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We construct a nonlinear Lagrangian to describe the scalar and pseudoscalar mesons such
that the chiral SU(3) && SU(3) symmetry is realized by an octet of Goldstone pseudoscalar
mesons while the scalar particles behave neither as parity partners of the pseudoscalar
mesons nor as Goldstone bosons in the SU(3) x SU(3) -symmetry limit. The symmetry-
breaking Lagrangian is assumed to transform as the (3, 3) + (3, 3) representation of the
SU(3) x SU(3) group and contain explicit SU(3) —and SU(2)-violating terms. The transforma-
tion properties of the scalar fields together with these breaking terms in the Lagrangian
enable our model to have an SU(3) -broken vacuum. We exhibit the masses of the scalar and
pseudoscalar particles as well as the decay constants defining PCAC (partial conservation
of axial-vector current) and PCVC (partial conservation of vector current) relations in terms
of the parameters of the model, and obtain various well-known relationships (including the
Glashow-Weinberg sum rules) between the physical quantities. The smoothness assumption
is shown to imply approximate SU(2) && SU(2) symmetry of the Lagrangian with a small SU(3)
violation in the vacuum (Gell-Mann-Oakes —Renner model), while an appropriate change in
the smoothness assumption leads to approximate SU(3) symmetry of the Lagrangian with an
almost SU(2) & SU(2)-invariant vacuum (Brandt-Preparata model). We calculate the sym-
metry-breaking parameters of the Lagrangian and vacuum and predict the mass and decay
constant of the f(: meson. Furthermore, from the width of the decay n~ q~, we obtain the
decay widths of all the scalar mesons. Finally, we investigate the nonelectromagnetic SU(2)
breaking and find that it gives a major contribution to the kaon mass difference but only a
5% correction to the pion mass difference. The fact that the scalar mesons are needed to
get fE &f ~ and different wave-function renormalization constants for the fields, which en-
ables us to have solutions other than that of Gell-Mann, Oakes, and Renner, demonstrates
the importance of the scalar mesons in SU(3)-symmetry-breaking effects.

I. INTRODUCTION

Theoretically, the necessity for the scalar me-
sons has been discussed by many authors. ' " Vari-
ous studies based on cur rent algebra, ' ' br oken
SU(3) symmetry, ' partial conservation of the vector
current' ' (PCVC), and the violation of confor-
mal' "and chiral invariance have led to a more
fundamental significance being attributed to these
particles.

The existence of scalar particles is well estab-
lished, although experimentally their properties
(mass, width, etc. ) are not decisively known. "
The 5= 1 scalar mesons have a mass in the range
960 to 1020 MeV and width about 60 MeV, and it
seems that the three candidates 5(962), v„(975),
and w„(1016) are all manifestations of one physical
state "For th. e I = —,

'
(g) mesons, the mass and

width is even more difficult to gauge. It seems
reasonable to assume that the mass of the g meson
is about 1200 MeV with a width of 300 MeV, but the
possibility of a narrow resonance (width 30 MeV)
at 890 MeV is not excluded. "" The isoscalar
candidates are e (800-1000 MeV) (Ref. 25) and the
S*(1060)with a width between 150 to 300 MeV, "al-

though recent evidence suggests an $* with a mass
1250 MeV and a width about 300 MeV decaying
strongly into vn."

This evidence suggests an SU(3} octet (or nonet)
of scalar particles around 1 GeV. The high mass,
together with the success of SU(3) in classifying
particle multiplets" and partial conservation of the
axial-vector current"'" (PCAC) indicates that
when the group is enlarged to SU(3)xSU(3},"'" the
octet of pseudoscalar mesons behave as Goldstone
particles" in the symmetry limit while the scalar
mesons remain massive in this case.

Guided by the ideas described above we construct
an effective nonlinear Lagrangian" "containing
the scalar and pseudoscalar mesons, such that the
SU(3) x SU(3) symmetry is realized only by eight
pseudoscalar Goldstone bosons" [i.e. , the vacuum
is SU(3)-invariant in this limit]. In this paper , we.
demonstrate that the scalar particles, which in our
model are neither parity partners of the pseudo—
scalar mesons, nor Goldstone bosons, play a very
important role in symmetry-breaking effects (e.g. ,

f~ & f„due to the existence of these particles). "
Previously, Lagrangians of this type constructed
to include the J~= 1,1' mesons, "'"as well as the
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baryons, "'"all suffered from the defect of having
an SU(3)-invariant vacuum, even when the symme-
try was broken, which implies the same decay con-
stants for all the pseudoscalar mesons (fr =f, = f„).

In Sec. II, we construct the phenomenological La-
grangian which can be divided into two parts:

(1) The symmetric Lagrangian containing all the
SU(3) xSU(3)-invariant terms formed from the co-
variant derivatives of the pseudoscalar and scalar
fields, and from the scalar fields themselves.

(2) The symmetry-breaking part which is as-
sumed to transform as the (3, 3) + (3, 3) representa-
tion of the full chiral group. "" The symmetry is
violated only by nonderivative interactions, which
ensures that the current algebra is preserved.

We exhibit, in Sec. III, the masses of the scalar
and pseudoscalar mesons, as well as the decay
constants defining PCAC and PCVC relations, in
terms of the parameters of the model. This allows
us to obtain various mell-known relationships be-
tween the physical quantities.

In Sec. IV we invoke the smoothness assumption
considered by many authors"'"'"" ""'"and
demonstrate how this increases the information we
can obtain from our theory. We show the relation
between the "smoothness coefficients" and differ-
ent approximate symmetries of the Lagrangian.

The decay widths of the scalar particles, which
have momentum dependence in our model, are cal-
culated in Sec. V.

SU(2)-symmetry breaking of the Lagrangian due
to nonelectromagnetic effects' """is considered
in Sec. VI.

Finally, in the last section we summarize and
discuss the results obtained from the suggested
model.

[Q, , y,.]=if„,ya.
[q'; s, l=i«~as&

(2.8}

(2.7)

where g,. and S, are the pseudoscalar and scalar
fields, respectively, whilst their commutation re-
lations with the chiral generators are

[Q,". , yg] =iFiy(y),

[q,". , s, )= i G„(y)f„,.s„. .

(2.8)

(2.9)

The transformation functions F, ,(p) and G,.&(p) are
completely determined in a general framework, ""
and to lowest order are given by

group, i, j, k = 1, 2, . . . , 8, and summation over re-
peated indices is implied unless otherwise stated.
The term e,u, breaks the chiral symmetry but con-
serves SU(3); e,u, describes the violation of SU(3)
whilst conserving the SU(2) isospin symmetry.
Finally, it is possible that the isospin symmetry
is broken by a nonelectromagnetic interaction of
the form e,u, . Thus the symmetry-breaking La-
grangian of Eq. (2.1) is the most general that can
be constructed from the (3, 3) +(3, 3) representation
which conserves the electric charge, parity, and
strangeness. Obviously, the choice of the (3, 3)
+(3, 3) representation is neither new nor com-
pletely general, since other representations could
be used, however, apart from the simplicity, there
are strong arguments in favor of this kind of sym-
metry breaking as has been pointed out by many
authors. ""

The fields involved in our Lagrangian are those
of the scalar and pseudoscalar particles, and we
consider that these form octet representations of
the vector SU(3) group. Thus the transformation
properties under SU(3) for these fields are

II. THE PHENOMENOLOGICAL LAGRANGIAN

The basic form of the Lagrangian density that we
wish to consider can be written as

I'„(y) = f8„+o(y'),

G, ,(y) =
2 f„,y„+o(O') . —1

(2.10)

(2.11)

g = go + 2~8= go+ E.OMO+ 68@8+E3Q3 ) (2.1)

[qv, u, ]
- sf,„u„, [qv, , u, .] - 0,

[Q, , v,.]=if„„v,, [Q, , v, ] = 0,

Iq," u, l
= '0''-)'"f;, vo+-d~„v~'i

[QA u ]
— i(2)l/2v

[q;, ,1- 0-:)"'~;... d;„.,).
[q,". , vo] =i( ', )"'u, -

(2.2)

(2.3)

(2.4)

(2.5)

—,'(Q", a Q",. ) are the generators of the SU(3)xSU(3)

where i'.„ is invariant under the full chiral SU(3)
x SU(3) group and u, (v, ) are the parity-even (-odd)
members of the (3, 3) + (3, 3) representation, which
satisfy the equal-time commutation relations"

D„s,. =s„s,. +o(y's). (2.13)

Using Eqs. (2.12} and (2.13), together with the fact
that S,.S,. and d„., S,.S,.S, are SU(3)xSU(3) scalars,
we can write 2, up to third order in the fields as

It is important to note that the structure of the
axial transformations of the fields enable us to
form an SU(3) xSU(3}-invariant mass term for the
scalar particles while it is impossible to construct
such terms for the pseudoscalar mesons. This
mechanism ensures that the Goldstone nature of
the symmetry is realized only by the pseudoscalar
mesons. Finally to complete the invariant part of
the Lagrangian we must use the covariant deriva-
tives" "D„p, and D„S, which to lowest order are

D.~, = ~;a+o(~'). (2.12)
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(2.14)g, =-,'e„y,.e&y, +-,'e„S,.a S,. +~,d„.,e S,, e„S,.S, +~„d,,„e„y,.e y,S,+p, S,.S,. + p,d, ,„S,.S,S, .

To know the form of the symmetry-breaking terms, the (3, 3) + (3, 3) representation must be constructed
from the pseudoscalar and scalar fields. We demonstrate how this may be achieved in the Appendix. To
third order in fields, we find the following expression for the symmetry-breaking Lagrangian:

&ss = &0 -~«»f'+ (3)'"u» 4;0;+ s»8;8; + sio d;, » 8;8,8» -(» )'" ~~» d;;»@ 4,8»

Og Ag+», a,s, +a,s,(8,8,.)—,P,(p, s,)+a,d„,s;8;+a,d„,P;Q, —,d„„d,,„g,g,s

+ e, a,s, + a,s,(8,8,.)—,g, (g,s, )+ a,.d„,s,s, + a,d3;, P;g, —,d„,d, , Q, Q, 8
Cg Qg

where the a's are the remaining arbitrary coefficients describing the (3, 3)+ (3, 3) representation in terms
of the available fields, and can be chosen as order unity to fix the scale of the ~'s in Z.

The new features of our nonlinear Lagrangian are the linear terms 8, and 8, which must be removed by
making the transformation

8; = S~'+ «»&8»& 0+ 6i»& 88 & 0
(2.16)

and regull'lng

2(p~+ g»60 —gs»»/0 3 )( 8» )»+ Qg6»+ (2/W)Q»E'»( 8») 0
= 0

to remove the linear term ln 88 y %1th

2(pg + A»60+ 0» e»/l/ 3 )( 8»& 0+ sg t»+ (2/v 3 )gE»(83&0»'= 0

(2.17)

(2.16)

as the corresponding equation to eliminate the linear 8, term Equ.ations (2.17) and (2.16) indicate that e,
and e, are SU(3) sym-metry bre-aking parameters of the same order as (8,&, and (8,) 0 but say nothing
about the size of eo.

At this stage we should like to point out that using the transformation (2.16), terms in 2 containing higher
powers of the scalar fields than we have considered can change the quantities given by our Lagrangian.
However, these contributions are of higher order in (S,), and (8,),. Therefore a crucial assumption in this
model is that an expansion in (S,)0 and (8,), makes sense such that the first-order terms are a good ap-
proximation. Further, in this model with processes described in the tree-graph approximation, the e„
e„and e, are not treated as perturbation parameters whilst (Sg, and {8,), are. We can therefore sum-
marize the philosophy regarding the parameters in our theory by stating that, generally, all the first-
order contributions e, and (8,), together with «, (8,. &» are retained but ((8,&o)", n &1, are neglected

Having removed the linear term from 1, we find that Z, no longer contains the desired kinetic terms
(-,'e„p,.'e~p,'+ —,'e„s,'.6"8,'. ) but has changed to

2 = —,'8„$,'8" Q,'f5;, +2 (8,) d„,. +2 {8,&, d„,)+—,'s„s "8,'{6;,+2 (S,),d„,+2 (8,&, d„,)
+ p,s, s, +3p,s,'. 8,.((s, &,d„,+(8,&,d„,), (2.19)

where we are obliged to keep only second order in fields. To obtain the necessary form for the kinetic La-
grangian we must first diagonalize g to remove the (t),'-p,' and S,'-8,' components, and then renormalize the
fields, thos

(Z, o
'~' 0 ) ( cose~ sinep) (p,')

» ( 0 Z0 / k-sine& coseP) (~»/
(2.20)

~s z -x/» pi
S i (i = 1, 2, 4, 5, 6, 7),

(8",.l (z,.— &

I 8;.i
0 5( „,e, .;,e, (8;i

co», y;/ (2.22)

S", =Z, -'"S,. (i=1, 2, 4, 6, 6, 7), (2.23)
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tan28 =tan28 = ' '—= tan28.(s, ,
P s (S )

(2.24)

where R labels the physical fields.
By eliminating the 8„$8'8"p8' and 8„S8'8"S,' we get

1. Pseudoscalar-Meson Masses

Neglecting the SU(2) breaking effects, the phys-
ical masses of the pseudoscalar mesons in the
Lagrangian of Eq. (2.33) are

From Eqs. (2.19)-(2.24), it is easily seen that the
renormalization constants have to be defined by

2 E0u0
m, ' =— ', ' ' Z, (1+a+ b+ ab), (3.1)

Z, + '=1+ np(S, ), ,
2

Z, o =1+ nP(S, ),cos28 1+
8 0

(2.25)
2 eo(uo)0 1 1

m& =—,ZE(1 —8a —8b+ —ab),
3 f

m„'=— ', ' ' Z„(1—a- b+3ab),
2 80(u 0

(3.2}

(3.3)

Zr+ ' =1 —~3nP(S8)0+ nP(S8)0,

(2.26)

(2.27)

where the scalar densities have vacuum expecta-
tion values, measuring the symmetry of the vacu-
um, given by Eqs. (2.15) and (2.16) as

Zro =1 — np(S, ),—np(S, )ll,

Z„=1 — nP(s, ),cos28 1+2 (S8)0
8 0

(2.28)
(u, ),=-v 6a,f', (u, ),=a,(S,), ,

and a and b are defined by

8
b

8)0E (u
VY(u 0)0

(3 4)

(3.5)

(2.29)

The renormalization constants for the scalar
fields have exactly the same structure, as may be
expected from a glance at Eq. (2.19), with nP re-
placed by as, i.e.,

Z, =Z8(nP-n, ) . (2,30)

4Z~ '=3z„'+z, ', (2.31)

4Z„'=3z, g '+Z
N

(2.32)

Thus, with a similar diagonalization in the non-
derivative terms (which we discuss in Sec. VI) we

may rewrite our Lagrangian as a function of the
physical fields

g = —8's„y',. 8& y',. + —8'8„S',. 8& S',

Note that in the absence of SU(2) symmetry break
ing, these constants satisfy Gell-Mann-Okubo
type relationships of the form

as is to be expected for a symmetry realized by
an octet of pseudoscalar Goldstone bosons; in
other words, this is an example of the Goldstone
theorem. "

(B) SU(3) symmetry of 2: e8 = 0 (a = 0).
(i) b =0, a, c0 I(S8)0=0, i.e., SU(3)-invariant

vacuum] .

Zf). Zlf' Z I) 1

m„=mx=m„0 .

(3.'I)

(3.8)

The renormalization constants, Z&, can be found
in Eqs. (2.25)-(2.29) when (S,), is put equal to
zero.

From the expressions for the mesons given in
Eqs. (3.1)-(3.3) it is interesting to consider the
various limiting cases that can occur by treating
a and 5 as variable parameters, and assuming
n uo:

(A) SU(3)x SU(3) symmetry of g: e0 = e8 =0.

(3.6)

——'m8, ltl; g, —8m8 'Sl Sl (2.33) (ii) b =0, a, =0 ((S,), 8'0} .

where the summation on i is over the physical
states (or in other words &g =g 0 and p, —= p„
and similarly for S, , and i=1, 2, . . . , 8) and the
coefficients of the quadratic terms are identified
as the physical masses. The appropriate expres-
sions for these quantities are given in the follow-
ing sections.

III. MESON MASSES, PCAC, AND PCVC

In this section we discuss the case with no SU(2)
violation, i.e., 88=(S8)0=0.

Z, ezg 4Z„, 4ZE '=3Z„'+Z, ',
m 'z '=m 'z '=m 'zE E

(3.9)

(3.10)

Equations (3.9) and (3.10) give

2+ 2ml mI) m~
(3.11)

4m~'Z~ '=3m„'Z„'+m, 'Z, ' . (3.12)

(C) SU(2)xSU(2) symmetry of 2: e8= —vYe0

(iii) b 880. In this case we have Eq. (3.9) together
with
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m '=0 4m '=3m '
K (3.i3)

which is the Gell-Mann-Oakes-Renner model. "
(ii) 5=0, a, =0 ((S,), 330). Besides Eq. (3.9) we

have

m„'=0,

4' mg 3Zq m
7) ~

(3.14)

(a= -1) .
(i) 5=0, a2 e0 ((S,),=0, i.e., SU(3)-invariant

vacuum). In this case we have Eq. (3.7) together
with

case we have simultaneously Eqs. (3.6) and (3.7).
(E) SU(3) symmetry of the vacuum: (S,),= 0

(I =0).
(i) a =0 has been considered in(B) (i)
(ii) a 320. Equation (3.7) holds together with

4m '=3m '+ m ' (3.18)

which is the usual Gell-Mann-Okubo mass formula.
(F) SU(2)xSU(2) symmetry of the vacuum: (us),

=-3(2 (u, ), (b =-I).
(i) a=0. This has Eqs. (3.9), (3.14), and (3.15).
(ii) a 3-'0. This implies Eq. (3.9) as well as

Equations (3.9) and (3.14) can be used to give

K 4 1
mE (3.15)

m '=0
il

ZE Uzg 3 1 —20
Z„'m„4 1 —2a

(3.19)

(iii) 5 320. Again we have Eq. (3.9) with

m =0

ZE 'mrf' 3 1 —2b
Z„'m„2 4 1 —2y

and instead of Eq. (3.15) we have

Zg m~ I —25

(3.16)

(3.i7)

Finally, using Eq. (2.17) we deduce that es and

(S,), are SU(3)-symmetry-violating parameters of
the same order and therefore, our masses given
in Eqs. (3.1)-(3.3) satisfy the Gell-Mann-Okubo
(GMO) mass formula, identically to first order in
SU(3)- symmetry breaking.

2. Scalar-Meson Masses

(D) SU(3) xSU(3) symmetry of the vacuum: (S,),
=0 (i.e., b=0) and (u, ), =0 (i.e., a, =0). In this

The expressions we obtain for the masses of the
scalar particles in the Lagrangian of Eq. (2.33)
are

(

, * =S, -23, —23 (, WBa„(S ) )-Sa, , a (S, ) )-2&33 (3,),],
~3

I

m„= Z„-2P, —2eo as — a,o(Ss)o + es ~ -2as(S())o + &3J3s(S())0

I '=S ~ —23, —2,(a, -Saa„(S ) )+2,(~ —3 (3 )) 2WSS(S),
J

.

(3.20)

(3.21)

(3.22)

From these equations for the scalar masses, it
is interesting to consider only the following limit-
ing symmetries where we assume that As Py and

p2 do not vanish simultaneously:
(A) SU(3)xSU(3) symmetry of 2: co= es =0.
(i) (S,),=0.

not be satisfied unless p2 is also zero. Therefore,
the SU(3)xSU(3) symmetry of 7 and massive
scalar particles in this limit imply SU(3) sym-
metry of the vacuum ((S,),=0).

(B) SU(3) symmetry of 2: e, =O.
(i) (S,),=0. We have Eq. (3.23) and

Z„=Z, = Zs g = 1, (3.23) 2= 2=m (3.27)

m~ mK ms+ (3.24)

m = -2m =-ms*'2 2=
+N K (3.26)

to first order in (S,), . Obviously Eq. (3.26) can-

(ii) (S,)03-'0. This case implies p, =0 [see Eq.
(2.17)] and

Z, SSZ, eZs*, 4Z, '=3Z~* '+Z, ', (3.25)
N 7rN

(ii) (Ss)o 320. This implies p, +a, e, =0 from Eq.
(2.17), and again we have Eqs. (3.25) and (3.26).
Therefore, it is important to realize that SU(3)
symmetry of 2 and massive scalar mesons in this
limit requires SU(3) symmetry of the vacuum

((S,),=0).
(C) SU(3)xSU(3) symmetry of the vacuum. In

this case Eq. (2.17) leads to es =0 while e, remains
arbitrary, and we have Eqs. (3.23) and (3.24).



GENERALIZED NONLINEAR LAGRANGIAN. . .

(D) SU(3) symmetry of the vacuum. This leads
to exactly the same results as part (C), which dem-
onstrates the independence of the scalar mass on
the parameter (u, ),.

We conclude this subsection by noting that to
first order in SU(3) breaking, Eqs. (3.20)-(3.22)
give the GMO mass formula for the scalar-meson
masses.

to first order in the fields. Substituting Eqs.
(3.35)-(3.38) into Eq. (3.29) gives

s A" =— ' ' ' Z ' ' (1+a)(l + b) y"2e(u )
P, fl' 3

0( 0)0~ 1/2 (1 1 )(1 lb)yR

(3.39)

(3.40}

3. PCAC

All effective Lagrangian theories without explicit
derivative symmetry breaking have axial-vector
divergences given by

&„A",= i[Q";,222], (3.28)

s2 4K mK fKQE 1

s„A2 = m„'f„y"„,

7=1 2 3

X=4, 5, 6, 7,
g=8,

(3.30)

(3.31)

(3.32)

to lowest order in the physical fields. To exploit
these relationships, we have to expand the pseu-
doscalar densities v, and v, in Eq. (3.29) to second
order in the original fields (see Appendix),

(3.33)

where A",. are the octet of axial-vector currents.
From the form of 222 given in Eq. (2.1), together
with the commutation relations (2.4), we find that

a„A,. =[(')' '-e
06,,+ e2d„,]v„+(2)' '(e 6,2) 2v0

(3.29)

neglecting the SU(2)-violating term which leads to
experimentally undetermined contributions.

The usual PCAC assumption, that the axial-vec-
tor divergences are equally good as interpolating
fields for the pseudoscalar mesons as those ap-
pearing in the Lagrangian, leads us to the expres-
sions:

S„/i& =- ' ' 0Z„1/2[(1- a)(1- b)+ 2ab] y'„.2eo(uo 0 1 2

fZ -1/2

fE f~K

f fg 1/2

(3.42}

(3.43)

(3.44)

Thus Eqs. (3.42)-(3.44) allow us to rewrite Eqs.
(3.1)-(3.3) in the form

m„'f,' = —,
'

e0(u 0)0(1+a)(1+b),
mE' f»' = 2 e0(u0)0(1 ——,'a)(1- 2b),
m„'f,' = —,

'
z0(u0), [(1—a)(1 —b) + 2ab],

(3.45)

(3.46)

(3.47)

where the Eqs. (3.45) and (3.46) were first derived
by Gell-Mann in 1961." Furthermore, the ratio
fE/f, can be written using Eqs. (3.36) and (3.37)
as

c,(1 —,'b)—
f, cK(l+ b)

(3.48)

Finally using Eq. (2.31) together with Eqs. (3.42)-
(3.44) we get

4fE'= f.'+3f 2'

which may be used to calculate f„.
(3.49)

(3.41)

Further substitution of Eq. (3.1)-(3.3) in Eqs.
(3.39)-(3.41) and comparison with Eqs. (3.30)-
(3.32} leads us to conclude

v, = -(2a, f)Q, +—d„,P,S,
Qi (3.34)

(2)1/2 2)0 ~ 1/2yR yR (3.35)

( )1/2 0 0 g 1/2(1+ b) QR c QR
(u ) (3.36)

~ =(-)"' ' 'Z'"(1--'b)e' cV"-=(u )

and then use the transformation (2.16) and the re-
normalization (2.20) and (2.21) to obtain

4. PCVC

(3.50)s„v!=i[~l, ~»],
and using Eq. (2.1), with F2=0, and Eq. (2.2), we
find

s, i'," = &2f212u2 ~ (3.51)

We may extend the hypothesis described in sub-
section 3 above to include the strangeness-changing
vector currents. Thus PCVC allows us to define
a z-meson decay constant in analogy to those of
the pseudoscalar mesons. The divergences of the
vector current, V", (x), are given by

( )I/2 0)0 Z 1/2(1 b) yR yR (3.38) With similar techniques to those used in the pre-
vious subsection, we write u, to second order in
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the original scalar fields

u =a,S„+a d &, S&S, (3.52)

plies

2(P, + ag Ep)(S's) p
= —age, , (3.63)

and use the transformations (2.16) and (2.23) to
get

we obtain

(3.64)

(3.53)

sp U"„+ =iv 2 m„'f,S"„+, (3.54)

to first order in the physical fields. The strange-
ness-changing vector-current divergence is re-
lated to the physical z-meson field by

and the second sum rule of Glashow and Wein-
berg, "

f.c, =f„c,+f„c, . (3.65)

We emphasize that this second relationship can
only be obtained from our model to first order in
SU(3}-symmetry breaking.

where

(3.55)

IV. RELATIONSHIP BETWEEN SMOOTHNESS
AND APPROXIMATE SYMMETRY

OF THE LAGRANGIAN

S4 —iS,5 (3.56)

Substituting u, from Eq. (3.53) in Eq. (3.51) and

comparing with Eq. (3.54) we obtain

V3
msfK —es2 c, ,

showing that the conservation of the strangeness-
changing vector currents in the SU(3)-symmetric
limit is due to the vanishing of f, and not m„' as
would be the case if the w meson was a Goldstone
boson.

Now we are in a position to relate the various
quantities so far defined by PCAC and PCVC. By
substituting Eqs. (3.42)-(3.43) into (3.45) and

(3.46), and using the definitions of c, and c» in
(3.36) and (3.37) we get

(3.57)

f,m. =(s}' '(&o+'s/~~)c. ~

f«m«'=(-,')' '(ep —es/202)c«,

(3.58)

(3.59)

which can be compared with Eq. (3.57) to give

f„m, 'c, '+ f„m»'c» '= f,m, 'c, ' .-(3.60)

This sum rule was derived by Glashow and Wein-
berg" [their Eq. (19), where our c is identical to
their Z' ']. Finally, neglecting terms which we
may consider tobe of second order in SU(3) break-
ing, namely, es(Ss)„we find from Eqs. (3.36),
(3.37}, (3.42), and (3.43) that

In our model, we have seen in the previous sec-
tion that the scalar and pseudoscalar densities of
the (3, 3) + (3, 3) representation are related to the
physical fields by

i, , =c&. Q,. +higher orders in fields,
t

u,. = c~.S,. +higher orders in fields,

(4 1)

(4.2)

f,m, ' =(-)s'~' scp, (1+a),
f«m„' = ( s)' Epc»(1 —s a)',

(4.3)

(4.4)

where c», , and cs are defined by Eqs. (3.36),
(3.37), and (3.53). The equality c@ =cs =c corre-
sponds to the smoothness assumption made by
other authors 16 p 17,20,2 1,34,44, 45

Different schemes which use the (3, 3)+ (3, 3) rep-
resentation to describe the chiral SU(3)xSU(3)
symmetry breaking rely on contradictory values
for the parameters c@ and c~, . For example, the
Gell-Mann, Oakes, and Renner (GMOR) model' »

assumes c, =c~ whilst the Brandt and Preparata
(BP) model" has instead c«/c, = m»'/m, '.

Previous nonlinear Lagrangians have c„ identi-
cally equal to c~, and only the introduction of the
scalar mesons, as we demonstrate in this paper,
allows us to have different values for c„and c~.

For the reader's convenience, we collect togeth-
er the equations containing c&,. and c». [Eqs. (3.36),
(3.37), (3.42), (3.43), (3.45), (3.46), (3.57), (3.60),
and (3.65)] to show explicitly the dependence of
our model on these parameters:

V3fgcs —f»c» =
2 a»(Ss)o ~

while Eqs. (3.21), (3.53), and (2.30) give

-a,2e, v 3
4(J3 +a E)

(3.61)

(3.62)

f, =(-,')' '(up)pc, '(1+ b),

f» =-(,~)' '(up)pc» '(1 ——,'b),

f„=(-,')'~g(u p}pc„'b,

(4.5)

(4.6}

(4.7)

(4.8)

Using Eq. (2.17), which in this approximation im- which imply the Glashow-Weinberg sum rules"
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f, m, 'c„'+f«m» c« = f m„c

f«c +f,c„=f,c, ,

(4.9)

(4.10)

~f 1 —2b

f, 1+b

f»m»
1

f„m,' 1+a
while c, =C&=c„ leads to

f 3 b

f, 21+b '

f„m, 3 a
f,m, ' 2 1+a '

(4.11)

(4.12)

(4.13)

(4.14)

Using the experimentally suggested value f»/f,
= 1.2 we get from Eqs. (4.11) and (4.12)

where Eqs. (4.8) and (4.10) are true neglecting
eo(So&o.

It is now easy to see, from the above equations,
that the smoothness assumption, namely c, = c~,
gives

V. THE DECAY WIDTHS OF THE SCALAR MESONS

The Lagrangian that we have constructed can
obviously be enlarged to calculate all g-particle
processes involving the scalar and pseudoscalar
mesons. However, as the experimental data are
so poor, the extension to many-particle interac-
tions is in general both tedious and uninteresting.
The one possibility that does remain after a dis-
cussion of the scalar masses is to try to estimate
the various widths for the scalar mesons to decay
into two pseudoscalars. In order to obtain predic-
tions from the Lagrangian rather than a many-
parameter fit (and since the data are poor, this is
evidently very easy to do) we make several sim-
plifying assumptions which reduce the accuracy of
our predictions by an amount of the order of SU(3)-
breaking effects.

Firstly, we neglect all SU(3}-symmetry-breaking
contributions to the scalar-pseudoscalar-pseudo-
scalar (SPP) interactions which are given from
Eqs. (2.14) and (2.15) by

a= —0.90, b =-0.12 (4.15} ~SPP radii& i p pj

and together with Eqs. (4.13) and (4.14) we predict e (L)i&o ~d (5.1)

f„/f, =-0.20, m, =1.22 GeV (4.16)

m„= 1.04 GeV, f„/f, = -0.26 . (4.17)

It is interesting to point out that the BP sugges-
tion

in good agreement with the experimental value of
m K

It is important to note that the mass of the z
meson is quite sensitive to small changes in f«/f„.
For example, the value f»/f, =1.26 gives

which in the tree-graph approximation gives an
invariant amplitude

z 1/2~a
9si pi p«ci p id' (bl b2) &o(e)

(5.2)

where k, and k, are the four-momenta of the
pseudoscalars (with mass m, and m, ) involved. In
the usual manner, the decay rate is defined as

C~ Cg CK

m~ mg m

is symmetric to the smoothness assumption

(4.18) 2m 'i i & 2&o (2m)' 2(o (2w)'

x(2ii)'5(ms. —&o, —&o,)5'(k, + k,)S,
C7! Cg CK (4.19)

b = -0.90, a =-0.12, (4.20)

under the interchange of a —b in our model. Then,
if we assume Eq. (4.18) to hold instead of Eq.
(4.19) we have

where m~, is the mass of the scalar meson, u, and

u, are the energies of the corresponding pseudo-
scalar mesons and S=g, 1/n, ! for n, identical
particles in the final state. Completing the inte-
grations, we are led finally to the decay rate

while the predicted values of f, and m, in Eqs.
(4.16) and (4.17) are not changed.

Thus we can conclude that the smoothness as-
sumption (4.19) implies approximate SU(2)xSU(2)
symmetry of the Lagrangian and almost SU(3)-
invariant physical states, "while the assumption
(4.18) leads to an approximately SU(3)-symmetric
Lagrangian and physical states which are near to
SU(2)xSU(2} invariance. '~

(d;;i,}'s1. . .= ",b, Z(b,),
where

(m +m )' ' ' (m -m}'
ko — 1- 2 1-

2 mg & my

and

(5.3}

(5.4)



P. H. DONDI AND SHALOM ELIEZER

z(a,) -=z(A. , u, )

&o+x— u~(a, 0,)- ~, (5.5)

Thus, substituting this equation into (5.5) gives

(5.9)

&x' &2 = ax+2+ &o
2

=(m,a+ u,')"(m, '+ e ')"+ u, ' . (5.6)

Obviously, we do not neglect the SU(3) breaking in
the masses as this would lead to a trivial relation-
ship between the decay rates of the scalar mesons
and the symmetric tensor d„&.

Simple manipulations on Eq. (5.3) Rllow us 'to ex-
hibit the decRy widths fox' the physicRl pRx'ticles Rs

1I' + „„+= —,koE(ko),

which enables us to fit the data with just the single
parameter Q~ .

The decay widths for the scalar particles are
given in Table I for two cases:

(I) m = 1.01 GeV, I («„-qw) = 50 MeV,
m, =1.22 GeV, and ms*=1,27 GeV.

(2) m„=0.96 GeV, r(~„q«)=50 MeV,
m, =1.04 GeV, and ms+ =1.06 GeV.

The mass and width of Yt~ are taken as input, the
mass m„ is as calculated in our model [Eqs. (4.16)
and (4.17)] and ma* is given by the GMO mass for-
mula.

VI, SU(2) BREAKING

1F,+ ««o=4 a &aE(Iao)
4rnz,

1l Jf

1I'a* ««=
6 a &o&(&o)

1TPBs 4

(5.7)

In this section, we calculate the contribution of
the nonelectromagnetic SU(2)- symmetry breaking,
described by the Q3 term ln oux' original Lagl Rn-

glan Eq. (2.1), up to first order ln the parameters
describing the symmetry violations.

From Eqs. (2.17) and (2.16) which eliminate the
linear terms in the Lagrangian we find to first
order that

1I"„+ «+o = . —
a Ao E(Iao),

24 WPBK

where the appropriate masses must be inserted
into the ko E(ko) factor in each case, and the decay
of 8* into two pions and two kaons includes both
charged and neutral modes, while the

V+~ E+7l V ~E m

Thus we have six decay widths in Eq. (5.7) and
only two parameters as given in Eq. (5.5).

Secondly, we introduce the smoothness assump-
tion, c, =cE, and use the expressions fores, ' and
m«a [Eqs. (3.1) and (3.2)] to first order in SU(3)
br eRking to obtRIn

)0 &+3)0 a

&Sa)o (~.&. aa
'

%'e have also shown in Sec. II that diagonalization
of the kinetic terms leads to

(6.1)

Sa)oe, =e, =e=
&

(6.2)

Further, diagonalization of the pseudoscalar as
well as the scalar mass terms give

(6 3)

which is consistent with Eq. (6.1) and (6.2).
The pseudoscalar-meson masses are now given

by

6
(5.6) I,+ =——,(I+«),a 2 ~Q(+0)o (6.4)

TABLE I. Decay widths of the scalar particles. Case I: m„=1.01 GeV, m~ =1.22 GeV,
ms~ ——1.27 GeV. Case II: m„„=0,98 GeV, m, =1,04 GeV, ms* —-1.06 GeV

(I) k, (Gev) 0.33
(I) I' (Me V) 50 (input)
(II) k, (Gev) 0.32
(II) I' (MeV) 50 (input)

0.61
340

0.51
250

0,38
40
0.19

12

0.30 0.48
260

0.39
180
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m„o'= — ',' '(1+x+2ye),2 eo(uo)o

m»+ =—,(1 —-;x+ —,v 3 y),o 2 ~o(uo)o

(6.5)

(6.6)

in agreement with many calculations given in the
literature. "'""'"If we replace the denominator
in Eq. (6.11) by using the GMO mass formula we
find using Eq. (6.3)

, -(l--.x- o~~y),
2 eo(uo},

m„=-, (1-x- 2ye),
2 eo(uo)o

where

(6 &)

(6.8)

1 (m»o —m»+ )
(m„' —m, ')

which may be compared with the form

1 (m»o'- m»+')+ (m, +' —m~o')
v3 (m„' —m, ')

(6.19)

(6.20)

x= a+ b — (S,)o,
2m~ (6.9)

(6.10)

Neglecting the y8 terms, Eqs. (6.4) to (6.10) to-
gether with (6.1) give

obtained by Okubo and Sakita, "as in this approxi-
mation (neglecting y8 terms) m, + =m, o (which is to
be expected since u3 is an isotriplet and the pion
mass difference is pure I = 2).

Including now the y8 terms in the expressions
(6.4)-(6.8) we can get the u, contribution to the
»'-»o mass difference. Using Eqs. (6.11) and
(6.19) we have

VS (m, o'- m, +')
2 (m»'- m„') (6.11) 2

(m, o- m, +)„=(-)
71 7i' Q 3 mm (j.—tÃ /fpgE )

(m»o' —m»+'),, = (m, o' —m, +'),

which can be expressed as

(6.13)

m
(m»o- m»+), = (m„o- m, +),

mg
(6.14)

It is important to mention at this stage that when
discussing mass differences within SU(2) multi-
plets one has to consider also the electromagnetic
(em) contribution, thus assuming only these two
types of SU(2)-symmetry breaking (i.e. , em and

u, ), we have

(m»o- m»+},=(m»o- m»+)„+(m»o- m»+),

(6.12)

with a similar equation for the pions. It has been
shown by Dashen" that the em contribution gives
the sum rule

(6.21)

The numerical value for (m»o- m»+}„ is given in
Eq. (6.1V} and leads to

(m o- m„+)„,= -0.23 MeV (6.22)

which, as has been pointed out by other authors, "
is in the wrong direction but within, the probable
10/o error of the current-algebra calculations of
Das et al.M %'e note however that although y8 is
of order e,'/e„ this is still a second-order SU(2)-
breaking effect, and since we have not taken into
account the full contribution to this order, our
result in Eq. (6.22) may be considerably altered.

Finally, again neglecting the y8 terms, we see
that the masses of the pseudoscalars given in Eqs.
( 6.4)-(6.8) satisfy the GMO formula with SU(2)
corrections. "

The electromagnetic mass difference of the pions
has been calculated, using current-algebra tech-
niques, to give

(m, o —m +), =-5.0 MeV

which leads to

2(m». '+ m» o') = 3m „'+m„' .
To the same approximation we find that

2(m„+'+ m„o') = 3m, *+m„'
for the scalar particles.

(6.23)

(6.24)

(m»o —m»+), =-1.4 MeV . (6.16) VII. SUMMARY AND DISCUSSION

Inserting Eq. (6.16) into (6.12) and using the ex-
perimental result m&0- m&+ = 4.0 MeV, we find

(m»o- m»+)„=5.4 MeV ."3 (6.17)

/ e2e.2x10 ' (6.18)

To calculate the value of e,/eo we insert Eq. (6.17)
into (6.11) for the K'-K+ mass difference, to get

The present paper is concerned with the spon-
taneous breakdown of chiral SU(3)xSU(3) symmetry
realized by an octet of Goldstone pseudoscalar
mesons. Thus, in the limit that symmetry break-
ing is neglected, SU(3)xSU(3) does not appear as
a symmetry of the particle states as SU(3) does.
Guided by this idea, and the existence of an octet
of scalar mesons with masses around 1 GeV, we
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have constructed a nonlinear Lagrangian such that
the scalar particles behave neither as parity part-
ners of the pseudoscalar mesons nor like Goldstone
bosons in the chiral SU(3)xSU(3) limit. Although
these scalar mesons have no particular signifi-
cance in the symmetry limit, they play a special
role in symmetry-breaking effects.

We have considered a symmetry-breaking La-
grangian which transforms as the (3,3) + (3, 3) rep-
resentation of the group SU(3)xSU(3) and contains
explicitly nonderivative SU(3) and SU(2) violations
which conserve the current algebra. The trans-
formation properties of the scalar fields enable us
to have linear terms in S, and S, in the Lagrangian
which cause the vacuum to violate SU(3) and SU(2)
symmetry. However, it turns out that SU(3) sym-
metry of the Lagrangian implies SU(3) symmetry
of the vacuum if the scalar mesons are to remain
massive in this limit.

The symmetric Lagrangian is given in Eq. (2.14)
while the symmetry-breaking part is written in
Eq. (2.15). The new couplings of major importance
are:

(a) n~ and nz which produce renormalization ef-
fects for the wave functions [Eqs. (2.25)-(2.30)]
and symmetric, derivative-dependent scalar-
pseudosealar-pseudoscalar (SPP) and scalar-
scalar-scalar (SSS) couplings. As has been dem-
onstrated in Sec. V, the decay widths given from
this SI'I' term are evidently consistent with the
present experimental data (see Table I).

(b) P, produces the scalar particle mass in the
limit of chiral symmetry.

(c) a, is the coefficient of the linear terms in the
scalar fields and gives the nonderivative SPP
couplings. The presence of a, forces us to make
a transformation of the scalar fields to get a non-
vanishing vacuum expectation value which breaks
SU(3) symmetry.

(d) As usual, the coefficient a, contributes the
nonzero vacuum expectation value of the SU(3)
singlet, u, [Eq. (3.4)J.

The main conclusions that can be drawn from
our Lagrangian model after it has been rewritten
in terms of physical fields are as follows:

(1) The pseudoscalar-meson masses, exhibited
in Eqs. (3.1)-(3.3) shov: the Goldstone behavior of
these particles To firs.t order in SU(3) breaking,
these particles satisfy the GMO mass formula.

(2) The scalar particle masses are given in Eqs.
(3.20)-(3.22}, and satisfy the GMO mass formula to
first order in SU(3). These expressions together
with the pseudoscalar masses demonstrate the
possible symmetry limits in our model as has been
discussed in Sec. III. As expected, our model con-
tains the physically relevant limit with an SU(3)
xSU(3)- invariant Lagrangian and SU(3)- symmetric

vacuum.
(3) To first order in the fields our Lagrangian

implies partial conservation of the axial-vector
current (PCAC). The decay constants (f„ fz, and

f„) defined by the PCAC Eqs. (3;30)-(3.32) are
shown to be related to the wave-function renormal-
ization constants [Eqs. (3.42)-(3.44)] which allows
us to have fl e f„. The fact that the scalar mesons
are needed to reproduce this physical result, ex-
hibits the importance of these mesons in SU(3}-
symmetry-breaking effects. Furthermore, we see
that the first-order SU(3)-breaking corrections to
the ratio f~/f, are nonzero in direct contradiction
to the assumption of Ref. 58 based on a nongeneral
proof 59 y44

(4) Extension to include partial conservation of
the vector current (PCVC) for the strangeness-
changing vector current, together with the expres-
sions obtained using PCAC, gives the Glashow-
Weinberg sum rules" [Eqs. (3.60) and (3.65)] in
our model. It is important to mention that we have
these relationships although the ~ meson is not a
Goldstone particle in the ehiral SU(3)xSU(3) limit.

(5) The smoothness assumption [Eq. (4.19)]
which is discussed in Sec. IV, is shown to imply
approximate SU(2)xSU(2) symmetry of the Lagran-
gian with a small SU(3) violation in the vacuum.

(6) An appropriate change in the smoothness as-
sumption [see Eqs. (4.18)] as has been suggested
by Brandt and Preparata" leads to approximate
SU(3) symmetry of the Lagrangian, while the vacu-
um is almost SU(2)xSU(2)-invariant.

(7) Both assumptions [Eqs. (4.18) and (4.19)]
mentioned above give the same results for the
pseudoscalar masses, fr/f„ f, /f „and m„[Eqs.
(4.3)-(4.8)].

Using the known pseudoscalar masses and f~/f,
as input, we calculate the symmetry-breaking
parameters [Eqs. (4.15) and (4.20)] of the model
and predict f, /f, and m„[Eqs. (4.16 and (4.17)] in
agreement with experimental data.

(8) The widths of the scalar particles are ob-
tained in Sec. V neglecting the SU(3)-breaking ef-
fects in the SI'I' couplings and assuming smooth-
ness. Making these assumptions we are able to
calculate the decay widths in agreement with ex-
periment taking as input only m and I'(v„- gv).
(See Table I.) A feature of our numerical results
is the existence of a broad S* decaying strongly
into two pions, as suggested in Ref. 29.

(9) In our model, we found that the nonelectro-
magnetic SU(2)-breaking term gives the major
contribution to the mass difference of the kaons
[Eq. (6.17)]. Finally, we have a modified GMO
mass formula and expression for the wg mixing
angle as given in earlier literature [Eqs. (6.19),
(6.23), and (6.24)].
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Thus this model can be considered as a general-
ization of the usual nonlinear Lagrangians to in-
clude many more interesting symmetry-breaking
phenomena as well as describing the scalar me-
sons.

and

u( i
u sq v( ='Ls d(~.s [Q( i u/]

(8~+&)

(s)1/sv —i I f [QA u ](s +1)

(A4)
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APPENDIX

where the notation indicates that the commutator
is restricted to contain only the singlet and the
symmetric octet under SU(3), i.e., in general,
having formed an arbitrary octet vector u, from
the scalar and pseudoscalar fields, this commuta-
tor contains the 27, 10, 10, 8S, 8~ and singlet rep-
resentations of SU(3), and we require the coeffi-
cients of the 27, 10, 10, and 8" to vanish. Taking
the general form for u~ to third order in the fields
as

ug, —Sg, (a~+ a Q( P(+ asS( S()

The (3, 3)+ (3, 3) representation can be construct-
ed as a function of fields with known chiral SU(3}
&&SU(3) transformation properties in the manner

given by Coleman et al." Thus

+ asks(P, S,) + a, ds, / S, S,

+ as dsuA 0;+ W ds&/d;in', 4i Sm

+ as dst/d/tm4t &4S; (A8)

c
u„0 -($,. d,. s) Xsv„(t,. d,.„s) 0 - 0 (A 1)

we find that constraining [Q", , u~] to have only sin-
glet and symmetric octet gives

where n, P = 0, 1, 2, . . . , 8 and i = 1, 2, . . . , 8 and $,
is a 0 octet constructed from the pseudoscalar-
meson fie lds. Since we are interested only in the
pseudoscalar- and scalar-meson fields, the gen-
eral form of XB is a function of the scalar fields
given by

a, =a, =0,

a, =-a,/3f',

a, =-a,/2f' .

Then using Eq. (A4}, we get

(A8)

Xp=c]+ c, S;S,+ c, d gpS SpS& + ~

X, = c4S,.+ c, d, ,& 8,. S&+ c6S, S,. S,. + ~ ~ ~ .
(A2)

(A3)

~avi=-2asfkg+ dos fgSs ~ (Av)

Then as has been shown in Ref. 37 we may choose
a particular coordinate system t', = Q, /f in Eq.
(Al) to get u and v as a series expansion in P,
and S, .

However, it is interesting to note that the (3, 3)
+ (3, 3} representation can be constructed in a gen-
eral coordinate system using only the equal-time
commutation relations for the fields with the group
generators. Using our theorem given in Ref. 44,
the representation is given by

v, = (-')'/' —' S, y, , (A8)

while the commutator

[QA u ] (s)1/sv

allows us to deduce u, in the form

+ a9S~ S + asap d &y S ' Sy Sy (A10)

2 Z/2 1 1/2~aus= ~a f'+(s}' 'as%; 4'~ -(s}'" s4/sf»4/S»
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