
PHYSICAL RE VIE%' D VOLUME 8, NUMBER 2 15 JULY 1973

Connection Between Equal-Time and Light-Cone Commutators

A-M. M. Abdel-Hahman and M. Q. Taha
Department of Physics, University of Khartoum, Khartoum, Sudan

(Received 14 August 1972)

Integral representations are given for matrix elements of equal-t (equal-time) and equal-
7' (light-cone) commutators (t = xo 7' = xo+ x&) of two vector currents. A plausible assump-
tion is made connecting these commutators. Its consequences are corresponding paigs of
general variable-mass sum rules. Each pair reduces to a single sum rule in the fixed-
mass limit. Electroproduction is discussed as a special case.

I. INTRODUCTION

Spurred by experimental developments' on elec-
troproduction and the discovery of electroproduc-
tion scaling laws, ' as well as the theoretical possi-
bility of operator-product expansions, ' ' several
authors" have proposed light-cone algebra as a
relevant tool for investigations in particle physics.
Since many of the possible fields for the applica-
tion of this technique have already been probed
using Gell-Mann's equal-time algebra it seems to
us to be of relevance and interest to enquire as to
the relationship between these two approaches and
the extent to which the sets of results obtained coin-
cide or differ. It is our object in this paper to in-
vestigate the consequences of a definite assumption
that we make connecting the two algebras. This as-
sumption is suggested by certain integral repre-
sentations for both equal-time and light-cone com-
mutators. These representations' constitute the
formal basis for our investigation.

Denoting the Fourier transforms of the matrix
elements, between equal-momenta spinless states,
of the light-cone and equal-time commutators of
two vector currents J& and J,', by E&', and E&', one
has

OO

vW, (v, q')dv =K,
2pm q

(1.5)

where E is the Schwinger term in the equal-time
commutator. In the scaling limit (1.5) gives

' &2(~)

1

We show that the functions in (1.4) must be con-
stant and obtain general sum rules involving inte-
grals over the invariant absorptive functions. The
equal-time integrals are over a parabolic path,
whereas the light-cone integrals are over a linear
path, in the space of the invariants. In the fixed-
mass limits (p, =~ for equal-time and q, =0, or
p, =~, for light-cone) corresponding sum rules
coincide. In other words the same set of fixed-
mass sum rules is obtained from either equal-
time or light-cone algebra. ' The two sets of sum
rules that one obtains are, however, not generally
equivalent.

These sum rules are explicitly written for the
case of electroproduction. In this case the fixed-
mass limit of two sum rules is trivially satisfied,
whereas the fixed-mass limit of another pair of
sum rules gives'"

We write integral representations for A. ", B",
C", a", P", and y" in terms of the invariant
components of the absorptive function E„"„where

Fq', = e"' p J~ x, J'„0 p d x.

ij ~jj
7 (1.4}

These representations and the model-commutators
for light-cone and equal-time algebras suggest our
basic assumption for which we demand

Under our basic assumption (1.4), (",, and E,'~
are related by

where y'~ is the Fourier transform of a bilocal
operator.

The material presented in this paper is organized
as follows: In Sec. II we give the integral repre-
sentations for the commutators. The general con-
sequences for our basic assumption are investi-
gated in Sec. III. Section IV deals with the special
case of electroproduction, and Sec. V includes a
number of remarks and points of discussion.
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II. REPRESENTATION OF EQUAL-TIME
AND LIGHT-CONE COMMUTATORS ~PO 2 + ~ qo +~ a4j +a," dA. , 2.13

We consider the Fourier transform E„", of the
matrix element of the equal-time commutator of
two vector currents J„'„4,' between spinless single-
particle states of equal momenta p defined by

"*5(x.) (P I[J„'(x),~,'(0)] I P) d' (2 1)

(2.14)a„"=a„"(v+poX» q +2qo»). +»). ) .
Similarly from (2.8) and (2.5) one gets for the
light-cone commutator E",„=E,"„+(,"„,

where in these integrals the argument of a„" varies
according to

The function E'pJ, has, under certain assumptions,
the following integral representation':

t+)» - ~ P»» +(8 q»» + Y (50»»— 53)»»

with

(2.15)

Q&j p ql (2.2) p aij ~ ij (2.16)

where the absorptive function I'„'~ is given by

»»'. ((», »)= f "*(»I(&»'(*),&!(0)ll »)&'» (»»)

and

p" = — p, a,"+q,a4j dA. , (2.17)

(2.18)

q'=(q, +x, q). (2.4)
where p, = p, + p„q, = q, + q„and, in these inte-
grals, the functions a„" are given by

A straightforward generalization of the procedure
leading to the representation (2.2) gives a similar
representation for the Fourier transform $„'~ of the
equal- v or light-cone commutator:

&vv
= e""5(x, +x,)(pi[I„'(x),J', (0)])p)d'x.

(2 5)

The representation one obtains is expressed in
terms of the same function E„", with a different path
of integration. One has

(2 8)

where

a,"=a„"(v+p, z, q'+2q, x) . (2.19)

III. CONSEQUENCES OF BASIC ASSUMPTION

Light-cone algebra, derived from the quark mod-
el' or the quark-parton model, ' gives for two vec-
tor currents

Equations (2.14) and (2.19) show that the basic dif-
ference between equal-t and equal-w commutators
lies in the contour of integration followed; a parab-
ola for equal-t and a straight line for equal-7.
In the following section we apply these representa-
tions to deduce the consequences of the assumption
(1 4)

q = (q() +»(.» c[i» qs —X) . (2 7)
[V', (x), V', (0)] 5(x„AY)

The tensor F„",(p, q) has the covariant decomposi-
tion

+„'!(f,q) = Ra!'(v, q')e„".(P, q), (2.8)

where for [e„"„:~ =1, 2, . . . , 5}we take the set

[P)» P»»» P)»q)»» q((P»»» q()q»»» ~v»» ]'. (2.9)

=1W2f;,, V', (x)5(x /v2 ')5(x, /r2 ) 6'(X, )

+ bilocal operator contribution, (3.1)

where x =x, —x, . From equal-time current alge-
bra one has

[ V,*(x), V ', (0)]5(x,) = if...V', (x)5'(x)

When (2.8) is inserted into (2.2) one obtains

E" =A "p +13"q +C"6

with

(2.10) Now E(l. (2.15) gives

+ Schwinger terms . (3.2)

(3.3)

A. = p()ai + go+A, Q3 dA, (2.11)
whereas from E(1. (2.10) one obtains

E~"~ =A."p, +B 'q, +C". (3.4)

(2.12) The V, terms in (3.1) and (3.2) contribute equally
to the Fourier transforms (,", and Eo', . This vec-
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P" =B". (3.5b)

In the model commutators (3.1) and (3.2) both
sides of (3.5a) are specified. The terms in (3.5b)
would be known, in these models, if gradient
terms in (3.1) and (3.2) were specified. In this
paper, we shall not commit ourselves to any defi-
nite value for E',~, or E,", -or to any detailed in-
ternal symmetry structure -but shall investigate
the consequences oi the general assumption (3.5)
using the representations introduced in Sec. II.

From Eq. (2.11) one obtains
OO

A" =
2 ) [a,"(v', q")+P, '(v'+p q)a,"(v', q")]dv',

(3.6}

where

tor contribution is proportional to p, . The extra
terms on the right-hand sides of (3.1) and (3.2)
contribute to the coefficient of q, "nd not to the
coefficient of p, . It would then follow, in the con-
text of the above models, that if these noncanoni-
cal terms contribute equally to the coefficient of
q+, one would have

(3.5a)

vl q3 (3.14)

provided that the integral

converges. The same sum rule (3.14) is obtained
on taking the limit q-0 in (3.9), requiring the
weaker condition that

a3~ v -qi2 d v

converges. It must, however, be remarked that
the sum rules (3.12) and (3.13) are not generally
equivalent. Apart from the obvious difference in
the integrands, the function A" obtained on inte-
grating over the parabola in (3.6) is restricted by
(3.12) to a two-dimensional surface; In contrast
z", obtained by integrating along the linear path
in (3.9), is restricted to a curve by (3.13). It is
also clear from the above example that conditions
for taking closely related limits to evaluate these
sum rules may be satisfied in one case but not in
the other.

Now from Eq. (3.5b) one similarly obtains the
sum rules

q" =-q'+, (p q+ v')'.
0

This shows that

(3.'I) B"-Z'&
2 7

ply

(3.15)

(3.16)

2"= A. "(p ' — '+ p '( )' p
' ~ }. (3.8)

Simila, rly Eq. (2.16) gives

vl qf f2,
gabby

vt qt t2
yves

where K," is constant. These sum rules may be
explicitly written as

a2" v', q' + po v'+p q a4' v', q' dv'=K2",

(3.17)

where

(3.9) 1
[a,"(v', q'") —qa,"(v', q'")]d v' =K,", (3.18)

q'+2n( '~,-p -0 q-) -2nv',

n =-e,ip, ,

so that

(3.10)

where q", q'", and q are defined as in Eqs. (3.'I)
and (3.10).

Taken together these sum rules imply that the
general light-cone and equal-time commutators
E",„and Eo,' are related according to

o'" =n "(n, q, '+20(2e, p --p, q. )} (3 11)

Equations (3.5a), (3.8), and (3.11) clearly imply
that

(3.19)

If, further, one assumes that the equal-time com-
mutator E,", is completely given by

A" =K"
1 (3.12)

(3.13)
Eoo = &"Po ~

then one has the condition

(3.20)

where K," is constant. These equations are gener-
alized noninvariant sum rules depending on several
parameters whose content is further elucidated on
taking special limits for these parameters. The
Po-~ fixed q', p q, for example, gives from Eq.
(3.12) the sum rule

B"qo+C'~ =0 (3.21)

= -qoK2" . (3.22)

which, according to (3.15) and (3.16), implies

C '=-q p'
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Using the representation (2.13) for C'~ we see that
C" is of the form

Comparison with Eq. (2.8) gives

C"=C,"+qoC2", (3.23)

+ J
2 2

so that we must have

(3.24)

where C,"and C,"are independent of q, . From the
integral representation for C,"and Eq. (3.17}one
in fact finds that

-V
a2=a3= » R~,

p2
a~= —28", + 2 ~ W2,m q

a5 = -S~.

(4.2)

CCJ 0 (8.25)

to maintain the assumption {3.20). When explicitly
written, this sum rule reads

Thus the sum rules (8.12) and (3.13) read

zPoa2 +z a +a5 dz =0

where, in this integral,

(3.26)

and

(4.3}

a„"= a,"(-p q+ p,z, -q'+ z') . (3.27)

We finally remark that Eq. (3.19) gives, in particu-
lar,

OO

g tJ!
1+ „, W, (v', q'")dv'=K, .

2@m
(4.4)

where

A" =y"(q, = q, =0)

[(v'+p, j,)a,"(v', -g, ')
2np.

+a,"(v', -j,')]dv'.

(3.28)

(3.29)

The value of the constant K, is obtained on, for
example, taking the limit q -0 in (4.4). Since
W(v, q') =-W(-v, q') we see that K, =O, in agree-
ment with usually postulated equal-time and light-
cone algebras. lt shouM, however, be observed
that the content of the sum rules

f
oo

1 —P, '(v'+p q) —„W,(v', q")dv' =0,

In the next section we consider the implication of
these general sum rules for the special case of
electroproduction.

IV. ELECTROPRODUCTION
J

pl
1+ "„, W, (v', q'")dv'=0

(4.5a)

(4.5b)

For electroproduction

qpqv 2Fv, =
2

—6v„W, (v, q )

+ —P„— 2 P„— PP& P q . 41

is nontrivial, since the general absorptive function
W, receives [for p, 'e 0 in (4.5a) and q g 0 in (4.5b)]
contributions from various physical regions and
not only from electroproduction. For electropro-
duction these sum rules are trivially satisfied.

The sum rules (3.15) and (3.16) become

I2
(4.6)

I /2

W, (v', q" ) — «2 W, (v', q" ) dv' —K2.27/', mq mq q
(4.7)

On taking the limits p, -~, or q-O, both (4.6) and
(4.7) reduce to the sum rule"

1 ' v'W2(&u', q )dm'
4pm2 (d

—
2 ~ {4.9)

1 " v'W2(v', q') d,
m2 q2 2 (4.8)

If we now take q'- —~ in (4.9) and use Bjorken
scaling behavior, ' we obtain

A change of variable v'-&u' =-q'/2v' gives
1 ' F2(&u)

-1
(4.10)
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OO

2Zm2p q&2 p
(4.11)

l.e.)

(4.12)

the Schwinger term sum rule. '"
Finally we observe that A", which occurs in the

relation (3.29), will now be given by

p& 'qi
y(q. =o)= . --.t) }((, . (5.4)

(5.5)

where

(3) From the integral representations for (6 and

y one can see that the light-cone commutators are
in general independent of q . Equations (2.17) and
(2.18) in fact show that

V. CONCLUDING REMARKS

-1 (v' —v)v' )Iv'

2'+ m q q

Using the sum rule (4.'I), this equation gives

(5.1)

(1) We first remark on a fundamental difference
between equal-time and light-cone commutators
that has previously been observed" and arises
naturally from our integral representations. One
notes that, for q =0, the equal-time commutator
E" has no q dependence, since it is independent
of q, . The equal-7 commutator, on the other hand,
depends on q, even when q =0. In particular, the
term y" in the equal-T commutator may depend on

q, in any arbitrary manner, as is evident from
Eq. (2.18). In x-space language y" is the Fourier
transform of a bilocal object.

(2) For the case of electroproduction the bilocal
contribution takes the form

i.e., P" and y,"are independent of q . Thus, for
example,

—~&JP + P&lq

=(a"+qp")p +2y,"+2p" (5.6)

B"=P"(q, =0) . (5.8)

In particular, one obtains for q, =0 on using the
sum rules (3.13) and (3.16)

2
, =If,"p +2y,"(q, =0)+ ' 'K,". (5.7)

P+

The last two terms in (5.7) constitute the bilocal
contribution when q, =0, which for electroproduc-
tion takes the form 2A [see Eq. (4.12)j, in agree-
ment with Ref.13.

(4) If one requires that both the equal-time and
light-cone commutators admit only single deriva-
tive terms on the right-hand side, then the Fourier
transforms B"and P" of these gradient terms are
such that B'~ is a constant given by

where

V

0
p

2)

0 2+p //2

(5.2)

This follows from our integral representations for
B"and P". Thus, when these commutators are
correctly calculated from the same dynamics
(which is assumed to admit only first-order gradi-
ent terms) it is not possible to have B"g0 unless
the condition P"(q, =0) gO is also satisfied. Since

d(d eO (5.9)
/2x, „,)X(x', q'")+W(x', q"')) d '.

m

(5.3)

One observes that this bilocal contribution has a
simple form in the fixed-mass limit q, =0, since
yo(q+ ——0) vanishes so that (5.2) gives

these gradient terms est exist in both commuta-
tors of the electromagnetic current. They also
satisfy (5.8).

Note added in Proof It is assum. ed that the as-
ymptotic behavior of W, (v, q') and W, (v, q') is such
as to allow the appropriate limits in (4.6) and (4.7)
to be taken resulting in the sum rule (4.8).
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A theory of electromagnetic and weak interactions based on the O(4) gauge group is formulated along

the general program put forward recently by Pais. In our scheme the hadron symmetry SU(3) X SU(3)'
is incorporated in such a way that the model has a (kinematical) EI = 1/2 rule for nonleptonic weak

decays. The lepton assignment may be made to produce CP-violation effects which are more
"convergent" without enlarging the gauge group. There is no lower bound to the masses of the
intermediate vector bosons, while the upper limit for one of the charged W's is only 18 GeV. The
elastic reaction cross sections o.(v, e) and o.(v, e) are about 1.4 times the usual V —A values. Other

physical features of this model are also discussed in some detail.

I. INTRODUCTION

Following the pioneering works of Weinberg and
Salam, a number of renormalizable theories of
of weak and electromagnetic interactions have
been constructed in the framework of spontaneous-
ly broken gauge symmetries. ' ' Looking over the
totality of the physically viable models proposed
so far, we may broadly distinguish the following
two classes: (i) Most of the existing models are
based on the gauge group SU(2) xU(1). They differ
from each other in their lepton and hadron multi-
plet assignments. [In this class we include those
theories based on larger groups but in which some
of the intermediate vector bosons are endowed
with superheavy masses so that the group is effec-
tively reduced, in the first approximation, down
to the subgroup SU(2) xU(1) (Ref. 4); we also include
here the Georgi-Glashow model'which is based on
SO(3) or SU(2)—namely it may be viewed as an
SU(2) xU(1) model with all multiplets transforming
trivially under the U(1) group. ] (ii) Recently Pais
has advocated the exploration of a class of theo-

ries based on the gauge groups O(4) x 9." [They
include SU(2) xSU(2), O(4) x U(1), O(4) xO(4), etc.]
The central idea, as proposed first by Segre,"is
that tsoo sets of charged intermediate vector bosons
of cornpa~able masses are made to mediate sepa-
rately the ~S =0 and ~S =1 weak decays. This also
opens up the possibility of giving neutral leptons
maximal C&-violating phases and yet, Pais shows,
the effects on physical processes will be super-
weak. In this paper we shall present a model built
around this central conception but based on a strict
O(4) gauge group, namely the group SU(2) xSU(2)
plus R, "parity" of the group O(4). (The releva. 'nce

of this R symmetry will be discussed in Sec. II.)
Compared with the O(4) theory of Refs. 8 and 9, it
involves different lepton and hadron multiplet as-
signments: A larger number of neutral particles
are needed here but all multiplets in this theory
are R-symmetric.

Another motivation for our model originates from
questions concerning hadron structures. The at-
tractive simple picture of all hadrons made out of
three fractionally charged 6', R, and A. quarks may


