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We consider perturbation theory for SU(2) X SU(2) and SU(3) X SU(3) chiral symmetries realized by
Nambu-Goldstone bosons. Exact expressions are derived for the derivatives with respect to the
symmetry-breaking parameter € of Green’s functions, scattering amplitudes, and the matrix elements of
operators, including the effects of renormalization and the external mass-shell constraints. These
expressions are used to systematically classify all leading nonanalytic behavior in the expansion of these
quantities around € = 0. We find (1) S -matrix elements go to finite limits as €~ 0. (2) They in general
approach this limit in a nonanalytic elne manner. (3) At exceptional momentum points, corresponding
to the low-energy theorems of current algebra, the leading nonanalytic corrections can be absorbed into
the renormalization of the parameters (such, as f,) of the theory by the symmetry-breaking interaction.
Hence leading-order corrections to low-energy theorems are expected to be analytic. (4) The errors in
off-shell partial-conservation-of-axial-vector-current extrapolations are often of order elne and can be
calculated exactly. (5) The matrix elements of two or more zero-energy operators can diverge as Ine or
1/€ or worse in the chiral limit. (6) The leading corrections in SU(2) X SU(2) expansions are very
small (a few percent). (7) Expansions around SU(3) X SU(3) are marginal. The corrections are often
30% and in one case are larger than the leading term. We calculate the leading renormalization of the
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meson decay constants and consider the w7 and mN amplitudes in some detail.

I. INTRODUCTION

The notion of an approximate hadron symmetry
has proven to be very efficacious in unraveling
the systematics of the hadron spectrum. Accord-
ing to this idea one writes for the Hamiltonian

H=H+eH',

where H, is invariant under the symmetry group
and H’ breaks the symmetry. By making assump-
tions about the transformation properties of H’,
one can derive relations, like the Gell-Mann-—
Okubo mass formula, which are valid to leading
order in €. Essential to implementing the notion
of an approximate symmetry are the assumptions
of perturbation theory.

If one further assumes, as did Gell-Mann in the
development of these ideas, ! that the generators
of the symmetry group can be identified with the
charges of the currents measured in weak and
electromagnetic interactions, then the results of
current algebra® follow as a consequence of ap-
proximate symmetry. From this point of view the
weak and electromagnetic interactions simply act
as probes of the hadron symmetries and the struc-
ture of hadronic symmetry breaking.

As has already been emphasized by many people,
the idea of an approximate hadron symmetry must
be altered if the recently developed gauge theories
of weak and electromagnetic interactions are
correct. If the gauge theories are to be renormal-
izable in perturbation theory, they require that H
possess an exact local (in general, non-Abelian)

joo

symmetry. Symmetry breaking is manifest in the
states without the necessity of massless Goldstone
bosons according to the Higgs mechanism.

There are at least two extreme positions one can
take in the confrontation of gauge theories with the
older ideas of current algebra. The gauge-theory
revolutionist would maintain that little of the older
ideas will remain and that nothing less than a uni-
fied world of hadrons and leptons will do. Perhaps
even class distinctions between hadrons and leptons
will be lost. The gauge-theory conservative,
alternately, is dedicated to a program of reconcil-
iation. The symmetries of the hadrons and the
dynamics are a world in their own right and the
weak interactions basically are a small pertur-
bation, both conceptually and in fact, on the hadron
dynamics. The weak interactions continue to func-
tion as a probe (as we conventionally have thought
of them), and the hadron world may ignore the
complications of the weak interactions.

This paper is predicated on the hope that some
meaning will continue to be attached to the idea
of an approximate hadron symmetry. Many of the
ideas developed here can be taken over to a suit-
able, future gauge theory involving hadrons. It
could turn out that the pion mass squared is
proportional to the fine-structure constant, * so
that isospin and chiral breaking are not indepen-
dent. Then the methods presented here would
have to be modified but the essential features will
remain unaltered. If it turns out that p,*~a, then
there exists the interesting possibility that matrix
elements can behave like a lna as a-0.
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Most of this paper will be devoted to a study of
perturbations about chiral SU(2)XSU(2) realized
by Nambu -Goldstone bosons (the ground -state
pion). The role of the pion, as a ground-state
meson, was originally emphasized by Nambu.® On
this basis the success of the Goldberger -Treiman
formula could be understood as a consequence of
partial conservation of axial-vector current
(PCAC). However, it was not clear how the
approximate SU(2)XSU(2) symmetry of the
Hamiltonian was compatible with the observed
approximate SU(3) symmetry of the hadron
spectrum.

The reconciliation of these symmetries was
given by Glashow and Weinberg® and Gell -Mann,
Oakes, and Renner.” They observed that the
underlying symmetry might be SU(3) xSU(3), with
an SU(3)-symmetric ground state. The Goldstone
theorem required an octet of ground -state mesons
which were identified with the n, K, and 5. If the
Hamiltonian symmetry was broken by an explicit
term which preserved the SU(2)xSU(2) subgroup,
then the pion would remain massless and the
SU(3) degeneracy of supermultiplets would be
broken in the usual way. The SU(2)XSU(2)
symmetry could then be further explicitly broken
to SU(2) or U(1).

Dashen, and Dashen and Weinstein® especially
stressed the fact that the results of chirality and
current algebra could be understood as a per-
turbation theory about the chiral limit. The suc-
cess of current algebra on either the SU(2)xSU(2)
or SU(3)xSU(3) level could be seen to rest on the
effective convergence of a perturbation expansion
in the symmetry breaking parameter.

Subsequently it was pointed out® that for a chiral
symmetry realized by Goldstone bosons the S
matrix and matrix elements of currents would
not be analytic for small values of the pertur-
bation parameter. This was because the Gold-
stone theorem entails the existence of massless
bosons to realize the symmetry, and they give
rise to long-range forces which destroy the
analyticity of the perturbation expansion near the
origin. It was pointed out in this series of papers
that if one had a chiral symmetry, then, in gen-
eral, one expects the S matrix to exist in the
symmetry limit. The nonanalytic character of the
perturbation expansion only influenced the usual
assumption of how this limit is approached, not
its existence. Hence the current-algebra low-
energy theorems for S matrix elements are
unaffected.

In general, if one does not have a chiral sym-
metry, then cne does not expect the S matrix to
exist in the massless-pion limit. Evidently more
than the usual assumptions of S-matrix theory are

required to establish the existence of this limit as
discussed by Dashen and Gross.!® Conversely, if
one assumes the existence of the S matrix in the
massless-pion limit, then this assumption con-
tains much of the content of chirality. That the

S matrix exists in the chiral limit is a consequence
of the Adler zero and the p-wave coupling of pions.
Amplitudes, rather than diverging like 1/u,* or
Iny,® as W,>~0, approach finite limits.

In general one finds that the S matrix approaches
the chiral limit nonanalytically to leading order.
However, at the current-algebra points (and, in
general, only at such points) for which we have
exact theorems in the chiral limit, the correc-
tions are evidently analytic to leading order.!

For example, the corrections to the Adler-
Weisberger relation, expressed as a low-energy
theorem, are analytic to leading order in

W3=(pion mass).? This is true providing we ex-
press the theorem using the physical pion decay
constant and g4, not their values in the chiral-
symmetric world. This will be elaborated in

Sec. IIE. In this paper we will discuss in detail
these features of nonanalytic behavior and their
influence on symmetry breaking. We find that
when the corrections are nonanalytic and dictated by
the chiral symmetry itself, then this leading order
correction can be calculated exactly and perhaps
be expected to dominate the corrections to the
symmetric world.'?

The corrections to the chiral limit that are
analytic in the perturbation parameter are not
easily estimated. Here one must make neces-
sarily dynamical assumptions in order to obtain an
estimate. For example the corrections to the
Goldberger -Treiman relation are analytic to lead-
ing order.® It has been suggested by Michael, '3
and Pagels and Zepeda® that the observed 8%
corrections are due to a heavy.pion, the 7’. The
7’ as a source of corrections to PCAC has been
recently applied by Drell* in a study of the
m°—2y anomaly. Also, Bég and Zepeda® have
pointed out that for nucleon- and pion-charge radii
the nonleading terms must be important; in partic-
ular, the p resonance must play a role.

Without considering such infrared effects coming
from loops Carruthers and Haymaker'® in a series
of interesting papers pointed to a second diffi-
culty in the chiral perturbation theory present
even in the tree approximation. In the Z model if
one solves the potential minimization problem for
the vacuum values of the scalar fields (0)0=F(€),
then F(€) as a function of the explicit symmetry
breaking parameter € can have a very small
radius of convergence, perhaps smaller than the
physical value of €. The reason for this is that
the potential function has several minima for
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fixed values of the constants in the symmetric
Hamiltonian and €. (o), is determined by the
global minimum. However, as one changes € the
global minimum changes, in fact it can jump from
one local minimum to another. Thus, one cannot
do perturbation theory if the minimum is too
shallow.'®

While such an effect can take place it is difficult
to apply to specific problems. The reason is that
such behavior depends crucially on the structure
of the symmetric Hamiltonian and the potential,
and hence is very model-dependent. It would be of
interest to try to extract some model -independent
conclusions from this effect so we would know
when to expect trouble.

This paper develops the general perturbation
theory about a chiral symmetry. We restrict
ourselves to the case where the symmetry break-
ing interactions are local. It is possible to ex-
tend these considerations to effectively nonlocal
interactions due to currents as we do in the fol-
lowing article.”

Even for a local interaction our study involves
a nontrivial extension of the usual perturbation
theory because of the fact that masses are vanish-
ing in the symmetry limit and because of the de-
pendence of amplitudes on the external mass.
This feature, while it makes for the interesting
and physically relevant aspect of chiral symme-
tries also makes the perturbation theory more
complicated. It is the purpose of this paper to
examine these complications in detail. Through-
out this work we are motivated more by the desire
to develop a technique for doing practical calcu-
lations than considerations of axiomatic rigor.
Hence we will assume the usual analytic structure
of amplitudes in the kinematic variables.

We consider perturbation theory in a parameter
€; as € vanishes so do the masses of the Goldstone
bosons. In general, amplitudes depend on € in
four ways: (a) through the unrenormalized
Green’s functions, (b) through renormalization,
(c) through Klein-Gordon operators O+u2, and
(d) through mass-shell constraints. All these
delicate questions are examined here. Although
we develop our formalism for SU(2)xSU(2) it can
be extended to SU(3)xXSU(3), where we have made
applications to Dashen’s sum rule® p ;0% —pi,+?
=pgo —Hgl.

The principal results of this paper are as
follows:

(i) We give a general formalism and exact ex-
pressions [Egs. (2.11), (2.44), (2.51), and (2.53)]
for calculating the derivatives with respect to €
of on- and off-shell Green’s functions, scattering
amplitudes, and matrix elements of currents.

(ii) We have a set of simplified rules for ex-

tracting the leading nonanalytic behavior of these
quantities in the chiral limit €¢-0. All leading
nonanalytic behavior is systematically isolated
and classified. These rules are given at the end
of Sec.IID.

(iii) The S matrix, in general, exists in the
chiral limit at nonexceptional momenta. There
are no terms like In€ or €7'/? that diverge.

(iv) The S matrix, in general, approaches the
chiral limit in a nonanalytic fashion like €ln€ or
even €ln®e for nonexceptional momenta.

(v) For the exceptional momenta, correspond-
ing precisely to current-algebra points for which
one can prove low-energy theorems, we have
found, from the examples studied, that the cor-
rections to these theorems are analytic to leading
order. What we find is that at the current -algebra
point all the nonanalytic behavior of the correc-
tion can be absorbed into the renormalization of
the parameters, like f,, due to the symmetry
breaking interactions.

(vi) Matrix elements of operators, not cor-
responding toS -matrix elements, and at excep-
tional momenta can diverge in the chiral limit
like €™* or €72,

(vii) A possible candidate for a dimensionless
parameter to characterize SU(2)XSU(2) pertur-
bations is u2/32n%f,2~0.006, which is a ubiquitous
factor in our calculations. For example, a re-
sult of theoretical interest is the renormal-
ization of the pion-decay constant,

Foli?) _ 1- 22
f+(0) 327%f,

which for In4u?=~2 is a 24% renormalization.

(viii) While perturbation theory about
SU(2)xSU(2) is excellent, perturbations about
SU(3)xSU(3) symmetry are marginal. The
attitude we take towards perturbation theory is to
calculate the perturbation; if it is a small cor-
rection to the leading terms, then we would say it
works, if it is comparable to the leading term,
then it fails. While we know of no failure for
SU(2)xSU(2), we do for SU(3)xSU(3).}” We know
of no general criterion for when perturbation
theory fails for SU(3)XSU(3); all one can do is to
calculate the perturbation, which in some cases
is small and others not.

The plan of this article is as follows: In Sec. I
we develop our general technique for perturbative
expansions about an SU(2)XSU(2) chiral symmetry
for pion amplitudes. The general formula for
Green’s functions and amplitudes is given. In
particular we illustrate these techniques for the
m-7 scattering amplitude. The nonanalytic char-
acter of these expansions is explicitly examined.
In Sec. III we discuss the extension of these

In4p.2 +0(u3),
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methods to SU(3) XxSU(3). Finally, in Sec. IV, we
discuss the properties of Green’s functions in-
cluding baryons as we approach the chiral limit.
In the second paper’” we will consider the de-
pendence of the electromagnetic mass shifts of
mesons on the chiral -symmetry-breaking
parameter.

II. PERTURBATION OF PION AMPLITUDES
AROUND SU(2) XSU(2)

In this chapter we will derive and illustrate a
general formula for the derivatives of Green’s
functions, mairix elements of operators, and
scattering amplitudes with respect to a sym-
metry-breaking parameter. We use this result
to locate and calculate the leading nonanalytic
terms in these quantities. The basic formulas
are true for any symmetry, but in this section
we will restrict ourselves to SU(2)xSU(2). For
SU(2) xSU(2) the symmetry-breaking parameter
is essentially 2, the square of the pion mass.

We will begin with a review of broken SU(2)
x8U(2). Then we will show how to compute the
derivative of a Green’s function with respect to
1%, including the effects of renormalization.
After illustrating these techniques by calculating
the leading-order deviation of the pion decay
constant from its SU(2) xSU(2) symmetric value,
we will move on to a discussion of symmetry-
breaking effects in full matrix elements and
scattering amplitudes. These quantities are
complicated in that not only the internal dynamics,
but also the masses of the external particles
depend on the symmetry breaking. Hence, we
will first give a heuristic discussion of the de-
pendence of amplitudes on the external masses.
As a by-product of this discussion we indicate
how to compute the leading corrections to off-
mass-shell (PCAC) calculations. We then derive
our formula for the total variation of an ampli-
tude or matrix element with respect to u2 and
use this to systematically classify all of the
different sources of nonanalytic behavior. As
an example, we will consider the behavior of
the 77 amplitude at fixed s and ¢ as a function of
u?, A(s, t; u?. We show that, in general,

A(s, t; u®) =A(s, £;0) +G(s, t)ulnu? +0(u?). How-
ever, as s and {—0, Weinberg’s expansion'® is
still valid; the p’lnp? term af threshold merely
represents the renormalization of the pion-decay
constant by the symmetry-breaking interaction.

We conclude this section by arguing that an
appropriate dimensionless parameter to mea-
sure the strength of explicit, SU(2)xSU(2) break-
ing is p2/(32n%f,%)~ 0.006, indicating that SU(2)
XSU(2) is a very good symmetry of the Hamilton~

|

ian. Typically, this small number gets multi-
plied by factors of 2 or 4 times In4u®~2, sug-
gesting that chiral SU(2) xSU(2) breaking is a
good symmetry to 5-10%.

A. Review of Broken SU(2) X SU(2)

We assume that the strong-interaction Ham-
iltonian H is approximately invariant under an
SU(2) xSU(2) group generated by the vector and
axial-vector charges F; and °F;, i=1,2,3. We
denote the corresponding vector and axial-vector
currents by V¥ (x) and A¥ (x). The full Hamilton-
ian density is H=H,+¢%°, where H is SU(2)

X SU(2)-symmetric and ¢° is an unrenormalized
scalar field. In this paper we always assume that
0° and the unrenormalized pion field ¢?, i=1,2,3
transform according to the (3, 3) representation,
defined by the equal-time commutation relations

[F*, 9] =i€;;, 93
[F?,0°]=0

F, 49]= 0,00

[SF" 0’0] :_i(l)? N

(2.1)

The Celbsch-Gordan coefficients in our ex-
pansions around the €°=0 limit will therefore be
model-dependent; the general analysis of the
nature and origin of the singularities is repre-
sentation-independent, however.

We assume that as €°—~ 0 the symmetry is re-
alized in the Nambu-Goldstone sense®: The vac-

uum |0) possesses only SU(2) symmetry. Hence,

the spectrum of physical states is only SU(2)
symmetric, ¢° possesses a nonzero vacuum ex-
pectation value, and there are three Goldstone
bosons (massless pions). For small but nonzero
€%, the pions acquire a mass p. That p? is very
small compared to other hadronic masses is the
principal rationale for an approximate SU(2) xSU(2)
Goldstone symmetry. Using our assumed Ham-
iltonian and commutation relations (2.1), we

have

8,V4(0) =i[€°%°(0), F']
=0

8, A%(0) =i[€%°(0), °F']
=-e%¢%(0) .

We define a renormalized pion field ¢; =7,z 23
Z, is chosen so that {0]¢;(0)|j) = §;;, where [j)
is a physical pion state!® and |0) is the physical
vacuum.

The pion decay constant f,, defined by

(2.2)

(0]ak (0)j) =if K 8s; (2.3)
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is experimentally 95 MeV. Comparing Eq. (2.3)
with (2.2) we see that

—g#,-z , (2.4)

Since there is no stable ¢ particle, we are free
to renormalize ¢° at our convenience. We define
a renormalized o field and a renormalized € as
0=2,"20¢° and € =Z,'/2%€°= —f,u2. Then €%°=¢€c
and (0, @) still transforms under (3, 3) repre-
sentation. Of course, the renormalization con-
stant Z, itself depends on €.

The renormalized pion propagator is

iA,(K? €) zf a*x e’ *(0[T (¢;(x) ,(0))|0)

_zbu[K 1#2 + Ay (KF, e)]

- (2.5)
A (K2, e)Ef ip(s €)
9"2 Kz__s ’ ’

where T represents a time ordering. We have
explicitly indicated the dependence of A,;, the
spectral function p, and the continuum integral

A, on €. The unrenormalized propagator is

A (K2, €)=ing (K2, €)Z,.

Now, by considering

0=lim K, | a*xe!®" *(0|T(% (x)g, (O] O

Ku—>0

and using the commutation relations (2.1), it
is simple to show that

(O =rs(e) [1447 fp "2 p6s,0) (2:6)

where we have displayed the dependence of f; on
€ and where ( ), represents a vacuum expectation
value. In the € -0 limit, p is well behaved

{o(s, 0) ©¢,8s/[3(87)*f+*], Pagels and Zepeda®},
so that the spectral integral is finite. Hence,

(o) ole =0)=£,(0) . (2.7)

We can regard € and f,(0) as the fundamental
parameters of the theory: € measures the ex-
plicit chiral-symmetry breaking and f,(0) the
spontaneous (vacuum) symmetry breaking. The
pion mass is related by € = —f,(e)u®. We shall
see that f;(¢) =f,(0) +O(e ln€), so that

€=~—fr(0)uZ+0(e?1ne) . (2.8)

Equation (2.8) is just Goldstone’s theorem: as
€ -0 either the vacuum is symmetric [f,(0) =0]
or there are Goldstone bosons (u2=0).

Of course, instead of taking € and f,(0) as the
independent parameters, we can regard pu? and
fx(0) or 12 and f,(€) as independent.

B. Perturbation of Green’s Functions

In this section we consider the dependence of
a Green’s function

G(xl, ""xm;yl’ .. "yk’e)
E<OIT(¢1("1)' P (xm)Al(yl)' <A, (yk ))'0)

on the parameter €. Here, the A’s are any local
operators, such as currents or other fields.

It is convenient to work with the unrenormal-
ized functions G°=Z,™/2G ( of course, if the A
operators are renormalized, G must be multi-
plied by their renormalization constants, also).
In analogy with the standard interaction picture
we may define a symmetry-breaking picture for
G°:

o= O|T(H-- - $2A o+ Ay exp(-ifd*z %6°(2)]) |0)
(6|7 (exp] - 1fd426°5°(2)])|0) ’

(2.9)

where ¢°, 6°, and A are unrenormalized op-
erators, dressed with respect to the chiral-
symmetric interactions, but bare in the sym-
metry-breaking intereactions. Similarly, |0)
is the symmetric vacuum. In (2.9) the entire
€° dependence is in the exponentials.

Taking dG°/de® and reexpressing the result in
terms of fully dressed fields, we find

0
20 =i | a2 [OIT( -+ 2,1+ A (IO

. -G%0]0°(2)|0)]
—-zf d*zG%(z);

(2.10)

G%(z) is connected with respect to the o field
and has the same type of connected structure in
the other fields as the original Green’s function.
Finally, the derivative of the renormalized
function is
1 m dZ, 1/2
——,_de -—ZdeG (Z) "?——G,
(2.11)

with G ,=Z,~™+1V/2G%_ If the A operators must
be renormalized, the modification is obvious.

As a first application consider (o'°>0, which by
way of (2.6) equals Z,'/2(e)f,(e)[1+0(e)]. Then,
using Eq. (2.10)

L (PO ==i | a KO T@(A 0N
(2.12)

This quantity diverges in the chival limit, re-
flecting the nonanalytic behavior in €. To see
this, write a dispersion relation or spectral
representation for (2.12):
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de o<0> —-—(2”)3_]. ds
XY 5 P-P)|(n[c°(0)|0)]7,  (2.13)

where P=(Vs, 0). The two-pion contribution
(Fig. 1) to (2.13) is

Ly [ (.s_—_‘iﬁ)‘”|<cd1o°(0)|0>lz,

322 cd=1 "2 S S
(2.14)

where we have utilized the s-wave nature of
the matrix element. Now {cd|0°(0)|0) remains
finite as s and €~ 0, so the integral diverges
logarithmically at the lower limit as ¢~ 0. We
see that

3

Z Kcalo®(0)|0) |2

0 —
de °<">°_; 3?1'

+0O(constant), (2.15)

where A is an arbitrary cutoff (such as m ? or
4m,?). Changing A merely changes the
O(constant) contributions to (2.15).

The matrix element {cd|o’ is to be eval-
uated at s=0 and €=0. According to our view that
threshold values of amplitudes in the chiral
limit can be calculated via PCAC, we have
(cd|o®(0)| 0) = =b6., Z,*/?/fy; hence,

1 d -3In(A /4p>
Z, dé® ' ")e—-_:; —gg;(?fﬁﬁ")‘ +0O(constant),
(2.16)
or
Z M) (e) -1 3eln(A/4p2)
Zﬁl/z(O)fﬂ(O)— - 32172f,,3
=14 3u? ln(zA/4!l_, + 0(e).
Els (2.17)

The pion-decay constant on the right-hand side
can be evaluated either at € =0 or its physical
value.

We will see in Sec. II C that

Z,,l/z(e) ~

b A :
—7__—2,,1 %0) " 1+ 33777 ln4u2 +0(e), (2.18)

d

FIG. 1. Two-pion contribution to —4Jd% (0| T( &)
x %(0))] 0).

so that

fale) _ 2u* A
7000 " 1+ 32777 In 2 +0(e). (2.19)

The physical value of :2,;2/32112]},2 is 0.012, and
the logarithm is about 2 for Azmp2 and 3.8 for
A=4m?; hence, the leading-order renovmal-
ization of f, by the symmetry-bveaking inter -
action is only 2-4%.

As a second application, important for later
work, consider the renormalized propagator

(2.5). Then, since K* is an arbitrary four-

~ vector independent of €, we have

E) Ll -unin, & o)

1 du? .
== z'a}‘:'o“(Kz"#z)lAu(sz €)
k1

"'i(Kz—'].LZ)Z J‘ d4zd4x el'KO x

X{0|T (¢, (%) p;(0)a(2)) |0)

2 dz,\/? 2
7 dZo (Kz—ﬂz)aZAu(sz €)
™
. 1 d
”5‘1(1{2'“2)‘2—'175 ae0 [(K2-p?)Aq(K3, €)],
(2.20)

where the second form comes from differentiating
the spectral representation (2.5). Rearranging
(2.20) we have

[ atx dty K K2 p 0| T(9,(3) 9, (o(OD)] O

(Kz—uz)

“ 25 az "
1 2 Tl’ d€

. }ﬁ;— (K= u)? 2551 ZeA(K?, )],
(2.21)

Defining the off-shell amplitude {i|o(0)]j)
=6,F(K,; % K, ?, t=(K;~K,)?), we have the exact
results

1 odp?_ 1 _4_(2,,1/28)
Z_WW de® Zﬂl/z de‘o IA
=F(u? p?0), (2.22)
and -
2 az,'? 2 g
Z, de® dKzF(K K K% a2

— . 2 2
szQF(K w2, 0)

2

=u2e (2.23)

1t is (2.23) that will allow us to calculate Z,'/%(¢)/
VA 1/2(0)

K
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FIG. 2. The dispersion relation for T'(K 2, €).

We briefly mention two other well-known exact
formulas for p2:

p=€F(0, u? u?), (2.24)
from PCAC, and

2E26ij =(i|H,(0) | 'Ki 2=Kj2=p2 =0 +eF(u?, p?, 0) Bis5

H

(2.25)

the standard mass formula [{¢|H,(0)|j) vanishes
in the chiral limit, but the physical states have
symmetry breaking built into them]. Comparing
(2.23) with (2.24) and (2.25), we see that

L]

g (20

Zy de® \ fr
is simply related to F(u?, u? 0)=F(0, u?, u?), or
alternately to (i|H,(0)]j). In fact, using the ex-

pressions (2.18) and (2.19) for Z,'/%(€) and f,(¢),
we have, for pions at rest,

. ) win(A /4u3)
—;1.25” +<l’ Ho(0)|]> =8y W‘ + 0(€é?).
=0.02u%5;;, (2.26)

where —u?56,; is a kinematic factor.

C. Off-Mass-Shell Effects

A scattering amplitude or on-shell matrix
element depends on € in four ways: (i) through
the unrenormalized Green’s function, (ii) through
the renormalization constants, (iii) through the
Klein-Gordon operators O+ u2 and (iv) through
the mass-shell constraints.

We can separate out the last dependence as .
follows: Suppose we have an invariant off-mass-
shell amplitude or matrix element 7(s,, ..., s,;
K,% ...,K,%;€), which depends on the independent
kinematic invariants s,,...,s,, the mass-
squared values K%, ..., K,? of the m external
particles, and €. The off-shell extrapolation can
J

o d 2
T(K;? €)=T(u? €)—(K;?=p?)(2m)* f . qz_qK z
o i
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be defined via PCAC or by the field theory (we
will assume these are equivalent). Then the
derivative with respect to €° of the on-mass-
shell amplitude is

14
Z.77 g Tu-eossespy o u¥e)

1 d 1 du® d
|z e X 7o i ]
Jj=1

XT(Sy,vvy 8,3 K5 . o K25 €),
(2.27)

evaluated at K,>=K,?=+++=K, 2= u2 In taking

the derivatives, s, ..., s, are held fixed but

other dependent invariants vary with the K ’s.

For example, in 7-7 scattering we can fix s

and ¢; then u = —s—t+3K,;? and the K;* deriv-

atives of T include the dependence of T on u.

We define the quantity 7,(s,, ..., s,;
K2 ...,K? ...,K,%¢€) by

T(K?, €)=T(u? €) +(K;2-p®)T, (K5 €), (2.28)

where we have suppressed the dependence on

Sy, ***, s, and the other K? values. Now clearly
T(K,? €) and T,(K? €) are analytic functions of
K;? for small values of K;? (perhaps up to 9u?),
unless T is a matrix element involving operators
that can act on external pion legs producing poles
in K;*. In this section we assume that any such
pieces have been subtracted out (see the summary
at the end of this section). Then we are interested
in the following question: If we expand T(K,? €)
as a power series in K;?, how singular in € are
the coefficients?

To answer this question we will write separate
dispersion relations for T(K,? €) in terms of the
invariant masses of each channel (the sz channel,
each two-particle channel, etc.), and look for
divergences at the threshold of each integral as
€ - 0. Although any one dispersion relation will
by itself represent T, the different dispersion
integrals will single out for special attention
different relevant classes of Feynman diagrams
(in field-theoretic language) or Cutkosky diagrams
(in S -matrix language). The fofal singularity is
therefore the sum of the singularities in these
different integrals. Of course we must always be
careful to avoid double counting any given class
of diagrams.

First we will consider the K,2 channel (Fig. 2):

{ZG‘*(q—p,,)(Olqb,(O) [ (n]a)} + (u-channel terms). (2.29)

We have singled out the pion pole. By u-channel terms we mean the contribution of cuts in the dependent
channel invariants (such as « in 7-7 scattering) which vary with K% |a) represents the rest of the original
matrix element. In an expression like (n|a) we always imply that ¢ factor i(21)*6*(Z) has been removed.
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The possible need for subtractions in (2.29) is irrelevant for our purposes. By choosing large values for
the subtraction points the behavior of the subtracted integrand at threshold will be the same as (2.29).
Any singularities in the subtraction constants will be due to cuts in other channels and will be picked up

separately later.

The integral in (2.29) begins with the three-pion cut, but the matrix elements in the integrand them-
selves contain pion poles (they are not single-particle irreducible in field-theory language). A more use-
ful expression is obtained by replacing {0|¢,(0) |2} and (n|@) by the corresponding irreducible matrix ele-
ments and multiplying the whole right-hand side of (2.29) by (K,*~u?)A(K,? €). Then we can separate out

T,(K,? €) [see equation (2.28)] to obtain

T;(K}% €) = D.(K,2, €)T(p?, e)—{[l +(K 2~ u?)Aal(K,2, e)](21r)3f . qz-fIK 3 2 6%(g—-p,)0]¢,(0) |n>,(n]a),}
o j n
+ (u-channel terms), (2.30)
where I means single-pion irreducible. The first term in (2.30) is a universal correction
- 2 2 2_gr2

A(KP, €)T(u% e) ~ 2T (", G)KZ’ 12“£A/(9“ )] + O (constant) +O(e In€) , (2.31)

€0 3(327%f,2)

szsmall

where we have used the result®?°

(s, €) ~ _8s
p ’ €0 3(877)4f1r4 .

s =0

(2.32)

The s is essentially three-pion phase space in the
chiral limit (z-pion phase space is proportional to
s" —2).

Similarly, the three-pion contribution to the
continuum integral will yield terms K,*In[A/
(9u%-K,*)]ifandonly if (37|a), — constant.

Putting everything together we see that the
class of diagrams illustrated in Fig. 2 (cuts in
the K,? channel) contribute to T(K?, €) as

A
2 _\_m(,2 2_ 2 2
T(K?, €)= T(u?, €) {1+(K, M )[CK, g7

+D+Eeln€+~--]} .

(2.33)
These corrections are fairly harmless in practice
[T(0, €) =T(u?, €) +O(€)] but they illustrate our
contention that although T(K/? €) is analytic in
K;? for small K,? the coefficients of a power
series expansion in K,2 are very singular in €;
hence, the successive terms in a power series
expansion of T(K,? €) around K,?>=0, evaluated
at K;>=pu® are not of higher and higher order in
€. This may be part of the explanation of the
paradox?! that the K~ 27 rate is much higher
than SU(3)xSU(3) arguments seem to indicate
(see Sec. III).

Now consider the cuts in other channels. Chan-
nels with a two-pion cut can give far more sing-
gular contributions to T (K,"’, €) because two-body
phase space is constant when p?=0. Of course,

r
these singularities are, in principle, included in
(2.29) ; they do not show up explicitly, however,
but are hidden within the matrix elements of the
integrand, in the u-channel terms, or in possible
subtraction terms.

Suppose we divide the particles and operators
in T into two sets: 8, which includes j plus other
operators B, and . We call the invariant-mass
squared of the B channel sg (which may be one of
$,*** s, or may be dependent). Then (see Fig. 3),

“ d
T(Kp?, SB;€)=(2v)f STZ;E 8P =P )(~K 2+ p?)
So r

x(p’| ¢;(0) |n)nlay .
(2.34)

We ignore cross-channel cuts because they too
will be singled out as we run over all g’. If the
two-pion state is allowed in (2.34) and if (27|a)
goes to a constant as s and € go to zero, then
for small sg Eq. (2.34) will contain terms of the
form K,?In[A/(4u®-sg)], the coefficient of which
we can calculate. Then, if sg is an independent
variable,

T(K}?, €)= T(u? €)

+ (sz_ﬂz) ,:c ln-—-—zA:;; + O(constant)].

4p
(2.35)

The singular part of T,;(K,?) is independent of X,2.
If sg is a dependent variable,

A

4”‘2—38(1{,-_2). (2.36)

T;(K;? €)=1n

This is the most singular}behavior possible;
dT,;/dK;* may divevge as 1/u>. '



(K=

FIG. 3. The contribution of the 8 channel to T'(K jz, €).

If (27|a) in (2.34) vanishes, there will still
be logarithms in dT(K,?, sg, €)/dsg. Thatis, T
may contain terms like (K,2~p2)sgln[A /(4% sp)].
These may be calculated by writing a dispersion
relation for dT/dsg.

As a very important example, suppose T is
the matrix element of a scalar operator A be-
tween single-pion states:

T(K?, K5 t=(K, -K,); €)=(i|A(0)]) . (2.37)

Then the cuts in the K;* and K,? channels [Figs.
4(a), 4(b)] are harmless [(2.33)], yielding, for
example,

d_lf—z T(K;?, u?, 0; ¢ =constant + O(e lne).  (2.38)
i

The two-pion contribution [ Fig. 4(c)] to the ¢-
channel integral is, however,

1 K (- .
T 2o, S o7 (KRl O ed) GahO)0),
(2.39)

where we have already set the phase space equal
to a constant and done the angular integral (4 is
a scalar). But at threshold in the chiral limit,
the symmetrized amplitude for # = cd is™®

(—sz +N2)<it ¢’j(0) ICd)
1
= f—i [36{1’ ch + %(510 do + aid 6jc)(Ki2 +K12-s)] ’
L1

(2.40)

from which we easily compute

d d
dK‘z T(Kizy “2’ t; E) = a‘i{?z' T(“’zy sz7 t; 6)

A
= 537777 In ey 700, 0,0, 0)

+0(constant). (2.41)

Hence, at t=0, the ervors in the extvapolation
of these matrix elements to K? =0 ave of ovder
wilnp?, instead of just u®, and can be computed
exactly.

We saw in (2.23) that with {i|¢(0)[j)
=6,,F(K;? K%, t;€), there is an exact result
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() 2 NS T \K
A

FIG. 4. Cuts in (i |A(0)]7): (a) cuts inK,?, (b) cuts
inK /2, (c) cuts in ¢.

1 dz,'* 4

Zy  de® dK

1

F(K‘Z, #21 0; €)

Ki= pz

But by PCAC, F(0,0,0;0)=~1/f,, so from Eq.
(2.41):

1 dz,\/? -1

A
Z, T = W ln‘IF+ O(constant), (2.42)

which is the result we quoted in (2.18).

In summary:

(1) If the invariant matrix element T contains
pion poles due to an operator acting on an ex-
ternal-pion leg, separate out these poles via a
dispersion relation. The K,? dependence of the
pole residue is then studied in the same way as
any other matrix element. If the invariant mass
of the pole channel is a dependent variable, the
K;? dependence of the pole denominator is ex-
plicit.

(2) The derivative dT/dK,? evaluated on the
mass shell is T;(u? €). If T contains any channel
B—a (where B includes j) which has small or
zero invariant mass sg and which supports a two-
pion cut, then T; will have singularities of the
form In[A /(4p? - sg)] if and only if T(a~ 27) and
dT(3—2w)/dK,? remain finite at threshold. These
are given by (2.34) and (2.41) and lead to errors
of order p?Inu? in off-shell extrapolations.

(3) If T(a — 27) vanishes, T, may still have
singularities sgln[A/(4u2 —sg)]. Strictly speaking,
these terms are not singular at € =0 for fixed
sg. Three-pion cuts in the 8= @ channel could
also yield singularities of this form.

D. Perturbation of Amplitudes and Matrix Elements

We now have available all the machinery needed
to study the dependence of both on- and off-shell
matrix elements and scattering amplitudes on e.

Suppose we have an invariant matrix element
T(Sy +v-,8,3K52 ..., K,3% €) defined in terms of
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the renormalized Green’s function
G(xy* 2 X 3 91 ** Vg3 €)
=Zo(€) ™ XO|T(¢3 "+ + pA,* *Ag)|O)

(the A’s are local operators) by
m
T(syo>e s, K% 0 Ky ® €)= Hl:l fd"x,e'”‘i"!
i=1
x (DJ + uz)jl G)

(2.42?)

where we have taken all momenta as incoming.
We imply a Fourier transform of y,««+ y; in (2.43)
so that the A operators carry momenta 7, + -7y,
which do not satisfy any mass-shell constraint;
in addition, a factor #(27)*6*(} K, +3,7,) is re-
moved. We suppress these factors for notational
simplicity. We illustrate T in Fig. 5.

The first case to consider is that in which the
K,? are fixed and off the mass shell. Then, using
(2.11) we can differentiate T to obtain

L 1 du? 1
*2 (Z,,”z ae® K7+

1 dz 1/2
- Z_-—Zi:T_> T, (2.44)
m

where T ,(2) is just (2.43), only with G replaced
by G,(2)={0|T(¢,*** A, +** Axo(2))|0),. The
pole terms in (2.44) come from differentiating
the Klein-Gordon operators. If the A operator

—J

1 d
2-"—1/5 d? T(sy, -

i=1

X T(s,, .

Now, T(Sy, -evy Sp3 2 oo, K2 oo, w2y €)=T(u? €)
+(K;2=p?T,(K,? €) in the notation of Sec. III C.
Hence, .
1 d 2 T(p? €)
(-K,zm2 * dK,2> T ’E)K,hua -K7?+u?
+O(K;2-p?) .
(2.47)

The pole will be canceled by a pole coming from

FIG. 5. The matrix element T'(sy, ..., s,; K2, ..., K%

€).

must be renormalized, derivatives of their Z’s
should be added to (2.44). Hence, the differenti-
ation of T involves the insertion of zero-energy

o on every line and vertex in T, plus the addition
of some additional counterterms associated with
the external lines. When all the K;? are zero, the
counterterms are (using u?=-€,Z,Y2/f,)

-m [ 1 1 d
-}:—- (F-%'Z—,—rvig{—g) T(sl,...,s,;O,...,O;e).
m

(2.45)

This has the effect of canceling the insertions
on external'lines and adding a term —(1/f,)dfy/de°
for each external leg (these terms are expected
because f, defines how the off-shell extrapolation
was done). We will give a simple application of
(2.45) in Appendix A.

Let us now examine the on-mass-shell case.
All we have to do is apply Eq. (2.27), which means
add derivatives of T with respect to K, to (2.44)
and evaluate at K,?=p?:

..,s,;uz,...,uz;e)={ -ifd“zTo(sl,...,s,;Klz,...,K,,,z;e;z)

1 dz,'? 1 d,ﬁ( 1 d )]

+Z [—Z_,, de®

7,73 \ZK,+p® T dK;?

..,s,;Klz,...,Kﬁ;e)s (2.46)

Klzsoo '=Km2=u2

-
a o insertion on the external leg.

In order to study the g-insertion term, consider
the more general quantity (Fig. 6)

T (=i [ a2 T (), (2.48)

which is an invariant function of s,,...,s,,

K2 ..., K2 &% (g+K)% (¢+K+K)? ..., and
€. Of course, the kinematic variables are not
all independent. In complete analogy with our
study of the singularities of T,(K,?, €) in Sec. IIC,
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FIG. 6. The matrix element 7' ;(g).

we will write dispersion relations for -iT,(0) in
each channel [¢% (g +K;)? etc.], putting the ¢
and A fields on equal footing with the external
particles for the purpose of defining a channel.
Although each dispersion integral will by itself
represent —iT (0), the divergences coming from
the lower limit of each integral as € — 0 will be
due to the independent classes of Feynman or
Cutkosky diagrams associated with cuts in that
channel. The various singularities must there-
fore be added to yield the singular behavior of
-iT, as €~ 0. We must, of course, be careful
to not double count any type of diagram. As in
Sec. III C, the possible existence of subtractions
is totally irrelevant for our purposes.

We will first consider the (g +K;)? channels
(Fig. 7). The representation is

. 1
-iT,(0) = e F(u? K% 0)T(p?)
i

‘(2'”)3_[” ds

2
lu2 S—U

XY 84P=P,Xa|nXn|o(0)]j), (2.49)

where 6,,F(K? K2, (K;-K,;)*)=(i|o(0)|j) . Notice
that the residue of the pion pole is evaluated at
(g +K,)*=p? while K;? is left at its physical val-
ue. Now, we saw in (2.23) and (2.24) that

1 dp? 1 dz, /2
F(p? K% 0)= Z ;{6&0' + (K’Z*HZ)Z_,, dgo

+ O((K;*~u?)?);
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FIG. 7. A representation of —iT; as a dispersion
relation in the (g.+K;)? channel.

this means that the part of the pion-pole term

in the (g +K;)? channel that survives as K, p?
will exactly cancel the counterterms associated
with j in (2.46) and (2.47). Let us explicitly re-
move these pole pieces from each (q +K‘,)2 channel
in —iT ,(0) and call the remainder —-i75(0) [the
superscript S means § matrix; i.e., we have
defined the poles in (g +K;)? via a dispersion
relation]. Then

m
. . 1
-iT, = —ZT§+ E EJZT[.L—Z_F(;LZ’ sz, O)T(“Z),

i=1

(2.50)
so that
1 d 2 2
Zrm(EBT(Sp---,Sr;u T 3]
==iT5(spy -0y S5 0% .00, u%5€5¢=0),
(2.51)

* which means one must insert a zero-energy o

everywhere in the diagram, but omit those con-
tributions shown in Fig. 7.

This is the most elegant formula possible for
dT/de®, but it is not the most useful. This is
because —iT5(0) is not single-particle irreducible
(in the field-theoretic sense) in the (g +K,)? chan-
nels. The general class of diagrams containing
pion poles is shown in Fig. 8. Therefore, let
us define —iT%(0) (I means irreducible) as -7 ,(0)
minus these diagrams:

T (0) = =iT1(0) =3 [F(K,?, K;%, 0) ity (K T (35 - oy S5 B2 vy Ky - vy p2:6)]
i=1

. = 1 1 du?® 2 dz,'? 1 ap
i3 [ A e+ 2 ] 100+ 2l S e sotsiwn . 2

We see that T! and T§ differ only by terms which are finite at K;?=p?. However, some of these extra
terms are singular in €; the singularities are related to cuts in the (g + K;)? channels and would have been
missed had we worked with —iT5(0). - In terms of —iT(0) we can write
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1 d

Zor d—éoT(sl,...,sr;pz,

+mT(sy, .

1 di?
+Z-1TT,EE5-5£TI-(SI,...

The T! term represents the dependence of the
internal dynamics on €, while } T, is due to the
external mass-shell constraints; the dZ,'/2/de°
counterterm can be thought of as due to the re-
normalization of the strong coupling through
which the external pion hooks itself onto the
diagram.

We can now continue our channel-by-channel
search for Ine singularities in 7. A constant
nuisance is the possibility of the A operators
acting on external-pion legs of amplitudes (both
the T; amplitude itself and the amplitudes that
appear within the dispersion integrals). We will
treat these diagrams separately. Therefore, it
is always implied that these pole diagrams have
been removed from all amplitudes (via dispersion
relations).

The continuum cut in the (g +K,)2 channels of
T! is harmless because of the vanishing of three-
pion phase space.

Now turn to the g*-channel representation for
—iT!(0), which is illustrated in Fig. 9. As should
be clear by now, only the two-pion contribution
to this cut can produce a lne behavior. It is

1 f°° ds s—-4u2>1/2
— I = ey m— —_— —_—
To(o) 32,”2 0421 4ﬂ2 s ( s

x{at|cd) {cd]o(0) |0
A belclad), (2.54)

— s In—
e—o 327%fr  4p® 47

where (a|cd) is evaluated at s=0 and €=0. Of .
course, Cutkosky diagrams such as shown in
Fig. 10 are omitted because we are dealing with

K.

/R

\_/
\__V__—_/H_/
—iHKﬁK;O)

—_—

iA(K?) TI(Kf)

FIG. 8. The pion poles in the (g +K;? channel of
—iT (0).

2. = el .2
s ,€)——1,TO(SI,---,S,.,H LI

.2
ces Spy My .

U e;94=0)

1 dz,/?
2, . s
oy M ’e)Z,,- d€0

VS id ., pPe) . (2.53)

I
-iT.. There is no veason for this matrix ele-
ment to vanish in geneval, so in most cases we
expect

2,
-y 1P €)

=T(syy+.-,8,30,...,0;0)

2
T(Sla"',sr’u 9.

+F(sy, ..., 8,)€lne
+0(e) , (2.55)

the €lne terms coming both from the counter-
terms and from the ¢ channel (and perhaps from
other channels). In certain cases in which T
contains a zero-energy operator, (2.54) will have
to be modified. This is discussed before(2.59).
Now consider other channels. Let 8’ and o
define a channel of invariant mass squared sg,
as shown in Fig. 11. The representation is

ds
5—Sg

©

~iT1(0) = =(27)°

So

x 2 8(P=P,)8'o(0)|n) (nl ).  (2.56)

If the channel has odd G-parity, the integral
(2.56) will contain both a pion pole and a con-
tinuum. The continuum cut, though not single-
particle irreducible, is easily seen to remain
finite as e = 0. The cut can contribute lne sin-
gularities to the slope dT'% /dsg, however.

The pion-pole contribution to (2.56) must be
handled carefully to avoid double counting. It
‘turns out that the sum of the pion-pole pieces
in both the (B’, ) and (a, o) channels of —iT
(shown in Fig. 12) plus the corresponding pion
poles in the counterterms of Eq. (2.53) (here,
the pion poles are defined in the dispersion-
relation sense) yield the contribution

FIG. 9. The g*-channel dispersion relation for —iT,.
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FIG. 10. Cutkosky diagrams omitted from (a|cd)in
Eq. (2.54).

Zlm ﬁo (_(Mn) saiuz <1r|a>> , (2.57)
to (1/Z,'/?)dT/de®. The T-matrix elements in
(2.57) are on the mass shell and are differentiated
just like any other amplitudes. These pion poles
might, for example, appear inthree-pionchannels
or be due to one of the A operators acting on an
external-pion leg.

Now, consider even-G-parity channels. The
two-pion cut will yield a logarithm if [see (2.56)]
(i) both {8’|0(0)|27) and (27|@) remain finite as
s and € go to zero, and (ii) sp is zero or at least
small. If (i) and (ii) are satisfied, —iT! contains
3

1 A3 (glo(0)ca), (edled, (2.58)

_—In ———
3217 " dp"=sp o=,

evaluated at s=0, € =0. Only for sg=0 is this
truly a lne singularity. We have put an 7 on
{B’|o(0)|cd) to indicate that the ¢ does not act

on external legs: Insertions on the legs in g’

are not included in —iT! and singularities cor-
responding to insertions on ¢ or d (Fig. 13) have
already been included in the ¢*-channel dispérsion
relation.

A number of comments must be made at this
point: (i) the special case in which « is just
one of the A operators is included in (2.58).

(ii) The matrix element {g’|0(0)|cd), is just
+iT!(8’~cd), or minus the derivative of the

B'— cd amplitude (omitting the counterterms).
This derivative is likely to remain finite at
threshold even if the g’—~ cd amplitude itself does
not. If fact, (8’| o(0)|cd), may itself be log-
arithmically divergent in €, implying ln®c terms

FIG. 11. The (', 0) — () channel.
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B/

o

}a
o Y
/
‘s { EO—C%
+ B! { }a
FIG. 12. Pion poles in =T ;(0).
in =iT!. These would ultimately be due to dia-
grams such as Fig. 14. We will mainly be
interested in the case that g’ is itself a two-pion
state, for which (27|¢(0)|2m, goes to a known
constant [the 7 amplitude is O(€) + O(e%Ine) at
the relevant point s=¢=«=0]. In more com-
plicated processes for which g’ possesses sub-
channels that are not at threshold, the In®¢ terms
will in general be present and can be calculated
by our methods. (iii) If the amplitude (27r}a) in
(2.58) vanishes at threshold, there may still be
singularities in —idT!/dsg (or in higher deriv-
atives), as can be seen by writing a dispersion
relation for this quantity. These give contribu-
tions sgln[A/(4u? —Sg)] to —iT.. Thesearenottruly
Inp? singularities, and similar terms can come
about from 3-pioncuts. They are still some-
times of interest, however, as we shall see in
Sec. IIE. (iv) If one or both of the amplitudes
(cd|a) or {B’|o(0)|cd),; contain pion poles (in a
crossed channel), such as in Fig. 15, then (2.58)
may have to be modified. This is because we
tacitly assumed that only the S-wave part of the
amplitudes were important [in the case of the
q? channel (2.54) this is exactly true], and be-
cause the amplitudes may diverge at threshold.
There will only be a problem if: (a) the pole
approaches the physical region of (cd|a) as s
and € go to zero; this only occurs if M, and/or
M, are zero (M, and M, are the invariant masses
defined in Fig. 15); and (b) one or both of the
vertex amplitudes {ce|a,) and {(de|a,) (Fig. 15)
remains finite. These conditions will never be
Sfulfilled if a; and ay contain only pions. At least

B’ a

FIG. 13. Diagrams omitted from the evaluation of the
(8’, 0)-channel singularity.
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FIG. 14. Typical diagrams in the (8’, 0) channel
leading to In®e singularities.

one of them must involve an A operator. If (a)
and (b) are not both satisfied, then (2.58) is still
valid. If they are satisfied, then (2.58) can still
be applied for the nonpole part of {cd|a).

For any given application one must calculate
all of these triangle graphs (which modify the
g®-channel cuts, also) by hand, either using
dispersion relations or as Feynman diagrams.

In fact, if several A operators are present, there
may be box graphs (Fig. 16) or even worse (we
calculated such a graph in Ref. 9). The graph in
Fig. 16 diverges as (12)~? in the chiral limit if at
each corner there is a zero-energy scalar
operator whose matrix element remains finite
as € - 0. If one of the corners involves a two-
pion state (with zero invariant mass), the sin-
gularity would be (u%)"! because the four-pion
vertex vanishes in the limit (Weinberg’s ex-
pansion).

We see that the matrix elements of two ov move
operators carrying zevo enevgy can have horvible
singularities in the chival limit. In fact, if the
matrix element itself diverges, one can work with
it directly rather than with its derivatives. These
singularities nevev show up for scatterving am-
plitudes, only for matrix elements of operators.
Of course, if these operators carry nonzero
momentum, these singularities will not be pres-

a, (M)

a,(M,)

FIG. 15. A typical triangle graph that could invalidate
(2.58).

FIG. 16. A box graph that diverges as (u2)~2.

ent. This is why scattering amplitudes in the
Z model (in which the ¢ is treated as a particle
of nonzero mass) remain finite as € - 0.

The most complicated matrix element we will
be interested in is the matrix element
T, (K2 K, (K,~K,)? ¢) of a scalar operator A
between single-pion states 7 and j. In this case
the triangle diagram in Fig. 17 will contribute a
Ine singularity to dT/de° if (K;-K;)?=0. The
result is

1 d
Z.17% 30 Ty;(1?, p% 0;€)

1 A
= —Wlnm Ty;(0, 0, 0; 0)

+O(constant) . (2.59)

Of course we must add singularities due to cuts
in other channels to (2.59).

We summarize our unavoidably complicated
discussion as follows: In order to calculate the
singular part of Z,/2 dT/de®

(i) Separate out any pion poles from T, in-
cluding those due to operators acting on external-
pion legs, via dispersion relations. Then dif-
ferentiate the residue, which is itself a product
of matrix elements, and look for singularities
(renormalization of the “vertices”). The pole
denominator should also be differentiated, but
there the € dependence is explicit [see (2.57)].

For the remainder of the amplitude:

(ii) Add a term (1/Z,)(dZ,*'?/de®)T
= =T(327%,% " 'In(A /4n?) for each external line
(renormalization of external pion “coupling
constants”).

(i) Add a term (1/Z,/2)(dp?/de°)dT/dK,?,
evaluated at K,2= u?, for each external line
(variation of the mass-shell constraints). The

FIG. 17. The triangle graph relevant to (i|A(0)]|j).
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rules for the singularities in dT/dK,? are sum-
marized at the end of Sec. IIIC.

(iv) Add the logarithin due to a general internal
pion loop [Fig. 9 and Eq. (2.54)]. If T contains
any zero-energy operators,- omit the triangle
graphs (such as in Fig. 17) from the matrix ele-
ment in (2.54).

(v) For every channel '~ in T which has
zero invariant mass and allows a two-pion cut,
add a term

LA
NPT (F’de°<ﬁ ""‘”) (cdlay

+{B’|cd) <Z%i7§d—(:3 (cd]oz)) , } .

(2.60)

The amplitudes in (2.59) are on the mass shell
and evaluated at (P,+P,)?=0. By (d{|) /de°, we
mean just keep the —iT! insertions and ignore
counterterms. Equation (2.60) represents the
dependence on €° of the amplitudes at the ends of
the two-pion cut. In most simple cases deriv-
atives in (2.60) will be finite, but in complicated
amplitudes they may themselves diverge as
In(A/4u%). If T contains zero-energy operators,
omit triangle and box graphs from (2.60).

(vi) If the matrix elements (cd|a) or (8’|cd) in
(2.60) vanish at threshold, there may still be
logarithms in dT}/ds,. There may also be log-
arithms in dT!/ds, due to the three-pion cut for
channels with odd G parity. These may be cal-
culated by writing dispersion relations in s, for
these quantities.

(viii) If T involves zero-energy operators, cal-
culate all triangle and box diagrams, such as
shown in Figs. 15, 16, and 17, by hand [the most
common class of these singularities is calculated
in (2.59)]. If the singularity is worse than logarith-
mic, the matrix element itself diverges as €—0.
In this case, one should calculate the singular
diagrams for T, rather than working with d7/de°.

We close this section with two comments:

(i) In the case that T is a scattering amplitude,
we have seen no sign of 1/p% or 1/p terms in dT/

FIG. 18. The w-w scattering amplitude.

de®, which would be associated with Ine or €!/2 be-
havior of T. That is, we see no evidence for T

to diverge in the chiral limit. The leading cor-
rections are O(elne). (ii) T generally contains
terms like €lne, but only in very complicated
amplitudes can there be terms €ln®¢. Hence, in
the simple cases the logarithms can not add up

to yield a simple power of €. Higher-order
effects could conceivably add up to form a be-
havior like exp(Ae€lne), however.

E. The nm Scattering Amplitude

We will now illustrate the general considerations
of Sec. II D with the specific example of 77 scat-
tering. The amplitude, shown in Fig. 18, is

T(S, t;Kiz’ szy K12, Km 2; €)= (—Kiz +“'2)<lm | ¢i(0)|]> ’
(2.61)

and it is a function of s=(K;+K;)?, t=(K;+K,)?,
and the K*s. The variable u=-s-t+) K,* is
dependent. For small values of the invariants,
we expect the Weinberg formula, '8

1
T= J_c;'z‘ [5i15xm(3—ﬂz)+ Bym 0% -u?)
+ éilajm(u_”-z)] ’

to be approximately correct. We show in Appen-
dix A that at the off-shell point s=¢=u=K?=0 the
corrections are of order €’lne and not € Ine
(which would invalidate the expansion).

The derivative of the on-shell amplitude at
fixed s and ¢ can be calculated from our rules
in Sec. IID. The amplitude has no pion poles;
we will pick up the counterterms associated with
rules (ii) and (iii) at the end.

According to (2.54) the logarithm associated
with an internal pion loop is

(2.62)

1

m (2.63)

3
In ‘% MX::I 8o (i jlm | (0)|d) |,
where J, is the pion source and the amplitude is
evaluated at (K +K;)?=0 and €=0. Other in-
variants are calculated with K, and K;=0. The
six-pion amplitude includes the diagrams shown
in Fig. 19(a), but not those in 19(b).

It is worth mentioning here that in the chiral
limit amplitudes involving a single zero-energy
pion vanish (the Adler condition), but for two
zero-energy pions neither the full amplitudes
nor the partial amplitudes considered here need
vanish. Hence, the In(A/4u®) term will be pres-
ent for arbitrary s and¢.

When s and ¢ are small we can calculate the
amplitudes in Fig. 19(a) from a Weinberg-type
expansion or effective Lagrangian,?? yielding
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—32742f‘;€1n4_ﬁ—2-(6‘!61m S48y 0t +8;,6;,u). (2.64)
(The six-pion irreducible and the pole diagrams
give contributions —6 and +10, respectively.)
There are no logarithms associated with the

cuts in the s, ¢, or # channels when these in-
variants are zero, because the amplitudes such
as {cd|éij) that multiply the log [Eq. (2.60)]
vanish at threshold. There will be logs in, for
example,

4 _1_dr

ds Z'”TTE de® |s=¢=0
however. To calculate these, simply write dis-
persion relations for —idT%(0)/ds in the (3,7, o),
(I,m,0), ({,1,0), and (j, m, o) channels (with
t=0 for simplicity). The singular part of the
first integral for example, is

o s ,2'53 (i |o(0)|cd)Scdl],(0)|m) .

3272 cd=1
(2.65)
The matrix element (ij|o(0)|cd), is just

7 (it e )
7,777 \geo Titmen )

1
= -f—§ (653004 +8;¢0;4 + 0;40;.)+ O(€ Ine),
™
(2.66)

the derivative of the Weinberg amplitude at s’=0,
omitting renormalization terms and dT/dK?
terms. The {cd|J,(0)|m) amplitude, taken from
(2.62), is proportional to s’ when properly sym-
metrized in ¢ and d. Thus, (2.65) diverges as
In(A /4u.%) at the threshold. The sum of the log-
arithms from the four cuts is

10

A
W lnm (Gijétm—ﬁiléjm ) (2.67)

c 'd
FIG. 19. (a) Diagrams included in the six-point func-
tion of (2.63). The shaded blobs are single-pion
irreducible. (b) Diagrams excluded from (2.63).

from which we infer that the cut contribution to
-iTI(0) correct to first order in s and ¢ is just
L of (2.64).
The renormalization contribution, for small
s and £, is just minus the expression (2.64).
Finally, we must add

-_,_dé ZT(sy 9.“')"‘).“2;6)' (2-68)

Again, there are no logarithms in T; at s or £=0
from the s, ¢, or u channel cuts, due to the soft-
ness of the 77 amplitude at threshold. They do
show up in dT,/ds, however, and in complete
analogy to (2.65) they can be calculated by writing
a fixed-¢ dispersion relation for d7T/ds. The
answer turns out to be -2 of (2.64).

Adding together the various contributions, we
find that

T(s, t;u?, u? u? u?; €

1
€—0 7733 (035 Om S + 041 Oj5t =8,,8; (s +11)]
s ,t small T (O)

4,2 A 2}
X [1— 32077 2 ln—4“2 +0(p?| ,
(2.69)

where the zeroth-order term is from Weinberg’s
expansion. But by (2.19) we see that the log-
arithms are just due to the expansion of f,(e)
around €e=0. That is, we can absorb the singular
terms into 1/f,2 in (2.69) to give

T(s, b u? ..., 125 €)
1
— me—)z[ﬁuﬁxmﬁﬁ.-mént
s, t small

=8, 8, m(s+ 1] +06).

This illustrates a result that we believe is
valid for all amplitudes: for arbitrary values of
the invariants, theve ave nontrivial pu®lnu® cov-
rvections to the chival-limit values of the am-
plitudes. At the thvesholds, however, these cor-
vections can be absorbed into the constants (such
as fr) of the theory so as to reproduce the low-
energy theovems of PCAC and curvent algebra,
which are thereforve still valid (strictly speaking,
a nontrivial su®lny? term in the 77 amplitude
would not have been fatal, because the Weinberg
expansion is not an exact theorem, but an expan-
sion which is supposed to be valid to lowest order
in s and €).

It should be emphasized that we found no y%Inp?
terms, but only terms like su2lnp?.
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F. Conclusion and Approximate Formula

We have in Sec. II carefully classified all the
sources of nonanalytic behavior in both on- and
off-mass-shell scattering amplitudes and matrix
elements. The singular terms come in from??

(i) renormalization of the external “coupling
constants,” (ii) internal pion loops, (iii) two-
pion cuts in various channels, and (iv) from the
mass-shell constraints. As a by-product we saw
that the off-mass-shell extrapolation of an am-
plitude from p? to zero will often introduce
errors of order p®lnpZ.

We have argued that amplitudes typically have
w3lnp? corrections, but (at least in an example)
they do not violate the low-energy PCAC theorems
because at threshold the corrections can be
absorbed into f.

We have seen no indication of amplitudes di-
verging in the chiral limit and have argued that
the logarithms ¢annot add up to a simple power.
Matrix elements of zero-energy operators, on
the other hand, can diverge quite severely in the
chiral limit.

We wish to extract one particular result: for
any quantity F that depends on €, the expansion
around €=0 is typically

2
F(e) 14+-CH

F(0) 3273f, 2 (2.70)

A
lnm +0(p?) ,

1 d
Z,,_IE:FT(S”' cey Spyu’, .

..,uz;€)=-iJ-d*zT,(sl,...,s,;O,.
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where C is a Clebsch-Gordan coefficient of order
unity. This is true for eack source of nonanaly-
ticity mentioned above. Therefore, we believe
that 2/(327%,%)~0.006 is an appropriate dimen-
sionless parameter to measure explicit SU(2)
X8U(2) breaking. For A one can use m,? 4m,?%
or even use A /4u®=~ 327%,2/u?, at his option
[In(327%/,%/u?)~5]. Hence, SU(2)xSU(2) is a
very good Goldstone symmetry to 5-10%.

Most of the formalism we have developed here
can be trivially extended to SU(3)xSU(3) and the
inclusion of baryons. Before doing so we would
like to give an approximate formula for the deriv-
ative of an on-shell amplitude to supplement the
exact formulas (2.51) and (2.53). We would like
a formula, correct up to order p®lnu?, in which
the insertion terms and counterterms involve
off-shell massless external pions, so that we
can use PCAC techniques. Now, —iT[ does not
involve insertions on external-pion legs, so
-iT(0) can be evaluated at K2=0 for each pion,
up to O(u®Inu?). This is not directly useful,
however, because when we start applying PCAC
and current-algebra techniques to —iT/, it is
difficult to keep track of the external line in-
sertion terms that are to be omitted. Hence we
must add and subtract terms so that =T/ is re-
placed by the full —iT, plus some extra counter-
terms. The bookkeeping is slightly complicated
so we will just give the answer:

..,05¢)

a1 dz, V?

1
o (e e e =7 ) Tl 0,030

1 du?

where T, is the full g-insertion matrix element.
We will use this formula in the next paper.'”

III. EXTENSION TO SU(3) XSU(3)

In this section we will extend the analysis of
Sec. II to SU(3) xSU(3). Most of the formalism
already developed carries over with little mod-
ification, the only nontrivial complication being
n-n’ mixing. We will first review the formalism
of broken SU(3)xSU(3) and then show how to
compute the nonanalytic parts of Green’s functions
and matrix elements. In particular, we will com-
pute the leading corrections to the 7, K, and 7
decay constants from their symmetric value;
from this we find an expression for f,/f, that
agrees with experiment. Finally, we will argue

Z T,(s?, vevy8,30,...,0;€)+0(elne) ,

i=1

(2.71)

-

that appropriate dimensionless parameters to
measure explicit SU(3) xSU(3) and SU(3) breaking
are (u?/(327%f,%)= 0.06 and % (12~ 1, 2)/(320%f,2)

~ 0.05, respectively, where (u? is the average
pseudoscalar meson mass. However, for any
given quantity the coefficients of these parameters
may be as large as five or more, suggesting that
perturbation theory around SU(3)xSU(3) is at

best marginal. Hence, before trusting any cal-
culation that involves going to the SU(3)x SU(3)
limit, it is crucial to calculate the leading cor-
rection to see how it compares with the zero-
order term. In many cases we find that the
correction is small, but in the case of the electro-
magnetic mass shift of mesons we will find'”

that the leading correction is as big as the zero-
order term.
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A. SU(3)XSU(3) FORMALISM

Let the vector and axial-vector charges F; and
°F,, t=1,...,8 be the generators of SU(3)xSU(3).
We assume that the Hamiltonian density is
H=H,+eJud+ejuy, where uJ and u are unre-
normalized scalar fields that transform as a
singlet and octet, respectively, under SU(3).

In this paper we will adopt the (3, 3) +(3, 3) model
of Glashow and Weinberg® and Gell-Mann, Oakes,
and Renner.? According to this scheme there
exist nine unrenormalized scalar operators u?,
i=0, ..., 8 and nine pseudoscalar operators ¢,
i=0,...,8 that satisfy the equal-time (3, 3) +(3, 3)
algebra:

[Fy,uf)=ifiul,
[F:, ¢?] =ifii o7,
[°F;, uf]=—id;; ¢7 ,
[°Fy, ¢7]=id;;u?,

where ¢ runs from 1 to 8 and j and % from 0 to 8
[dy;x=(3)25,,]. As in the SU(2) xSU(2) case the
basic analysis of nonanalytic behavior of am-
plitudes and matrix elements is independent of
the transformation properties of %3 and «3. If
these operators belonged to any other repre-
sentation, the same calculations could be carried
out; only the Clebsch-Gordan coefficients would
change.

From the commutation relations (3.1) we can
compute the divergences of the vector and axial-
vector currents:

(3.1)

9y Vi=€afimts
(3.2)
0, At ==[(D)? g +d'eq) 47 ~(5)"/70,5€045 ,

where d* =d*® is 1/V3 fori=1,2,3, -1/2/3 for
i=4,...,7, and -1/V3 for i=8.

We will assume that the ¢? fields, for i=1,...,7,
are associated with the 7 and K states and that
linear combinations of ¢ and ¢ are associated
with the n and 7’ (which we pretend is stable for
simplicity). Then we can define renormalized
fields ¢, = ¢9/Z, /%, where

(0]9%1j)=08;z,*2, (3.3)

for i,j=1,...,7. Wewilldefine Z,/2 and Z, "2 after a

discussion of the mixing problem. Sincewe assume

an exact SU(2) invariance, we have Z; =Z,,

i=1,2,3and Z;=Z,, i=4,...,7. It will be con-

venient to work with the unrenormalized « { fields.
Before proceeding we must digress on the

n-n' mixing problem. The physical Y=I=0

meson states are |n) and |n). We will define

singlet and octet states [0) and [|8) as

8
0) =cos6|n’) —sinb|n)
| ’ (3.4)
|8) =sinb|n’) +cosbly) ,
where 6 is chosen so that (0| ¢3|8) ={0|¢3[0) =0.
Then,
<Ol o}ﬁ) =7 1/2
%o 0o (3.5)

(0]p3le) =2z,"/2.

When eg goes to zero, sinf vanishes. In terms of
the |0) and |8) states the mass matrix is

U200 = 1t pe® cOS%0+ 11 ® 5in6
125 = b or” 8IN%60 + 7 2 cOS?6 (3.6)
1os = (1 ot =k ,?)cosd sind .

Now we can define the meson decay constants
fias

(0,3'A;,j>=5”“(2fi (i,j=1,...,7),
<0I8°A8 |77> =I“Lf,2fn ’ (3'7)
(0 3'A3|77’> ‘_‘/J'n'zfﬂ' .

By SU(2), f;=fr, ©=1,2,3 and f; =f,i=4,...,1.
Comparing (3.7) with (3.2) we find that

2
Ll (@ a'el], i=1,...,7  (3.80)
i

(o 080+, 2f . sind)/Z, /2

=-{(32%+d%¢d], (3.8b)
and
(1 o*fn SIN6 =i /%, c0s8)/Z,/2=(3)1/2¢2 .
(3.8¢)
From these relations we discover that
(3.9)

1 (2f, 2 2
--g- (L + L

In the limit €3 =€) =0 we assume that the vacuum
(and hence the spectrum of physical states) is
exactly SU(3) symmetric, but that SU(3) xSU(3) is

.spontaneously broken. Hence, uJ will have a non-

zero vacuum expectation value, but {u?),=0 for
i=1....,8. In this limit there will be eight Gold-
stone bosons (m,K,n), while the ' meson will
have a finite mass. The long-range forces asso-
ciated with the Goldstone bosons will lead to a
nonanalytic approach to the symmetry point.

As we increase ¢ from zero, but keep €3=0,
the eight Goldstone bosons acquire a common
mass p®. Also,
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Z (0, €g)=Z (0, €7)
=Zg(0,eQ)=Z,() ,
fx(0, €3) =fx(0, €)
=1 (0, €9) =f,(€3)".

However, Z,#Z, and f,,#f,, not even for eg=0.
In fact, from (3.7) we see f,.(0, €g) =0. Also, we
see that sin6 vanishes as € -0 from (3.6).

If we now increase’eg from zero, the octet
masses, decay constants, and renormalization
constants will split, f,- and sinf will be nonzero,
and g will pick up a nonzero vacuum expectation
value.

As has been emphasized by Mathur and Okubo,?*
the values of €J and € cannot be chosen arbitrarily
but must fall into allowed domains. The physical

(3.10)

(/2 +a%u),= 2,77, (102 [ L p(s),

()M 2€ud) +d® Ud) o= Z4*/?f, cos6 <1 +“n2.[ d_ss p,,(s)) +ZM2f,, sind (1 +u,,,2_[ %i p,,;(s)> ,

and

. d d
(32U = =2, ?f ,5inb <1+un2fs—sp,,(s)> + Zy'?f ,1cos8 (1 +p,,.2f _s§ p,,.(s)) ,

where the p’s are the propagator spectral func-
tions. We see that in the limit €=¢€J=0,(u3),=0
and (%)V2(u3), Z ,~?(0) =£,(0). Hence, we can
regard €5, €, and f,(0) as the physical param-
eters of the theory. We will generally state our
final results in terms of the physical pion decay
constant f, and the quantities €; and ¢,, which
we define as

2
€= 7= fr(iy Z-P-‘nz) ’
3 : (3.12)

1 .
€= _TBEfﬂ(ZP'Kz +g?).

We will also refer to the average octet mass
w2=52ug?+ 1.2 ==V6 €,/3fr=0.17 GeVZ.

B. Perturbation of Green’s Functions

The prescription for differentiating an unre-
normalized Green’s function is exactly the same
as for SU(2)xSU(2):

414? O|T(¢3+++ ¢5A," =+ Ay)|0)
=i [ a% 01T - %A, - - ANIO,

(3.13)

for ¢=0 or 8. Similarly, higher-order deriva-

i=1,...,1
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value of €J/€] is about —0.88V2. The boundary
of this domain corresponds to €J/e3=-V2, at
which p,%2=0. In the (3, 3) +(3, 3) model this ratio
€)/€d=~V2 (u,2=0) implies an exact SU(2)xSU(2)
subsymmetry of the Hamiltonian.? This is the
appealing feature of the scheme: the closeness
of €J/€d to =V2 naturally explains the small ratio
pr?/ug? and the approximate validity of SU(2)
xSU(2), for the Hamiltonian, while the approxi-
mate SU(3) invariance of the vacuum accounts
for the spectrum of physical states. However,
Dashen®! has pointed out that if «3 and 2 belong
to any representation other than the (3, 3) +(3, 3),
the near vanishing of p,? need not correspond to
an underlying SU(2) xSU(2) symmetry.

In analogy with (2.6) we have the following
Ward identities:

(3.11a)

(3.11b)

(3.11c¢)

r
tives can be calculated by putting in more «°
operators. For a renormalized Green’s func-
tion one must add the appropriate derivatives of
renormalization constants.

One word of warning is required: The re-
normalized 7 field is defined as

bu= = o3 G5+ S8 9% (3.19)
] 8

[cf. (3.4) and (3.5)]. To apply (3.13) when an 7

operator is present one must express ¢, from

(3.14) and put in derivatives of sinf and cos#,

as well as Z, and Z;, by hand.

In all calculations our approach will be to set
€3=0 after taking the derivative and then look
for singularities as p2-0.

As a first application, consider d(u3),/de?,
where 7 and j are 0 or 8. We have

EZ—?W‘,’)‘,:-i [ atz0iTes@uon0 . (3.15)

As in Sec. II we write a dispersion relation for
this quantity, saturate with the two octet-meson
states (the singlet meson maintains a finite mass
in the chiral limit), set =0, and find that the
dispersion integral diverges as Inu? at threshold.
The result is
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d =In(A /415) o The most singular terms go as 1/u? and are due
de’ (e —— €g=0 T3 ;: (Ofudlcdd (cdlu3|0), to the triangle graphs shown in Fig. 20. These
00 terms yield new cgntributions of 5f,y82/\/'§ Y, and
‘o (3.16) V3 fava/4v, to (ud), and @3),, respectively. Al-
where A is an arbitrary cutoff. But in the chiral thc.>ugh these terms dominate the secqnd deriy-
. atives, they are formally of order ¢ in the
limit, .
vacuum-expectations values because of the con-
o1y = _ qiea 25 %(0) straint —€/e<V?2 .
(ed|u|0) = ~d fs(O) As in our discussion of SU(2) XxSU(2) we can
Z.1/%(0) apply (3.13) to the unrenormalized meson pro-
—die ——’f—— + O(e lne) , (3.17) pagators. The results are
so that d“; ={ala) , (3.22)
de;
B =j=0 . .
i Z.In(A/4p7) 3 where a is any physical on-shell meson (7, K, 7,
- n .. ’
Zl—e—?<u?)° g X 7 Bl <8 i=j=8 or n’) and
0, otherwise 1 dz;Y? 1 2 12
éij_i’E d€ _Z‘dKszm‘i(K’K’O)K 2“12
+0O(constant). (3.18)
. = L (B 02 0)
From (3.18) and the formulas (3.11) relating dKE Fimsi oy By ez
(u3), to the decay constants (and anticipating ST
our later results on the renormalization con- i=1,...,1 (3.23)
stants), we find that where F,,, ., (K2 K, (K;~K,)? is the off-shell
Ji o amplitude (j |u}|m). There are also several
7. —1==(3,+2V3 7,d )ln 7 +0(e) complicated expressions involving the derivatives
; of Z,, Zg, and sinf. We will only quote the re-
= - 34t —_— . 0 “8
(0.18 -0.08 34} 1n 4u2 +0(e),  (3.19) sult we shall need later:

where v,=-p?/(327%,%) = =0.059 and vy = (u % -2/
(487%f,%)= 0.052. In (3.19) ¢ runs from 1 to 8. By
fe we mean f, cos¢, which to the order of (3.19)

is just f,.

For A=4m,? the logarithm in (3.19) is 1.65,
indicating that the perturbation expansion of the
decay constants around SU(3) xSU(3) is of marginal
validity: the right-hand side of (3.19) is 0.17,

0.36, and 0.46 for ¢=1,4, and 8. From (3.19) we
can also calculate the leading contributions to

fx/frand f,/fu

Jx _q_3x’~1q)
J At ln4u = 0.20,

(3.20)
Iy <f_ _1>
S 3\Sn
The formula for f,/fy, which roughly agrees
with the experimental value fy/fr —=1=0.26+ 0,02,
was previously found from a different technique.?®

In passing we mention that one can calculate
the leading contributions to

dz
deod 5 (Up)o= ‘1)2fd xd*y

XCOIT(ug(x)u(»)u(ON]0) . (3.21)

sin®9 dZ,'/?
20172 d&'?

. cos?0 dZ,'/?
ZM?%  del

a_

1
T2 dK?

F (K2 K2, 0)

K =pn2

d

= W an:‘(Kz, ‘Ll.nz, 0)

2.
K —unz

(3.24)

As in the SU(2) xSU(2) calculation we can
compare (3.22) with the mass formula 2,2
=(i|Hold) +(i|edud + €Jugli) to obtain

FIG. 20. The most singular contributions to Eq.
3.21).
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. ; A
=+ ) =1n 5 [Svo+ £V3 d'yglu®+0(e?)

_1n4%2[—0.04 +0.124"] 42 +0(e?)
(3.25)

fori=1 , T (the calculation for (n|H,|n) gets
1nextrlcably tangled with the mixing problem).

C. Perturbation of Amplitudes and Matrix Elements

Let T(syy ..., 8,3 K% ..., K,2%; € €) be an
amplitude or matrix element involving m ex-
ternal n, K, or n mesons (we are not concerned
with 1’ amplitudes). As in (2.28) we can single
out the dependence on the mass of the jth meson
by the definition

T(K,?; €03 €5) = T(1;7; €, €5)

+(K® = 2)Ti(K? €0, €5).  (3.26)

As €,~0, T;(K,?; €, 0) will in general be non-
analytic in €¢,. The analysis of the sources of
singularities is identical to the SU(2)xSU(2)
analysis in Sec. IIC. In particular, T; may have
Ine, terms due to the two-meson cuts in any
channel with zero invariant mass. For example,
if A is a scalar operator and T(K? K,;%; t; €,, €;)
—(zlA(O)I j) remains finite in the chiral 11m1t
then Eq. (2.39) still holds, only with ¢ and d
ranging from 1 to 8 and with p? being the average
meson mass. The Weinberg formula can be
generalized (in the €, =0 limit) to SU(3) xSU(3)
simply by replacing By 0ca BY Taprca =5 Oap Ocq
+20e=1%abe doca - Then,

A
641er Inge

d
dK2 T(Knllj 385 60,0)

8
XZ (Ticiia+ Tiasje)

cd=1

x{cd|A(0)|0) .
(3.27)

From (3.23), (3.24), and (3.27) the leading cor-
rections to the octet renormalization constants
can be calculated. They are

Z‘1/2
ZSI/Z(O)

—In(A /4p?)

-1= 192777, 3

[14(%)1/250 +dl€a] ’

i=1,...,8. (3.28)
Notice from (3.19) and (3.28) that the corrections
to both f; and Z,/? satisfy Gell-Mann-Okubo
formulas, as they should.

Before proceeding, we note that for our purposes
it is always sufficient to calculate T, (K% €, €)
in the €;=0 limit. In fact, one cannot even use
PCAC to define an off-shell extrapolation of 5
amplitudes until one has set €,=0.

The formulas for derivatives of a matrix ele-
ment are virtually the same as for SU(2) xSU(2).
Equation (2.44) for the derivative of an off-shell
matrix element becomes

dT

P - = lTu?(O)

1 1 dz,1/2>
+Z (de, -KZ2+p2 T Z? 0 ded T,

(3.29)

where T, 9 (0) is the amplitude with a zero-energy
unrenormahzed u? field inserted. If T involves
any external n fields, one must modify (3.29)
slightly, as discussed after Eq. (3.14).

For on-shell amplitudes, the analog of (2.51) is

a 2 2
deoT(sl""’sT;“‘l""’“m ;60’68)
i

- —3TSs . 2 2, «q=
_—zTu?(sv'”’sryul yeees Mm ’€0’€s,q_o)e

(3.30)

Equation (2.52) is exact, even in the presence of
external 7 particles.

Incidentally, if external n particles are present,
both T $o and T’o still include 0’ poles in the
(n, u9) c‘hannels These will never give rise to
logarithmic singularities, however.

Equation (2.53) becomes

dT _ dp? . 1 dz}/? )
i —iT 0(0)+Z<d° ’+Z,”2 a3 T),
(3.31)

except that for 5 fields we replace the renormal-
ization term by the quantity in (3.24) multiplied
by T.

We can search for Ine, singularities in (3.31) by
writing dispersion relations for Ty in each
channel just as for SU(2)xSU(2). All of the
analysis, conclusions, and rules are exactly as
in Sec. IID. There will, in general, be both
€,lne, and gglne, singularities in T, but pre-
sumably these can be absorbed into the param-
eters of the theory at the current-algebra points.

Finally, the approximate formula (2.71) in
which the derivatives are expressed in terms of
off-shell amplitudes becomes
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d . 2 2, = f 4 -0 0: 0
ET(SD---,SHM“---,H"‘ ’50958)—_1 dZTu(‘)(Sl,...,S,., y o ooy U5 €py )

(1 dp? 1 dz}2
+j=1 'ﬁ'z‘ de? ‘Zj1/2 djef') Tsly ,S",o, ..,0;€0,0)

m d 2
+,Z if?—T(sl, ,8,30,...,0;¢€,0)+0(elne,) , (3.32)
=1

where we have set €,=0, as is appropriate to the accuracy of (3.32).

D. Conclusion to Extension to SU(3) X SU(3)

We have found that there will generally be non-
analytic terms both of the form eylne, and ¢;lne, in
perturbation expansions around SU(3)xSU(3).
Furthermore, off-mass-shell extrapolations
will generally induce errors of order p’Ine,.

We have seen that the dimensionless parameters
Yo =—12/(327%f,%) = —0.059 and yg=(pg® - o2/

(487 %f,%)=0.052 appear in all of the calculations.
This is true not only for the logarithmic singu-
larities but also for the €,%/€, behavior of tri-
angle graphs (3.21) and box graphs.® Therefore,
we propose that y, and y, are appropriate param-
eters to measure SU(3) XxSU(3) and SU(3) break-
ing. But beware: The Clebsch-Gordan coeffi-
cients in front of y, and v, often range from one
half to five or more. The validity of the per-
turbation expansion is marginal and must be
checked for each application by calculating the ra-
tio of the leading correction to the zero-order
term. We will show'’ that the perturbation expan-
sion breaks down completely for electromagnetic
mass shifts of mesons; this explains the Dashen
paradox.® A similar explanation might apply to
the K- 27 problem.?! However, the leading con-
tribution to the renormalization of strangeness-
changing vector form factors® is only 2%.

We close by mentioning that the n-n’ mixing
angle must be proportional to €,lne,. This can
be seen by a careful comparison of Egs. (3.8¢c),
(3.11c), and (3.18). This can be explained from
the last of Egs. (3.6). The matrix element
(0[3]8) will diverge as Ine, in the chiral limit
due to the two-meson cut in the ¢ channel [there
is no reason for the (0 +8 ~two mesons) ampli-
tude to vanish at threshold].

IV. INCLUSION OF BARYONS

In this section we will outline the techniques
for perturbing a matrix element involving baryons
around the SU(2) XSU(2) limit. We will find, for
example, that the pion-nucleon amplitude ap-
proaches the chiral limit in a nonanalytic (u?lny?)
manner except at the exceptional momentum

r
(current-algebra) point where the corrections
are analytic to leading order. This is true pro-
vided that we express the amplitude at the
current-algebra point in terms of the physical
values of the parameters of the theory instead
of using the chiral-symmetric values of the pa-
rameters.

Consider an amplitude or matrix element T
involving two or more baryons. We will single
out a final baryon for special attention. The
modification for antibaryons or initial baryons
will be obvious. Hence, T =(ps|Q), where p is
the momentum and s the spin direction of the
baryon, and @ is the rest of the matrix element.
In order to incorporate the baryon mass-shell
constraints we must consider an off-shell in-
variant amplitude

F(p?;€)=3_ Py(pur(p, s)Xps|@), (4.1)

where u, is a spinor and P, is some projection
operator, which can depend on p and other mo-
menta of the problem.?® It is implied that a
projection is done for each baryon. Let us also
define the quantity @5(p) as 3, u;s(p, s)ps|@). We
can now derive the analogs of (2.51) and (2.53) for
dF(m?; €)/de®. The spinor algebra is very com-
plicated and uninteresting so we will only give
the results. The analog of (2.51) is

1 dF(m?;e)

L

==iF3(m?; €; 0)

vty B2 L
Z,rl 2 d€0 dpz

X[P(p)# +m) Qs (P) 2.

= m2

(4.2)

where F{ is the original (projected) matrix ele-
ment with a zero-energy ¢ inserted everywhere
except on the external legs; the external leg
insertions are removed via a dispersion relation.
The vector p in (4.2) is on the mass shell (p?=m?)
so the p? derivative in (4.2) only affects the
projection operator.

Similarly, the analog of (2.53) is



|

1 dF(m?;e)

Zm g = ~iFg (m*;€0)
: 1 dz,'/®
+Z,,1’ZZF”2 di" F(m?; €)
Z"172 d€° dpz
X[P\(D)(# +m),5Q 5(0)] 2
(4.3)

The baryon-o channels in FI are single-baryon
irreducible; Z is the baryon wave-function re-
normalization constant. The p? derivative in
(4.3) acts on the entire matrix element. In (4.2)
and (4.3) we have not explicitly written the
counterterms and external-leg conventions for
the external mesons. They are the same as
before [Egs. (2.51), (2.53), or (2.71)].

In deriving (4.20) and (4.3) we made use of the
identity [cf. (2.21)]

dn ZL 928 () %Z:F-"L) =5 (2. F-m)

- f dx d4Ey eiﬁ(x-y)(#_m)
X O] TP (9)0°(0)|0) (F-m),  (4.4)

where S,(p) is the continuum part of the baryon
propagator. From (4.4) we see that

1  dm?
7% grg'a 8550 =(ps|a(0)|ps”, (4.5)

with p2=m?2. This remains finite in the chiral
limit. The worst diagram ¢ — 27 — BB (B=baryon)
is nonsingular because the 27—~ BB amplitude
vanishes at threshold. One could also obtain an
expression for dZ,/de® from (4.4).

Finally, it can be shown with some difficulty
that if F(p?, €) contains a baryon pole in some
channel (@ ~8’), then the sum of baryon poles
in the (@, o) and (B’, 0) channels of —iF. (analogous
to Fig. 12) plus the poles in the counterterms of
(4.3) is

1 d [_x~XalpsXps|s?
Z,172c?_56[; sa_mz ], (4.6)

where p is the (on-shell) momentum of the pole.
It is implied that appropriate projections have
been performed on the external baryons. Equa-

1 d 1 d
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tion (4.6) is exact and incorporates the mass-
shell constraints on the pole residue.

One can in principle use (4.3) to determine the
nonanalytic terms in F(nZ, €) as €~0. First,
separate out the baryon poles and differentiate
the residue according to (4.6). Then look for
Ine singularities in the non-pole-part of —iFZ.
There will generally be singularities due to a
geneval pion loop (the ¢* channel cut, as in Fig.
9), because the pions can hook onto the external-
baryon legs. There will also be logarithms due
to any channel with zero invariant mass if there
is a two-pion cut and the amplitudes at the ends
of the cut do not vanish. There will not be log-
arithms due to pion-baryon cuts because the
phase space vanishes at threshold. Finally, one
must add the singular parts of the counterterms
corresponding to the external mesons [Eq.(2.51),
(2.53), or (5.71)]. We have not attempted an
analysis of the possible singularities due to the
baryon counterterms in (4.3).

Now consider a suitably projected on-shell
amplitude F(s, ¢, €) for n,(K;)+B;(p,)=7,(K,)+B,(,),
where ¢,j,1l,m, are isospin indices, at fixed
s=(K;+p,; and t=(K;-K,)?. For arbitrary fixed
sand t, —iF{(s, t; €) will possess lne singular-
ities due to a general pion loop (Fig. 9). The
dZ *'?/de® meson counterterms [Eq. (2.53)] will
also be singular. There may also be logarithms
due to the residues of the s- and #-channel
baryon poles. There will nof be singularities
due to the ¢-channel cut in —~iF because both
the 7w —m7 and the 77 ~BB amplitudes vanish
at threshold for €=0. Similarly, the meson
counterterms F(u?) (i.e., dF/dK;*) and F ,(u?
will be nonsingular due to the vanishing of
nn-BB (Sec. IIC). In geneval, therefore,

F(s, t; ©=F(s, t; 0)+G(s, H)elne +O(e). (4.7)

Now consider the low-energy s—m?, -0 limit
of F(s, t; K= u? K,2=p?%; €), where we have now
indicated the pion masses explicitly. We can
use (2.71) to express dF (s, t, u?, u?; €)/de® in terms
of matrix elements involving massless external
pions up to O(e lne). The baryons are still on-
shell and treated according to (4.3). We can then
apply PCAC to the pions in -iF ; and the counter-
terms, yielding

7 e Fl %, %5 0= i @[ﬁi [ an e k3T A KON ) +773 EmaKE KUV O]

€

- 5 0unlllo(0)] j)] N Z%ﬁ%f [FA(0)+F ,(0)]+O(c . (4.8)
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In (4.8), K;?=K,?>=0 and projections on the baryons
are implied. The first three terms are simply
the derivative of the PCAC expression for an
(off-shell) zero-pion-mass amplitude. In the
K;~0, K,~0 (s=m? t-0) limit, only the s-

and u-channel baryon poles will survive in the
first term. This is true both for the derivative
of 1/f,% and for the derivative of the matrix ele-
ment, the pole part of which is given by (4.6).
[The derivative of the matrix element has a pion
loop which goes as Ine as € -0 for fixed K, K,,
but vanishes as (KX;, K,,)~0 for fixed . The
limits do not commute.] Hence, at the current-
algebra point, all of the corrections to

F(s, t,0,0;0) in the first three terms of (4.8)
can be absorbed into the renormalization of the
parameters of the theory (m, f,, g4, and the

o matrix element) by the symmetry breaking.
The F, +F,, term is finite as € -0 [see discussion
before (4.7)]. Hence, af the curvent-algebra
point,

F(s, t, p? p?; €)=F(s, t,0,0; 0)+0(e)+0O(e*Ine) ,
(4.9)

provided that the current-algebra expression for
F(s,t,0,0;0) is written in terms of f,(¢€), etc.,
instead of the chiral-symmetric values of these
parameters. The corrections, analytic to lead-
ing order, ave due entively to the off-shell extrap-
olation of the external pions.

V. CONCLUSIONS

It has been our goal, in this article, to establish
a well-defined procedure for extracting the lead-
ing nonanalytic behavior in chiral-symmetry
breaking. S-matrix elements exist in the chiral
limit, but in general approach such a limit in a
nonanalytic fashion like € lne. At current-algebra
points, for which we have low-energy theorems
for S-matrix elements, the corrections are
analytic O(e¢) to leading order. For matrix ele-
ments of currents or other operators (at zero
momentum) the chiral limit may not exist, re-
flecting a behavior like €~! or Ine. In general
we find perturbation theory about SU(2)xSU(2)
to be quite good; perturbation theory about
SU(3) xSU(3) is marginal.

There are further applications of these ideas
which we have not made. For example one would
like to know the expansion of g,(e) and g y(€)
similar to the result we found for f,(e).

We further suggest that one might apply these
techniques to the K;—27 puzzle. Dashen®! has
pointed out that this decay is suppressed to O(e?)
in chiral SU(3) xSU(3) breaking and estimates
an anomalously low rate. However this argument

foo

depends on momentum expansions which we
know to fail. Hence the leading order will be less
than O(e?) and one might be able to estimate the
rate. The K —27 decay deserves further study.
Similarly one might examine the n-3r puzzle in
the light of these remarks. We have examined
the 7° -2y decay for which one has a theorem
for zero-mass pions. The extrapolation cor-
rections to pions with finite mass are, in this
instance, analytic to leading order. Hence, one
expects the rate for 7°—~2y to be well-approx-
imated by the low-energy theorem unless there
is an enhancement of the type considered by
Drell. ™

APPREDIX A

We would like to give a simple illustration of
formula (2.44) for the derivative of an off-shell
matrix element. Consider the off-shell 77 am-
plitude ij-%l at the unphysical point at which
all four-momenta vanish. Then, using PCAC
and the commutators (2.1):

- j d*zT,(2)
=—(uz)“f d*x,d*,d**,d*z

XCO|T(y (%1 )o(%2) P5(% 5) 94(0)a(2))] 0

1
7 (83705 + 84y 85, + 84, 653)
x| - 73 (@ 3 { 442 0lT(a(2)0ONIO)

+(u?? _{d“zd“y(OlT(O(Z)cr(y)v(O))IO)] .

(A1)

But {0),=f+0(e In€); the second term was shown
in Sec. IIB to be O(eln¢) (from Fig. 1), and the
third term is O(e), because the most singular
diagram (the triangle diagram, analogous to

Fig. 20) is proportional to (12)2/u?. Hence,

-3 ] d*2T,==3(86+++)/f,*+0(e ne). Similarly,
one can show that the counterterms are 4(66'0 )/
f+3+0(e In€), so that

j—:z—= —J;;l-g (855 B4y +0;, 05, + By 8;)+O(€ Ine) ,
(A2)
in agreement with the Weinberg expansion.!®
There is no new physics in (A2), which could
have been obtained directly from the PCAC cal-
culation we did for the counterterms; we merely
quote it to illustrate that the low-energy theorems
of current algebra are valid. Corrections to
Weinberg’s expansion are of the form eZlne, not
€lne.
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