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Analysis of Electromagnetic Mass Shift in Light-Cone Algebra
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Within the framework of light-cone algebra, it is shown that a logarithmic divergence in the
electromagnetic mass shift of a hadron arises precisely due to a mass term in the quark
propagator. This divergence, therefore, can be removed by mass renormalization. The
coefficient of this divergence is a scalar density which transforms as 83 for the case of a
nucleon. In our analysis, the gauge invariance to order 1/q is explicitly used.

A possible source of divergence in the electro-
magnetic self-energy of a nucleon is the deep-
inelastic region for electron-nucleon scattering
(the scaling region). This region in configuration
space corresponds to the light cone. The light-
cone algebra is relevant for discussing this re-
gion. It was shown recently' that within the frame-
work of light-cone algebra, the electromagnetic
mass shift comes out to be finite under the as-
sumption that the contribution from the leading
light-cone singularity of the current commutator
to the absorptive part of electroproduction is man-
ifestly gauge-invariant to order I/q'. In abstract-
ing light-cone algebra from the quark model, the
contribution from the mass term in the quark
propagator is neglected. The purpose of this pa-
per is to show that the logarithmic divergence in
the electromagnetic mass shift reappears and is
precisely due to a mass term in the quark propa-
gator. This divergence, therefore, can be re-
moved by mass renormalization. Moreover, the
coefficient of this divergence is a scalar density
which transforms as S, for the case of a nucleon.
This may be useful in understanding g - 3m decays
and 4 I= 1 mass differences.

In the free-quark model, the electromagnetic
current is defined in the familiar way

J& =ify„gg,

where g is the column matrix for the free quark
fields and Q is the charge matrix.

The algebra satisfied by the commutators of the
electromagnetic currents can be easily worked
out in the free-quark model and is given here:

[~'„(z),~: (o)]

=2[s„„V~(A; z, o)+ e„„A~ (S; z, 0)] —b, (z)
Zp

2i[6„„Z~-(S;z, o)+iT~„(A;z, o)]~(z), (2)

where Vf (A;z, o) and Ao (S;z, o) are, respective-
ly, the usual antisymmetric (with respect to
z —0) vector and symmetric axial-vector bilocal
operators. Je (S;z,o) and T~, (A; z, o) are, re-
spectively, symmetric and antisymmetric scalar
and tensor bilocal operators and are defined as

J (S, z, o) = —'[$(z)MQ'$(0)+$(0)SIC'g(z)], (Sa)

r„",(A, z, O) =-,'[q(z)o„,mq'g(0) —(z -O)] . (3b)

In Eq. (2) s„„~,= »6„6+6„~6„,—6„P„Note.that
M is the quark mass matrix; it is diagonal and
so is Q'. In deriving Eq. (2) we have made use of
the anticommutation relation satisfied by free
quark fields:

[g(x), P(y)], =-iS(x-y),
where

S(x- y) =(y„e„-~)~(x- y).

(4a)

(4b)

The algebra given in Eq. (2) satisfies electromag-
netic current conservation. However, when one
makes the approximation

b, (z) 2~ ——,'~(z, )6(z') =D(z)- (4c)

and neglects the quark mass term, the light-cone
algebra so obtained from Eq. (2) satisfies current
conservation only to the leading order in the light-
cone singularity. The next term to the leading
bght-cone singularity in Eq. (4c) is given by

2

d(z) -=-2 a~(zo)e(z ), (4d)

where p. is a constant with dimension of mass and
may be identified with the mean quark mass. Note
that the term Mh(z) also gives a nonleading contri-
bution to the algebra. We shall use algebra (2)
near z' =0, but would include the terms next to
the leading singularity mentioned above. Thus in
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Eq. (2) we replace (8/Bz&)E(z) by (8/Bz&)[D(z)+d(z)), and in the last term on the right-hand side of Eq. (2)
we replace &(z) by D(z). Thus we shall use light-cone algebra in the form

[J™(z),J', (0)] ~2 2[s„„~Vo (A; z, 0)+ e„,p, Ae (S; g, 0)] —[D(g)+d(z)]
P

—2i[5„„Jo (S; z, 0)+iT~o„(A; z, 0)]D(z). (5)

—,'(2v)'a (p I
Ve (A; z, 0) I p)

I'
=G"(p z)~+ih "(p z)z, + ~ ~ ~, (6a)

2(»)'~ &Pl Z"(S;z, O)IP) =S(P z)+ ~ ~ ~, (6b)

where z is lightlike and where ~ ~ ~ denotes terms
which vanish at z' =0. Note that the axial-vector
bilocal operator does not contribute in the spin-
summed matrix elements, and such is the case
for the tensor bilocal operator if time-reversal
invariance is assumed.

Let us now define Fourier transforms:

Note that in writing the light-cone algebra one
usually makes the approximation S(x —y)
=y„B&b(x- y). This approximation we have not
made in writing Eq. (5). In Eq. (5), the second
term on the right-hand side is due to the mass
term in the quark propagator. It is precisely this
term which gives rise to the logarithmic diver-
gence in the electromagnetic mass shift to order
Q.

In order to use the algebra, let us define the
spin-summed matrix elements of the bilocal oper-
ators between the one-nucleon states:

d'« *"S(-p')D(z)=-i(»)(h!q')S((). (8d)

Here G"'($) =(d/d))G"($) We.note that the two
types of nonleading terms arise from the nonlead-
ing terms in the light-cone algebra of Eq. (5),
namely (8/Bz~)d(z) and MD(z). The third type of
nonleading term arises from the coefficient of zP

in the spin-summed matrix elements of the bi-
local operator defined in Eq. (6a). In the previous
paper we considered the nonleading term of the
third type only. In this paper we include the non-
leading terms of the first two types also. It is ap-
propriate to impose the condition of manifest gauge
invariance to order 1/q' when all three types of
nonleading contributions mentioned above are in-
cluded.

Let us define the absorptive part of the electro-
production amplitude:

A„„=—,
'

(2 v)'a

d4ze "' p Z„' zJ', 0 p

8
i d'ze "'h." P z z —D zP Bzp-

— 2v(q+ $P) 2
h"($), (8c)

9

Bq Pq2

G "(&)= d(p')"""G"(p'),
(2v)

G "(p e)= fd( e """G"((),

(7a)

(7b)

=—,W (q', v)& &„—2)TW (q', v) 5

(9a)

S(&) =— d(p'). *'" 'S (p').1
2n

We note that

(7c)

8d'« *"G"(P z)„D(z)=»(q+(P), (h/q')G"(h),
P

(8a)

and similarly for h"($) and h"(p z). The Fourier
transform of S(P z) is given by

where

+Puqv+Puqif ~ q
j( )e p)) p)) 2 ] 4g2 )))e )

2 W2(q ~ v) —W&(q', v),

W~(q', v) = W, (q', v) + W, (q', v),

p'q
m ' 2mv

(9b)

f 8d'z e '"G"(P z)—d(z)
~zp

=2vp, '[(q+ $ p)~(t/q')'G"'($) + O(1/q')], (8b)

The scaling region (q'- ~, $ finite) corresponds
to the light cone in the configuration space. Thus
using Eqs. (5)-(8), A„„ in the deep-inelastic re-
gion is given by
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-2v 2( — U v GA(]) 5 GA(~) +2~ 2 u u GAI(g)
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2-~

"-" ~"(~)'" " ~"(()-—"5 -'"'~" (~)
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Q' q2 PV q2 q2 PV

—2—,Il„„s(()+ 0(l(q ')I, (10)

where h"'($) = (d/d))h" ($)
From Eq. (10) it is clear that we have gauge in-

variance to O(l), and if we insist that the contri-
bution to O(l/q') should also be gauge-invariant,
then the terms which behave like 1/q2 and are not
individually gauge-invariant should combine to
give a gauge-invariant contribution to O(l/q').
This means that (with P' =-m') we must have h"' d = — h d (16)

m 2G d +4 h" — h"' d =2 S d
0 0 0

(15')

But it is easy to see that [integrating by parts and
noting that at threshold h"($ =1)=0]

~Ã (()+2&"(h)—28"'(5) =~(h).

From Eqs. (9) and (10), using Eq. (11}, we have

8)2
vW, (q, v) =2)G"($)— m[8"(g)+ gh"'($)]

Also we note that
1

~(h)dh =~(0) = a(2v)'~(PI P~Q'(~P& . (17)
0 m

Hence from Eg. (15), using Eqs. (14e), (16), and
(17), we get the sum rule

228+p' . G"'(&)+ o(1/q'), (12a)
m —F,($) d) =S(0).

' H, (~)
(18)

W, (q, v) = — h '($)+O(1/q ).8$'
(12b)

we have from Eg. (12)

F.(&) =2«"(&),

F.(&)=0,

(14a)

(14b)

H. (h)=- [I (h)+8"'(5)]+—.2$'G"'($),

(14c)

8 2

H, (&) =- I"'(&). (14d)

Again using Eqs. (9}, (13), and (14), we get

H, (h) -=2&'.(5)+H, (k)

=45'[G"(&)—(2/~)@"'(h)] .
Now from the condition (11) we have

(14e)

Now with the usual definitions

m2
vW, (q', v) =E,(()+,H, (])+O(1/q'),

g

2

W, (q', v) =—F~(g)+—,H, ($} +O(1/q'), (13b)

2

W~(q', v) =—F~($)+ 2H~(]) +O(1/q'), (13c)

Note that the right-hand side of Eq. (18) is entirely
due to the contribution from the mass term in the
quark propagator to the light-cone algebra. In the
usual light-cone algebra, this contribution is not
taken into account. and we recover our previous
result. '

In general we expect the leading Regge behavior
for H~($) or H, (g) to be ( (o. =l) as $-0. Thus
the integral f'[H~(g)/$]dg will diverge at & -0.
It is clear that Regge behavior for gh"'(g) or
h"($) is $

" '. In a special case H~($) or H, (g)
may not behave as $ ". This is the situation when
the leading Regge contribution for 8', and W, can-
cels in the linear combination (Qb}. In that case
Eq. (18) is valid. For this case, the amplitude T~

(whose absorptive part is W~} satisfies an unsub-
tracted dispersion relation. This is certainly a
possibility and has extensively been considered in
the literature. ' The same assumption was made
in our previous paper, ' and here we confine our-
selves to this case; the case where H~($) or H, (g)
behaves in general as $

" as $ -0 will be consid-
ered elsewhere together with the question of di-
vergences in weak matrix elements.

Now if 1~ satisfies an unsubtracted dispersion
relation and one has the Callan-Gross relation
F~($) =0, then it is known' that the divergent part
of the electromagnetic self-energy is given by
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(19)

We note an important point: The choice H~($) =0
usually made in the literature' to get the right
sign for the proton-neutron mass difference from
the above deep-inelastic contribution is not com-
patible with the sum rule (18) as both p, ($) and

B(0) are positive definite.
If we make use of the sum rule (18) in (19) we

get

the coefficient of the logarithmic-divergent term
is positive. We end with the following remarks:

(i) By using the Bjorken-Johnson-Low limit, '
the divergent part of the electromagnetic mass
shift is also given by the expression (20).

(ii) Since we have used gauge invariance ex-
plicitly in our analysis, therefore, although we
have derived our results using free-quark model,
our results are expected to hold in the quark-
gluon model provided that the gluon interaction is
introduced in the gauge-invariant way.

(iii) When H~($) or H, ($) behaves as g ", $-0,
the sum rule (18) is modified to'

where as expressed in Eq. (17)

S(0) =-,'(2~}'~(PI y~q'qlP& .

(20)

where

(21)

Thus we see that the logarithmic divergence in the
electromagnetic mass shift arises from the mass
term in the quark propagator, with its coefficient
proportional to a scalar density, which for the
case of nucleon transforms as S,. This logarith-
mic divergence can be removed by renormalizing
the quark mass matrix, viz. , by introducing a
counterterm which transforms as a scalar density
$3 Thus our analysis 1cad s natural ly to a term
proportional to S„which is helpful for understand-
ing g-3m decay and bI =1 electromagnetic mass
differences. We also note from (17}and (20} that

and where H~~ denotes the Regge part.
(iv) If the quark mass is zero, the electromag-

netic self-mass is finite and commutable. If the
quark mass is nonzero, the divergence can be
absorbed by renormalizing the quark mass.
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