,, + l(nJ ou) -sinel ,'N- (A9)
as was to be proven.
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This assumption differs in detail from CP. However,
since it greatly simplifies the algebra but does not
change the counting argument that output poles grow
like N, it seems justi. ied to make this assumption.

5The reader may well wonder whether there is any
justification for doing the sum over N in Eq. (47) by
first summing over N-r and then over ~. The best
justification at this point is that the resulting S matrix
is unitary, since every matrix element of S may be
written as exp(ik&e "& ) times the corresponding
matrix element of S", the S matrix calculated by in-
cluding only G.'z. Since S+, when calculated using the

Gaussian integral trick is unitary, so is S. For further
justification see Eq. {62).

If hz(B) were foolishly chosen as

h&(B) = hexp[-2(B/A)» ]

then 0„,=const x ( &4), which violates the Froissart
bound. This is an illustration of the fact that there
are two essential ingredients in the proof of the
Froissart bound: The first is unitarity, which the
present model clearly satisfies. The second is analy-
ticity in the Lehmann-Martin ellipse, which implies
that the partial-wave amplitudes f, fall off like
exp(-al/ s) for large l. [A. Martin, Phys. Rev. 129,
1432 (1963)]. Thus in B space the amplitude [which is
proportional to (1-S)]must fall off like exp(-aB).
Since hp{B) is not determined by the model, but is
rather an input to the model, the model in some sense
does not have correct analyticity properties.

VThis may seem bizarre, and it probably is, but it
should be remembered that Q.'& is an inpgt parameter,
not necessarily related to the experimentally deter-
mined effective meson trajectory.

This is suggested by the absorptive model: See, e.g. ,
K. Gottfried and J. D. Jackson, Nuovo Cimento 34,
735 (1964).

This provides a simple but not very instructive proof
of Eq. (49).
See, for example, P. R. Halmos, I'inite Dimensional
Vecto~ SPaces (Van Nostrand, New Jersey, 1958),
p. 181. Halmos actually has a slightly different version
of this principle, but a proof almost identical to his
suffices to prove the version given here.


