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Time-ordered perturbation theory evaluated in the infinite-momentum reference frame of
Weinberg is shown to be a viable calculational alternative to the usual Feynman graph procedure
for quantum electrodynamics. We derive the rules of calculation at infinite momentum, and
introduce a convenient method for automatically including z graphs (backward-moving fermion
contributions). We then develop techniques for implementing renormalization theory, and

apply these to various examples. We show that the P —~ limit is uniform for calculating
renormalized amplitudes, but this is not true in evaluating the renormalization constants
themselves. Our rules are then applied to calculate the electron anomalous moment through
fourth order and a representative diagram in sixth order. It is shown that our techniques are
competitive with the normal Feynman approach in practical calculations. Some implications
of our results and connections with the light-cone quantization are discussed.

I. INTRODUCTION

Over the past few years it has been shown that
the use of an "infinite-momentum" Lorentz frame'
has remarkable advantages for calculations in ele-
mentary particle physics and field theory, espe-
cially in the areas of current-algebra sum rules, '
parton models, "and eikonal scattering. " One
important advantage is that it allows a straight-
forward application of the impulse and incoherence
approximations familiar in nonrelativistic atomic
and nuclear physics to relativistic field-theory
and bound-state problems.

We shall show that infinite-momentum-frame
methods are also competitive with the usual Feyn-
man methods in quantum electrodynamics (QED).
Despite the passage of over two decades, the basic
methods for calculations in QED have changed little
since the development of the Feynman-Dyson-
Sehwinger rules. Although it is true that disper-
sion-theory calculations of the lepton vertex —dis-
persing either in the photon mass or sidewise in
one fermion leg —do provide such an alternative
procedure, in fact such calculations are much
more arduous than the standard Feynman method,
often involving extremely subtle and treacherous
nonuniform infrared problems, ' and only are ap-
plicable to the two- and three-point amplitudes.
The time-ordered perturbation-theory-infinite-
momentum-frame method (TOPTh„) to be de-
scribed here retains the main advantages of the
dispersion method since calculations involve phys-
ical on-mass-shell intermediate states of fixed
particle number, but because of the P-~ limit

the complicated square-root structure of the
phase-space integration is automatically linear-
ized, and the analysis of infrared divergences is
no more difficult than in the corresponding Feyn-
man calculations.

The field-theoretic aspects of time-ordered
perturbation theory in the P-~ limit were first
studied by Weinberg' in spinless theories. The
development of the parton model' by Drell, Levy,
and Yan motivated the extension of Weinberg's
work to spin- theories. ' Because of the equival-
ence of TOPTh„with conventional field theory
demonstrated here for quantum electrodynamics
(and by simple extension to the superrenormal-
izable Q' theory and the renormalizable gy, gw

pseudoscalar theory), such parton-model calcula-
tions can acquire a rigorous basis. The important
qualification is the necessity to use covariant reg-
ularization rather than a simple transverse-mo-
mentum-cutoff procedure in order to avoid diffi-
culties with gauge invariance and covariance.

The P-~ limit became of even greater interest
when its relation to light-cone quantization was
realized. ' In fact, the standard rules of calcula-
tion are identical in the two theories. The z-graph
contributions of the TOPTh„correspond to seagull
terms in the interaction using the light-cone quan-
tization method. However, the development of the
calculational rules directly from the standard the-
ory with the P-~ limit allows one to develop re-
normalization theory and avoids errors due to
nonuniform convergence in the P-~ limit. For ex-
ample, we clarify the subtleties involved in the
light-cone calculation of the electron self-mass.
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Our results agree with the analysis of this prob-
lem by Bouchiat et al . Our techniques show
how to calculate quantum electrodynamics on the
light cone in the Feynman gauge, rather than in
the Coulomb gauge, and how to implement the re-
normalization procedure.

After the work in this paper was completed,
there have appeared other, more formal, proofs
of the equivalence between light-cone and con-
ventional QED.' The approaches are somewhat
complementary. Whereas these works show for-
mally that light-cone-formulated and conventional
QED have the same renormalized S matrices, we
show that the P-~ limit of time-ordered perturba-
tion theory does give the light-cone-formulated
rules. Moreover, we use this formalism to per-
form actual higher-order calculations.

The plan of this paper is as follows: In Sec. II,
we rederive the rules for calculating time-ordered
perturbation theory (TOPTh) in the infinite-mo-
mentum frame, and present an automatic method
for incorporating the contributing "z graphs" of
spinor theories. Then, even in spinor theories
only intermediate states in which each particle has
a positive component of momentum along P survive
in the I'-~ limit. Moreover, we show that a sin-
gle spinor or trace calculation suffices for a11
time-ordered graphs corresponding to the same
Feynman graph.

The renormalization procedure for TOPTh„ is
presented in Sec. III. We show that the P-~ limit
is uniformly convergent with respect to the phase-
space integrations when calculating renormalized
amplitudes with invariant regularization, although
this is not true for the evaluation of the renormal-
ization constants themselves. Vacuum polariza-
tion and the general problem of photon and fermion
self-energy insertions in higher-order graphs are
discussed. Examples of vertex subgraph renormal-
ization in the fourth-order electron vertex are also
discussed. This section also contains a proof of
the Ward identity in the context of TOPTh„, and a
heuristic proof of the renormalizability of QED in
TOPTh

In Sec. IV we discuss some details of the cal-
culation of the fourth-order and some pieces of the
sixth-order anomalous magnetic moment of the

electron. The required phase-space integrations
over transverse and fractional longitudinal mo-
menta are in general regular and smooth, and are
often more readily integrable than the standard
Feynman parametric form.

In the Appendix we discuss a method which, in
some cases, provides a direct connection between
the Feynman rules and those at infinite momen-
tum. This method provides further insight into
how our &-graph rules arise. We also comment
that the connection between the Feynman and
TOPTh„rules is not simple in all cases.

II. THE RULES

The S matrix is related to the invariant matrix
element M by

S= I-(2v)'id'~(P P, )-M N„(2.1)
externaj
particles

where N, is the normalization factor (2v) '~'(28, )
'~'

and E,. is the energy of the i th external particle.
We now write the rules for calculating the contri-
butions to M in the interaction picture in TGPTh.
For the moment we restrict ourselves to spinless
particles with a p' interaction. We first classify
the time-ordered contributions according to their
Feynman topologies. Then we do the following:

1. For each Feynman graph of order n, assign
a time t, to the ith vertex. Then draw n! graphs,
corresponding to all permutations of the times t„
with the same topology as the Feynman graph. As
an example, to the simple Feynman vertex graph
of Fig. I there correspond six time-ordered
graphs as shown in Fig. 2. (By convention, time
flows from left to right. )

2. With each line of each time-ordered graph,
associate a three-momentum.

3. At each vertex except the last, write a factor
(2v)'g 5 ' (Pp, ), where g is the coupling constant,
and the 6 function expresses three-momentum con-
servation. at that vertex. At the last vertex insert
only a factor g, since the factor (2n)'5i'~(gp, ) has
already been taken out of M in (2.1).

4. For each internal line write a factor
(2w) '2Z, ', where E, is the energy of the line in
question, calculated on the mass shell, i.e.,

( p 2+~ 2)1/2 (2.2)

5. For each intermediate state, i.e., for each
state between interaction times, write a factor

1

+is '
inc jnt

FIG. 1. Feynman vertex graph in third order.
where E. is the total energy of the incoming par-
ticles, and E. t is the energy of the intermediate
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mentum P is large and along the positive z direc-
tion. We will show that as P-~, each of the time-
ordered graphs tends to a finite limit, often to 0.
That each graph tends to a finite limit is not a triv-
ial result, since from covariance only the sum of
all the graphs need be independent of P. There
might have been cancellations between infinities
.of specific time-ordered graphs.

We parametrize the momentum of the i th line by

p;=x, P+k;, (2.3)

t~&t~&ti tq&t~&t. q t2&t~&t~

where x,. is the fractional longitudinal momentum
and k,. is a two-dimensional vector in the x-y
plane.

Since by definition the total incident momentum
is P, we have

FIG. 2. The six time-ordered contributions to the
Feynman vertex graph of Fig. 1. By convention, time
flows from left to right.

gp, -=Px,. P+Qk, =T
111C 111C inc

so that

state, obtained by adding the single-particle ener-
gies of all particles in that particular state.

6. Integrate d'P, .
V. Add the contributions of all the different time-

ordered graphs.
One sees several features which distinguish

TOPTh from the Feynman approach. First, every
intermediate particle is on its mass shell, but
energy is not conserved, while in the Feynman
approach, energy is conserved but particles are
off the mass shell. Second, all particles propagate
forward in time, and the number of particles in a
given intermediate state is clear. Third, manifest
covariance is gone. One can summarize these
last two points by saying that TOPTh emphasizes
the unitarity of the theory, while the usual ap-
proach emphasizes its covariance. Fourth, there
are many more graphs to calculate in TOPTh than
in the Feynman approach.

Points three and four are usually considered
serious practical shortcomings of TOPTh. How-
ever, Weinberg' realized that the lack of manifest
covariance couM be used to good advantage. He
argued that since the sum of the time-ordered
graphs was covariant, although each of the graphs
by itself was not, it might be possible to find a
frame of reference in which it was particularly
simple to calculate each of these graphs. In par-
ticular, there might be a frame in which one could
recognize immediately that most of the graphs
gave a vanishing contribution. That frame is the
infinite-momentum frame.

Let us review his argument. We view the scat-
tering process from a frame moving rapidly in the
negative s direction, so that the total incident mo-

Qk, =0. (2.4)

Because of three-momentum conservation of
each vertex, we also have for each intermediate
state

Qk, =0.
int

(2.5)

x,.&0 (2.6)

for all external particles. But for internal par-
ticles, the x integrations extend over negative x
as well.

In the limit P-~, we have, from (2.2) and (2.3),

z, = ( p, '+m, ')'~'

(2. I)

where

fk +m
ix,.

/

The incident energy is, by (2.6) and (2.4),

(2.8)

E = E]
11IC ~

(2.9)

Assuming that no photons are traveling exactly
in the -z direction, we can always choose the ve-
locity of the observing frame large enough so that
all external particles have their z component of
momentum positive, i.e.,
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The energy of an intermediate state is

(2.10)

(2.11)

If, however, some x, are negative, we have

E. = 1-2 x] P+0— (2.12)

Counting powers of P in a graph with n vertices,
we obtain the following:

(a) From rule 3

g(3 p g(2)

=—5~'&~k, ) 6(gx, )

If all the x, in the intermediate state are positive,
then using (2.5) we find

large.
We have been rather cavalier in counting powers

of P, for although P gets large, it is possible that
xP is not large, and our expansion (2.7) in terms
of P may not be valid. This is discussed in
greater detail in Sec. III. Our analysis is correct
for the calculation of renormalized quantities, but
must be modified for calculating divergent quanti-
ties.

We can now rewrite the rules of calculation, de-
noting them by primes:

1'. For each Feynman graph of order n, draw
all time-ordered graphs in which each vertex has
at least one line from the past and one to the fu-
ture.

2'. With each line associate an x and k.
O'. At each vertex except the last write a factor

(2w)'g 5+x,)5~'~(Qk, ) inserting only g at the last
vertex.

O'. For each intermediate state write a factor

2

gs, -gs, +ze
inc int

and since there are (zz-I) 5 functions we obtain a
factor P ~" '~.

(b) From rules 4 and 6

d'p, d 2kdx

(2zz)'2E; 2(x~(2w)'

independent of P.
(c) From rule 5 for each intermediate state with

all x, &0, we obtain from (2.9) and (2.11)

4' and 6'. Integrate

d'k; dx, 0(x, )
(27z)'2x,

7'. Sum over all time-ordered graphs.
The presence of spin complicates the situation.

In the case of QED, the vertex becomes one of the
following':

2P
Sg S)+SE'

int

whereas if some x,& 0, we obtain from (2.12)

1
2 +xP '

u(p)ey u(p')e„,

u(p}ey v(p')e„,

-v(p) y" (p') „
-v(p)ey" v(p')e~,

(A)

(B)

(C)

(D)

s, is given by (2.8). There are altogether (n-1)
intermediate states, and so to obtain a nonvanish-
ing limit as P-~, each term from rule 5 must
contribute a factor P. Thus in all cases we have
a finite limit and a nonzero limit only if each in-
termediate state has all its x, &0. But since Qx,
is conserved at each vertex, this is only possible
if each vertex has at least one line coming from
the past and one line proceeding to the future.
Thus, of the six graphs of Fig. 2, only 2(a) and

2(b) have nonvanishing limits as P-~. So the
passage to infinite momentum has reduced the
number of graphs to be calculated. It should be
stressed that letting P-~ is just a choice of ref-
erence frame, and no invariant quantity is getting

instead of g (e'=4zzo). Here p and p' are the mo-
menta of the respective on-mass-shell fermions
[i.e., P,=(p'+zzz'}'~'], and e„ is the polarization
vector of the photon.

The sum over intermediate states now also in-
volves the sum over spin. We work in the Feyn-
man (Gupta-Bleuler) gauge, where

ge„(k, X}e„(k,A)=-g„„.

Our previous counting powers of P is now upset,
since the vertices can also contribute powers of
P. A straightforward calculation" shows that as
P-~, one of the vertices (A)-(D) is of order P
only if



BRODSKY, ROS KIE S, AND SUAYA

(a) p, = 0 or 3 and xx'&0,
(b) g=1 or 2 and xx'&0, (2.13)

Otherwise, it is of order unity. Moreover, in case
(a), the coefficient of P is the same whether p=0
or p, = 3. (Here x and x' are the x values associated
with p and p'. )

We now show that the contribution to 3f is of
order P "~ + "3, where ¹ is the number of external
photons of polarization i.

Assume first that all x,&0, so that case (b) never
arises. If a vertex is connected to an external.
photon, it contributes a factor P if and only if the
polarization is 0 or 3. If the vertex is connected
to an internal photon, because the coefficient of
P is the same whether p, =0 or p, = 3, and because
goo g 33 in the photon po 1arization sum, the terms
of order P and P' from these two vertices cancel
identically, and give an effective vertex of order
unity. {The terms of order unity do not cancel, so
that one cannot say that the p. = 0 piece cancels the
p, = 3 piece. In fact, this scalar/longitudinal piece
is responsible for the Coulomb force. )

Suppose now that some x;&0. We saw that the
matria element is suppressed by 1/P' for every
intermediate state containing a particle with x&0.
But such a particle can contribute a factor P' to
the numerator (a factor P for each of its two ver-
tices). Thus, a fermion of negative x can contrib-
ute to M in leading order but only if (a) it extends
over one tim'e interval only, so that it contributes
to only one intermediate state, and (b) the fermions
at each of its vertices have x&0. Since a photon of
negative x contributes no powers of P to the nu-
merator, it can contribute only if every interme-
diate state containing it also contains a fermion of
negative x. This is only possible in the simplest
self-energy diagram (see Fig. 3) which will be
discussed in Sec. III. These rules for incorporat-
ing fermions of negative x were first derived by
Drell, Levy, a,nd Yan."

Because fermions of negative x can contribute
to leading order, our previous criterion of dis-
carding graphs with fermions of negative x is no
longer valid. But it can be salvaged by modifying
the fermion spin sum as we now show.

The spin sum occurring in the matrix elements
is

u(p, s)u(p, s)=(p'+m),

Suppose there is a graph G with a positron of mo-
mentum P with negative x between vertices V,
and V, with V, after V, . The energy denominator
associated with the intermediate state between

FIG. 3. Time-ordered contribution to the self-energy
containing a backward-moving fermion.

(/+m) (-P'+m)
s. —s. + zp 2xP

inc

(P'+m) -2E,y' P'+m
( )8. —s. + zq 4xP 4xP

inc int

The third term of (2.14) is negligible compared to
the first. Also we have

E~= ~x(P= xP since-x&0, (2.15)

and so (2.14) becomes

where

.o —'
inc int

(2.16)

p0 pO+ inc int

2P

(2.17)

By changing the propagator of an electron with
positive x from (P+m) to (y p+m) whenever the
electron line extends over a single time interval,
we automatically take into account the contribution
of all positrons with x &0. Similarly, we modify
the propagator of positrons with positive x, which
extends over one time interval, from (-y.p+m) to
(-y P+m). We do not change the propagators of
fermion lines extending over more than one time
interval. With the replacement (2.17) only time
orders in which every intermediate state has pos-
itive-moving particles need to be explicitly con-
sidered.

V, and V, is E. ,-E. , = 2xP. (Note that no other
particle occurring in this intermediate state can
have negative x since it would extend over more
than one time interval and give zero contributions.
The exceptional cases are the self-energy graph
of Fig. 3 and the corresponding photon self-energy
graph with which we will deal separately )It. is
straightforward to see that there is always an ad-
ditional time-ordered graph G identical to G ex-
cept that the time order of vertices V, and V, is
interchanged. The line between V, and V& now rep-
resents an electron with momentum p= -p,
E~=E~=(p'+m')'~'. The sum of contributions from
these two intermediate states is
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This replacement of p„by p„ is very reminiscent
of the Feynman approach. One takes the fermion
off the mass shell (P'wm'), but reduces the num-
ber of diagrams. Moreover, p„ is the four-vector
which enforces four-momentum conversation be-
tween the given intermediate state and the external
state:

x, k

I"IG. 4. Feynman graph for a self-energy insertion in
the Compton amplitude.

However, since not all fermion lines extend over
a single time interval we do not have complete
four-momentum conservation at every vertex.

From (2.13b) we see that it is not necessary to
modify the propagator of a fermion extending over
a single time interval if either of its vertices is
connected to an external photon of polarization 0
or 3, although modifying it will not change the
answer. This follows because the associated
fermion of negative x cannot contribute the neces-
sary P' to the numerator.

Our final rules for QED at infinite momentum
are thus obtained by modifying the infinite-momen-
tum rules for the P' theory as follows:

2". With each internal line associate an x and
k. For () "(,',",'. ) extending over more than one time
interval insert a factor (+P+m), where P is the
four-momentum associated with the line. For
fermions extending over one time interval insert
the factor (+y P+m), where P is related to P by
(2.17). For each internal photon line insert the
factor -g„,. A trace is implied for closed fer-
mion loops.

3". Replace g by ey~ in 3'.
Finally, we note that if we assign momenta

p„.. . , p~ for the fermion momenta of a given
graph, then the Dirac algebra for each time or-
dering is identical to that of the Feynman graph
calculation, although the identification of p, in

terms of the external and loop momenta depends
on the particular time order.

III. RENORMALIZATION

In this section we indicate how to implement the
renormalization procedure in TOPTh„. This pro-
cedure is simple and straightforward to apply in

practice, and closely parallels the explicitly co-
variant Feynman-Dyson approach. Reducible am-
plitudes with self-energy and vertex insertions
are renormalized using subtraction terms cor-
responding to 5, Z, , and Z, counterterms, which

usually can be constructed to cancel pointwise the
ultraviolet d'k phase-space integrations. In this
section we develop the renormalization procedure
for QED in TOPTh„and concentrate on the fea-
tures which are distinct to the infinite-momentum
method. In Sec. IV we discuss the application of

A. Self-Energy Insertion in Compton Scattering

As a first simple example consider the self-
energy insertion to Compton scattering shown in

Fig. 4. In the usual Feynman approach the renor-
malized amplitude is constructed by subtracting
formally divergent 5 and Z, counterterms in
second order. The problem is to choose an in-
tegral representation for these constants so that
the total integrand of the renormalized amplitude
is finite and pointwise covergent. In general, the
integrands are defined assuming covariant Feyn-
man or Pauli-Villars regularization.

The frame is chosen so that the fermion line p,
in Fig. 4 has momentum p,=P. For the moment,
consider the case of scalar particles. Only one
time-order survives as P-~. The unrenormalized
amplitude is

g', ' dx 1 1 1
2(2s)' „s((-s) s,-s, s,-s, s,-s,)'

where (using a photon mass X)

(3.1)

s,= ( p,+q,)'+ ie,
Sg=m = S3 ~

k2+m2
S2= +

x 1~x

(3.2)

The t) and Z,= 1+B&» counterterm subtractions
may be computed by what we call the method of

these rules to the calculation of the electron anom-
alous moment in fourth order. Here we present
a heuristic proof of the renormalizability of QED
and discussion of the uniformity of the P-~ limit.

In performing these renormalizations, we are
subtracting infinite quantities, which is always a
delicate procedure. The correct way to do so is to
first regulate the intergrals, rendering them finite,
then subtract, and then let the regulators disap-
pear. In the infinite-momentum frame, since co-
variance is not manifest, one must be especially
careful to regulate in an invariant manner. This
can be achieved by using the Pauli-Villars reg-
ularization scheme.
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alternate denominators. Note that 5 can be
written asg', ' dx 1

5 =, d k
2(2w)' ~, x(1-x) s, s-2+is

since particle a is on the mass shell. (Note this
expression must be defined here by covariant-reg-
ularization, e.g., by subtraction of a heavy photon

of mass A2. ) Thus mass renormalization only re-
quires the subtraction of the integrand with the al-
ternate denominator

1 1 1

Sp-Sg Sj-S2 Sp-S3
(3.4)

in M„. Similarly, if we perform wave-function re-
normalization we obtain the renormalized ampli-
tude

g4 1 " d2k 1 1 1
M =

3 dx +
2(2v)' 0 x(1-x) (s,-s,)(so-s2)(so-s2) (s,-s,)(s,-s2)(s2-s2) (so-s,)(s,-s2)

(3.5)

The last term is exactly -B times the Born
term. The total integrand is now rendered finite
in the ultraviolet (k'-~). By combining the terms,
we see that the single-particle poles disappear,
so that the location and residue of Compton scat-
tering are still given by the Born term.

The essential point of the "alternate denomina-
tor" method is that the external energy used for
the denominator of the subtraction term for a re-
ducible insertion is not the external (initial) energy
s, but rather the energy (s,) external to that re-
ducible subgraph. The analog to off-mass-shell
behavior in the Feynman approach is precisely
the difference between the use of sp and s, in the
energy denominators. In general, in self-energy
insertions onto a line with momentum p, one should
use the "scaled" variables l,=xp, +k and

1,=(l-x)p, -k for the internal integration. This will
ensure pointwise convergence of the d'k integra-
tion, after subtraction of the necessary counter-
terms.

Combining terms in M„„we obtain the covariant
spectral form

«~ 2(2m)' ~, x(1-x) (s,-s2)2 s,-s,

I

Thus the renormalization is identical to that ob-
tained by using the spectral integral of the re-
normalized Feynman propagator, since

vp (p')=ImDg" (p, ).2

B. vacuum Polarization

Consider the vacuum-pola, rization insertion in
electron-electron scattering [Fig. 5(a)]. If we
choose a frame in which q=p, -p2 has a positive
component along P, then only the time order in
which the (q, p, ,p, ) vertex occurs first and the
(q, p, , p, ) vertex occurs last contributes for P-~
The energy denominator for any intermediate
state inside the vacuum-polarization insertion is

1 1

E+E -E+E+ E E -E — E
vac.pol. vac. po&.

(3.10)

so that the initial energy for the vacuum-polariza-
tion insertion is qp—=P,-P,. Thus if we define
qz' ——(P,-P,)', then the amplitude has the factorized
Feynman form

(3.6)
2 ~ /

(
2 y2+ i }2 ll~qF

gp
(3.11)

OO g 2

P P(P )(p )2 2
(m+ X, )

where p,
'= s2 and

1
P(P)16 2

(
'2 2)2

(3.t} where 2„(q&2) is computed from diagr'am 5(b), for
a photon mass q~2&0. The Feynman propagator
q„'-X'+i& is obtained from the product of the pho-
ton phase space (2qo)

' and the energy denominator

1
x dx e(x(1-x)p, 2-(1-x)A2-x m2}

p (3.8)
(a)

g2 I [(~2+y2 ~2)2 4 2y2]l/2

16W2 (m'- p2)2 p,

(3.9)

FIG. 5. (a) Vacuum-polarization contribution to
particle scattering. (b) Vacuum-polarization insertion
calculated in Eq. (3.19).
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I I 8 -Z.s, (-Z ~)(-r.e),„' -q~'+is (q~'+is)' (3.12)

where by Lorentz invariance m"" is a function of
q~=P", -P," and by gauge invariance w"' has the
form

u ( gu q +quqv)v(q (3.13)

and l, and I, are the lepton current factors. At
infinite momentum we can extract m(q') from w~„
simply by considering

(PM-P»-qp+ie) ' at infinite momentum.
Renormalization may now be carried out by the

alternate denominator method as in Sec.III A. The
renormalized amplitude is then a spectral integral
of the Born amplitude over photon mass which we
shall calculate below. We can easily extend the
analysis to self-insertion in higher-order graphs.
For example, consider the time-ordered contri-
butions to electron-electron scattering shown in
Fig. 6. After the integrand for the counterterms
for the vacuum polarization insertion is com-
puted using the alternate energy denominator meth-
od, one finds that the three time orders combine
simply and the renormalized amplitude can again
be written as the spectral integral in photon mass
over the "Born" amplitude of Fig. 7.

As a further example, we calculate the lowest-
order vacuum polarization correction to lepton-
lepton scattering in QED. The sum of the contri-
butions from Fig. 8 is

FIG. 7. Vertex correction to electron-electron scatter-
ing.

Only the piece of zo, proportional to P' survives,
and graph 8(c) is eliminated. Restricting our at-
tention to graph 8(b), we have

sm

7Tpp 2(2 )
3 dx J

— Tr [(m +p', )y'(m -p', )y']

(, k'+m' k'+m'
X/q~'- +ZE~X

(3.17)

where P, and P, are on-shell with space components
(k, xP) and (-k, (1-x)P), respectively. The term
proportional to P' gives the unrenormalized am-
plitude

v(q~') = lim ~2P

(2m)' p
P+m' q~'x(1 -x) ic--

(3.18)

Fp3 qpq3x(q )

Moreover, choosing

(3.14) We obtain the renormalized amplitude by subtrac-
tion at q '= 0 (corresponding to wave-function re-
normalization of the photon) or by alternate denom-
inators. Thus

q= P+—,O, P

we see that

(3.15)
x (qz') =— dx x(1-x)ln 1-2G q~'x(1-x)

fen & P m

(3.19)

2, „~s(q )
P (3.16)

(3.20)

in agreement with the standard results.

and the total lepton-lepton scattering interaction
for Fig. 8 is

I|I 2 3 I' ll+v ..(q')1
q~ -X +if

FIG. 6. Time-ordered contributions corresponding to
the vacuum-polarization insertion in a vertex correction
to electron-electron scattering. The three time orders
combine, when renormalized, to the renormalized
covariant photon propagator modification for Fig. 7.

(a) (c)

FIG. 8. Contribution to electron-electron scattering
from time-ordered perturbation theory.
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C. Vertex Factorization

Before discussing vertex renormalization, we
first give a general proof of vertex faetorization
in TOP7h. Consider the scattering diagram of
Fig. 9 in which the vertex part contains a total of
N+ 1 internal interactions. For simplicity we con-
tinue to treat all the particles as spinless.

We choose q to have positive momentum in the
P direction. If q attaches to an internal line after
m internal interactions have occurred (0&m&M},
then there are m+1 contributing time orders de-
pending on the time of the (P, , P2, q) interaction.
Since q is on the mass shell, q,=(il2+X')'~'. We
also define qp=p, -p, =p4-P3 Summing over the
m+1 contributions yields the integrand factor

1 1 1
p 0 ~ 0

q -q, qp+4e, -qpq, +he, -q q,+he -q,

1 1 1 1
+ 0 ~ ~

hey qp+I5key qp qp+ke2 qp qp+Ae qp

1 1 1 1
+ 0 4 ~

Ae, Ae, qp+ Ae, -qp q™p+he -qp

1 1 1 1
+ 0 ~ ~ + — — P 0 0

Ae, h, e, Ae qp+he -q,
1

qp —qp

where hey is the ith energy denominator specific
to the vertex. The remaining energy denominators
give the common factor

PI Pp

FIG. 9. General vertex correction to electron-
electron scattering. When all internal time-ordered
contributions are combined, the covariant vertex correc-
tion (3.24) results.

naturally in TOPTh when the appropriate time
orders are summed over. This also permits by
covariance the use of the special frame choice'

q" =(q.p/P, ()I, 0), q'= -V &0

p=(P+m'/2P, 0, P)
(3.25)

D. V4rd Identity

The use of frame (3.25) allows an immediate
proof of the Ward identity Z,=Z, for the cancella-
tion of vertex and wave-function renormalization
in QED. We define the form factors as

which is very convenient for calculations of the
virtual Compton amplitude (q P=m v) and form
factor (2q p=-q'). In this frame, j brings in zero
longitudinal momentum, eliminates pair-creation
graphs, and thus further reduces the number of
contributing time orders.

1

Ae,.+qp
J=PL + 1

(3.22) (3.26)

The phase-space factor for the photon 2q, com-
bines with the factor (q, -q, ) to give the Feynman
propagator,

2q, (q,-q, ) = (p, -p, )'-x'+ i~

=—q~ —A. +SQ . (3.23)

F(q'), (3.24)

where F(q') is the vertex graph computed with the
photon mass given formally by q'= (p, -p,} & 0.
Note that pair creation graphs also have the form.

(3.24).
Thus, the concept of virtual-mass particles and

the factorization of vertex form factors appears

Thus, as expected, for each m the scattering am-
plitude takes the Feynman factorized form

At t=owe may identify J (0)=j (0)=:gy~g:, the
free current, in the interaction picture, and com-
pute I,. by TOPTh. Let us concentrate here on

computing the contribution to Z, or F,(0) from any
given proper vertex diagram in TOPTh. Note that
for q=o

F,(o)=lim(pIq„(o)Ip)- (&=0, 3).p (3.27)

Thus the contribution to Z, from any proper vertex
graph is obtained by simply inserting (m/P) yo or
equivalently x at the lnteractlon vertex where x
is the fractional ].ongitudinal momentum of the in-
teracting charged line. This factor of x cancels
against one of the two phase-space forms of x '
required for that line. The resulting expression
is then identical to that required for computing the
contribution of the corresponding proper diagram
to the wave-function renormalization constant Z,
for the state IP). The result Z,=Z, then holds to
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our order in perturbation theory. The same simple
proof holds in the case where

~ p) is a bound state.

E. Vertex Renormalization

As a final simple example of the alternate-de-
nominator renormalization procedure in QED, con-
sider the renormalization of the vertex insertion
in the ladder-graph contribution to the electron
anomalous magnetic moment F,(0}. If we choose
the (symmetrized) frame

qP =(0, q, 0),

2 2

then only the single time order shown in Fig. 10
needs to be explicitly considered at P-~. [Recall

p+q /2

FIG. 10. Labeling of the two-photon ladder-graph
contribution to the electron vertex.

that backward-moving fermion contributions are
included automatically by modifying the fermion
spin sum (2.1V).] As in the Feynman calculation
the integration of the reducible subgraph is log-
arithmically divergent in the ultraviolet. The sub-
traction of the contribution (n/2w)I. t2~ is required,
where y„L ' is the value of the proper vertex at
q=0 in second order. The unrenormalized ampli-
tude is

e' ' d'k, d'k
4(2w)3 ' ' - x (1-x )' (1-x )'

u(P+-'q)y (y P4+m)ya(y P.+m)y„(y P.+m)y'(y P,+m)y"u(P 2q)-
(sp-s, )(sp-s, )(sp-s, )(sp-s4)

where we choose the parameterization

(8.28)

lx——k,+x

l,=k2+ x, [-k,+(l-x,)P]

for the three-momentum of the two photons. The fermion momenta then are determined by three-momen-
tum conservation. With this choice of scaled variables the range of both x, and x2 is 0 to I and k, - k, cross
terms do not appear. Notice that the denominator product in (3.28} is an even function of fl because of the

choice of the symmetrized frame. In the calculation of F,(0), the magnetic-moment contribution is identi-
fied" from a term linear in fl and the q dependence of the denominators may be dropped.

The subtraction term is constructed using the alternate denominators (s,-s,)(s,-s,) instead of
(sp-s, )(sp-s, ) and the appropriate numerator coefficient of y at q-0:

~b 4(2s)' p
' ' ~ x,(l-x,)'x,(l-x,)'

u(p+ 2q} y (y p4+m) y„(y p,+m)y "u(p-2q) (8m -4p, p3)(1-x2}
(Sp Sg)(Sp S4) (S$ S2}(SQ S3) 4 p

The last factor is the integrand for L ' in second
order. The difference

converges pointwise in the d'k integrations, and
contributes a finite amount to F,(0). The infrared
behavior [at x, - 0 in M„and x,- 0 in I „]may be

regulated by using a finite photon mass X as in the
Feynman calculation. In the case of the ladder-
graph contribution to F,(0), these two infrared
terms in fact cancel. The cancellation may be
arranged to happen pointwise in the integrand by
symmetrizing the ( k, , x,) and (k2, x,) integration
of M
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1 1 1

e, E ~, E-e,-E ~, ' (3.30)

F. The Renormalization Constants

The calculation of 5m, in second order is an ex-
cellent illustration of the subtleties of the limit
P-~. As we have already indicated, our rule for
incorporating fermions of negative x is not valid
in this case, so we revert to the older rules in
which particles of negative x are treated explicitly.
Then there are two graphs, as indicated in Figs.
11(a) and 11(b). As is well known these graphs
are divergent and have to be regulated. A naive
argument would say that, upon photon regulariza-
tion, graph 11(b) vanishes, for since at least one
of the particles in the intermediate state has x &0,
the energy denominator is just 1/(1-+. ,ix, i) in-
dependent of the photon mass. Consequently, sub-
tracting a similar integrand with a large photon
mass will give identically zero.

Unfortunately, the argument is wrong, because
the limit P-~ cannot be taken under the integral
sign. One must integrate first, and only then let
P-~.

To see this, let us define the P-~ rules more
carefully. Ignoring the numerator structure for
the moment, the denominators are, before we
take P-~,

(b)

pfp

FIG. 11. Time-ordered contribution to the electron
self-energy. Because of the Pauli principle (c) contrib-
utes instead of (b) when p' =p.

by subtracting the contribution of a heavy photon.
So we must study

lim P P
~-" [(xP)'+k'+~']" [(xP)'+k2+A2]" '

(3.35)

where A is the mass of the regulator photon. For
xw 0 this limit vanishes. But it is readily checked
that as a distribution in x, (3.35) tends to

where

e = [(xP) + k'+ A.']' '

Z, ,=[(l-x)2P'+k'+m'j' '
Z-(P'+m')" 2

and X is a small photon mass.
For large P we wrote

k2+ X'
'a= IxIP+

(3.31)

k'+ X-lg 5(x) .
(k'+A'

This is consistent with (3.34) if

C = -ln( k'+ X').

One might argue that

P 1

e, [x~+(k2~/2)/P2]ii2

(3.36)

(3.37)

(3.36)

1 1
(3.33)

for large P. But if the functions vanish at x=0, we
could also write

and disregarded the second term in (3.32) in the
first term of (3.30). This is legitimate provided
that the function multiplying 1/e~ vanishes at x=0,
so that the integral over x is well defined. In other
words as a distribution on functions vanishing at
x=0 we have -in( k'+ X') 5(x) (3.39)

one shows that (11b) does give a contribution upon
regularization.

By our rules after regularization the contribu-
tion of diagram 11(a) to Sn is

is not a function of (k'+X'), but of (k'+X')/P2, so
that C should be -in[(k'+X')/P')]. But on regular-
ization the lnP' terms cancel. Using then as the
energy term

1 1 C5(x)
e, (3.34) e', ' dx m' (2-2x-x')-k'

16m'm 0 1-x -x'(1-x)+k'+m'x'
To fix the coefficient C, consider what happens if
the function does not vanish at x=0. Then the in-
tegral is not well defined and must be regulated,

-().-A), (3.40)



AND RE NORMAL I Z AT IQN. . .

where the photon mass is taken to be X, and its
longitudinal and transverse momenta are xP and

13k.
Our new rule for Sn~ gives

(a) (b)

(3.41)

Combining these two terms yields the Feynman
result. which can be written as

e' d, ~
'

d
2 m'(1+ x)

X

,k'+m'x'+(1-x) ~'

-(~—A) . (3.42)

This can be obtained by substituting the identity

k+X k+6
ln( k'+ A.')-ln( k'+A') = ln -ln

k+m 4+m

2 2

~

~
~

2

2 2x-2m x
0 k'+ m'x'+ (1-x)A.

'

-(X—A) dx (3.43)

into 5m~. Another derivation of this result is giv-
en in the Appendix.

It is clear that for amplitudes which are already
finite, the 5(x) cannot contribute and our previous
rules are correct. Thus, for example, in calculat-
ing the contribution of Fig. 12 (and the correspond-
ing 5 counterterms of Fig. 13) to the magnetic
moment of the electron, the contributions of Figs.
12(b) and 13(b) cancel identically upon regulariza-
tion. For renormalized amplitudes only Fig. 11(a)
contributes to the self-energy insertion.

It should be noted that technically, if the Pauli
principle were taken into account, graph 11(b)
would not contribute to 5 since the intermediate
state has two electrons of the same momentum
and spin. In fact, the actual contribution of inter-
est is the vacuum disconnected graph 11(c), where
the entire Fig. 11(c) d'p integration would give no
physical contribution, except for the fact that the

FIG. 13. Mass-shift subtraction terms for the two
time-ordered self-energy contributions of Fig. 12,
corresponding to Eqs. (3.40) and (3.41), respectively.

p'=p contribution is missing. However, 11(c)
gives the same contribution as 11(b}calculated as
if the Pauli principle is ignored. This is clear
since we can imagine taking the final momentum
equal to p+ 5 in 11(b) by considering an off-shell
process. The sum of 11(b) and 11(c) is continuous
as 5- 0. Accordingly we can follow the usual Feyn-
man convention of ignoring the Pauli principle and
the contribution of vacuum disconnected ampli-
tudes. In the case of the unrenormalized ampli-
tude for the vertex graph of Fig. 14, a 5(1-x}con-
tribution will occur. (This disagrees with the ar-
gument given in Ref. 5, that all distribution-type
terms can be associated with vacuum disconnected
graphs. ) However, upon regularization in the pho-
ton mass this contribution cancels, and it never
appears in the renormalized amplitude. We note
also that if regularization in the lepton mass is
used in the 5„calculation, then 5(x) contributions
may be formally ignored.

G Renormalizability

It is possib1. e to give a heuristic proof of re-
normalizability of various theories directly from
TOPTh in the infinite-momentum frame. The ultra-
violet divergences of the phase-space integrations
are assumed to be covariantly regulated by gauge-
invariant Pauli-Villars negative-metric internal
leptons or photons (or by Feynman spectral con-
ditions) where required. The infrared behavior
at mph t 0 may be regulated by using a photon
mass X'." We use the Weinberg power-counting
theorem. " After removal of divergent subgraphs,
the phase-space integrals of the skeleton graph
will converge in the ultraviolet if the total degree
of divergence d is negative.

We begin with the P' theory. Recall that the de-
gree of divergence in the Feynman theory is, for
a graph with V vertices and N internal lines,

(a)

FIG. 12. Time-ordered contributions for a self-energy
correction to the electron vertex.

4N-2N-4( V-1),

where 4N comes from d'k, -2N from the propaga-
tors, and -4(V-1} from momentum conservation,
while in our rules it is
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2N-2( V-1)-2( V-1),

where 2K comes from d'k, -2(V-1) from energy
denominators, and -2(V-1) from momentum con-
servation, which agrees with the Feynman result.
Thus, just as in the Fey'nman case, one proves
the renormalizability of the theory.

For any Feynman diagram in spin- —,
' QED, one

finds from the usual Feynman rules

d, g,
—-4(B,+F,)-(E,+ 2B,)-4(V-l)

can only be increased by 1. A similar rule holds
for the ypPO terms. Thus the powers of k contrib-
uted by the spin sums is at most

g +~+

Then we obtain, for each time-order diagram in
spin--,' QED, the degree of divergence

d„,= 2(B,+F,.)+(F,+ —.'F.)-2(v-1)-2(v-1)

=4-E -B
= 4--,'Z, -B.,

where 4(B,+F,) comes from d4k, -(F,+2B,) from
propagators, and -4(V-1) from momentum con-
servation, where B, , B, , I';, and E, denote the
number of internal and external bosons and fer-
mions. " For spin-zero electrodynamics, we have

d,=4(B,+F,)+ V-(2F, +2B,)-4(V-1)

=4-F8-B, I

where 4(B,+F,) comes from d'k, V from numera-
tor terms, -(2F,+2B,) from propagators, and
-4(V-1) from momentum conservation.

The only difficulty in deriving analogous rules
for spin- —, QED in TOPTh„ is in deciding the num-
ber of powers of k contributed by the spin sums
P, +m, or y P, +m, . For each internal fermion
line, these spin sums contribute one power of

~
k~

from y k. If any two of these internal vectors dot
together, this rule is correct since the result is
of order k'. If, however, such a P, dots with an ex-
ternal line, the contribution is of order k', not

~
k~.

%'e now show that this can contribute at most an
extra factor (kg~~'.

This situation arises in computing

u(p ")Ãu( p'),

where P', P" are external fermion momenta and

II is formed from scalars and p, . It can be veri-
fied that the combination

P IP 1IP ~P I

cannot occur in such a term, except in the com-
bination

(Pi P"P2 P'-P2 fp"Pi P')

which is at most of order k', and not of order k'.
This is a reflection of the fact that two spin- —,

' spin-
ors (of momentum p', p") cannot couple to a spin-
2 object, as is required to produce the symmetric
tensor P„'P„'. As a result, for each two external
fermions, the degree of k in the matrix element

where 2(B,+F,) comes from d'k„(F,+~F,.) from
the numerator terms, -2(V-1) from the energy de-
nominators, and -2(V-1) from momentum conser-
vation.

Similarly, for spin-0, TOPTh QED at infinite
momentum

do= 2(B(+I'()+ V-2( V-1)-2( V-1)

=4-Z -a
where 2(B;+F,) comes from d'k, , V from the num-
erator terms, -2(V-1) from the energy denomina-
tors, and -2(V-1) from momentum conservation.
Since d depends on the number of external lines,
there are a finite number of divergent subgraphs
and the usual renormalization program may be
carried out. Note that the result for d, &, is an
overestimate since, as the Feynman result shows,
the extra —,'I', in d, ~, cancels when the various
time orderings are combined.

This cancellation (between pair states and non-
pair states) can be traced to Fermi statistics.

H. Convergence as j'~o

We restrict our attention to Q' theories. We
have already shown in Sec. IIIG that the degree
of divergence in k' is as in the Feynman theories,
and it is easily seen that there is no divergence
in x, since the factor 1/x associated with each
line is compensated by the factor (k'+m')/x ap-
pearing in the energy denominator of the inter-
mediate states in which this line occurs.

We discarded contributions of particles with
negative x because the energy denominators for-
mally suppressed the graph by 1/Pm. But the ef-
fective energy denominator

1

mt

does not contain the factor x/k' which we counted
on in our previous analysis, so that one could get
divergence at x=0 or k'=~. To study these recall
that the energy denominator is really
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k+m k+m,
Z 2(x, Piflg

(3.44)

O, q

If only x, is negative, then as it goes to zero the
term ls

1 1
P' 2x,+O(1/x,P2) (3.45)

The O(1/x, P') term cuts off the integral at x,
=O(1/P). The contribution to the graph from small
x, is then

1 dx, 1
=O(1/P) (3.46)

and so is still negligible. By a similar argument
the%' integral is cut off at P' (actually k =xP').
lf the rest of the graph contributes a factor 1/k'
then the entire contribution is

1 d2k -lnP'
k 2(~2 k2 P (3.47)

which is still negligible. However, if there is no
other factor 1/k' the graph contributes

d'a=O(1)1
(3.48)

and is not negligible. This only happens if the vec-
tor k does not occur in any other intermediate
state, for otherwise the energy denominator of
that state would have a factor 1/k'. But this can
only happen in the lowest-order self-energy graphs
or in any graph in which these are imbedded.
These are self-energy terms which must be reg-
ulated anyway, by subtracting the contribution of
a heavy mass M. One verifies that after regular-

q/2

FIG. 14. Labeling of the vertex diagram for the
anomalous moment calculation.

ization the contribution of negative x can be dis-
carded.

In summary, our P=~ rules are valid for re-
normalized quantities but not for unrenormalized
ones.

IV. CALCULATIONS

As an example of these techniques, we have cal-
culated the 4th-order contribution to the magnetic
moment of the electron in QED. We chose this
particular calculation because it involves all three
types of renormalization, and agreement between
our answers and the well-known results of Sommer-
field and Petermann" would be confirmation that
both the P-~ limit and the renormalizations were
correctly handled. We also hoped that our tech-
niques would prove competitive with the Feynman
approach, so that we could proceed to calculate
part of the 6th-order moment. %e begin with the
calculation of the second-order anomalous mo-
ment. " Consider the graph shown in Fig. 14, in
which the external photon has x= 0 and polarization
index 0. x and k are labeled for each line. By our
rules the matrix element, without external fer-
mion spinners, is

e2 d2k dx
3tI = -2(2 ). (1 ). r "(P',+m) r'(P'. +m) r„

(4 1)

where P»P, are on-shell vectors with space components (k+ —,
' j, (1-x)P) and (k- —,'q, (1-x)P).

It is readily verified that the anomalous moment is obtained from by

(0
. I. 2 m' [3g (p ,' y'+ m)(r o/P -I/-m)( p'+ —,

'
g+m -)]

-q'P (4.2)

where P- —,'q, and p+ —,'q are on-shell vectors with
space components (-—2q, P) and (-,'I'I, P), respec-
tively.

Performing the trace and taking the appropriate
limits we obtain

F (0) 22m
(

y3 dxx (1 x) d kg
t k'+m'x' '

8 1—x
2m 3dx2 go(2n)', m' 2n

'
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In the lowest-order calculations the x variable
plays the role of the Feynman denominator-com-
bining parameter. This identification, however,
cannot be made in general.

There are five different Feynman graphs con-
tributing to the magnetic moment in fourth order.
They are shown together with the corresponding
time-ordered graphs in Fig. 15. As explained in
Sec. II, it is sufficient to consider only those time
orderings with all x, &0.

%e wrote a two-stage program to perform these
calculations. The first stage was a symbolic and
algebraic program written in REDUCE, " It took
as input the topology of the Feynman graph, and
automatically generated the surviving time orders,
set up and performed the required traces, com-
puted the energy denominators„and expressed
everything in terms of the infinite-momentum-
frame variables. The output is a set of FORTRAN

expressions, which served as input to the second
stage, a multidimensional integration program
written by Sheppey. " The vacuum-polarization
graph was handled as indicated in Sec. III. As in-
dependent variables for the crossed and corner
graphs, we used x and k for each of the two virtual
photons. In the ladder and self-energy graphs, we
parametrized the momenta of the photons as follows:

(1) outer photon: x=xg,

k=k~,

(2) inner photon: x= x,(l-x,),
k=k-x k .

With this choice, x, ranges between 0 and 1 and
the energy denominators have no terms in k, ~ k, .
This made the integrals over the directions k, and

k, trivial, so that the resulting integrals were
four-dimensional (over x„x„k,', k, '), while
those of the crossed and corner graphs were five-
dimensional. "

The crossed graph can be computed immediate-
ly, "since it requires no renormalization. The re-
normalization of the ladder and self-energy graphs
were straightforward, as outlined in Sec. III. The
infrared piece of the ladder graph canceled after
symmetrizing the integrand in (x„k,') and (x„k,'),
whDe the infrared piece of the self-energy graph
was removed as in the Feynman method.

The only difficult graph to renormalize was the
corner graph. Until this point, our representation
for the counterterms assured that the divergence
(in the k integral) of the unrenormalized graph and
the counterterms canceled polntwlse. IIl the cor-
ner graph, both IV(a) and IV(b) required subtrac-
tion. (See Fig. 15.) Although the divergence of
both graphs adds up to that of the counterterm, we

Feynman Time Ordered

Ladder
1

Cross
lZ

(b)

Self Energy

Corner
jr

(b) (c)

Vacuum
Polarization

did not find an elegant representation of the coun-
terterm (n/2w) xd'~ which renders each time or-
der finite. What we did was to isolate the diver-
gent pieces of each time order, and analytically
compute the difference between these terms and
the counterterms, using a regulator photon mass
to assure covariance. Covariant regularization
was essential in obtaining the right answer, since
the subtraction of two divergent quantities is am-
biguous. Our method in this graph was similar in
spirit to intermediate renormalization" in stan-
dard QED calculations in which subtraction terms,
differing from the usual counterterms, but with
the same ultraviolet behavior, are introduced in
intermediate stages of the calculation.

It should be noted that even for these graphs,
our integrand was given by the infinite-momentum-
frame rules. It was not necessary to renormalize
at finite momentum and then take the infinite-mo-
mentum limit.

To understand the origin of the difficulty in re-
normalizing the corner graph, recall that the pho-
ton incident on the reducible vertex piece has xg 0,
whereas in the counterterm the photon is taken
to have q„=0. Thus in the counterterm an inser-
tion like that depicted in Fig. 16 cannot appear,
since a photon with x=0 cannot produce two fer-
mions with positive x. Nevertheless, the main

(a)

FIG. 15. Contributions to the order-02 corrections to
the electron vertex. The left column shows the Feynman
graph. The other columns display the corresponding
essential time-ordered contributions as P
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graph IV(b) containing this insertion diverges. The
lines external to the reducible insertions in IV(b)
do not satisfy energy conservation. Thus, the in-
sertion is not Lorentz-invariant, and it can be
verified that graph IV(b) is finite in TOPTh in a
frame with finite momentum. It is the limit P-~
which gives rise to the divergence. This is of
course possible, since the noninvariant insertion
is frame-dependent.

The results of our calculations agreed with the
usual answers. " But as a pleasant surprise, it
appeared that our integrands, expressed as a func-
tion of x, and k, , are smoother than the correspond-
ing usual integrands expressed as a function of the
Feynman parameters. As a result, the numerical
integrations (which are often the most difficult
part of higher-order calculations in QED) converge
considerably faster. Typically, where compari-
sons could be made, the numerical integration
time was between 2 and 5 times faster than the
standard Feynman parameter method. This gain
more than offsets the extra effort required to per-
form the infinite-momentum-frame algebra before
integration.

These successes encouraged us to try some 6th-
order moment calculations. The results of this
investigation for the Feynman graphs shown in Fig.
17 have already been published. "

Meanwhile, Fig. 17(a) has been computed analyti-
cally by Levine and Roskies. "Its value is [in units

of (n/w)']

+ +—f(3)= 1.790 277 8,

to be compared with our estimate

1.777 + 0.013 .

V. COVARIANT APPROACH AT P = ~

Field theories at infinite momentum have been
studied from a different point of view. Kogut Bnd
Soper' argued that the limit P-~ is a reformula-
tion of the theory in which the equal-time surface
(in the regular frame) is replaced by a lightlike
surface, i.e., v = c. Making the transformation

t+ Z

W2

FIG. 16. Vertex insertion for the Feynman "corner"
graph of Fig. 15.

gull term with the structure

e'5(7'-w') 4$A„A„,

that is, an instantaneous interaction involving two
fermions and two photons. They then formulated
TOPTh for this theory and reproduced the rules we
have been discussing. In this Bpproach the limit .
P-~ never appears; it has already been taken.
The question of whether this theory is equivalent
to the usual one is the question of whether the P-~
limit is justified. Their approach was formulated
in the Coulomb gauge, which is difficult to renor-
malize. Our results indicate that their rules are
correct for renormalized amplitudes, and we have
shown how to implement the renormalization pro-
cedure. A more covariant approach was developed
by Chang, Root, and Yan.'" Starting with Schmin-
ger's action principle, they "derived" the equal-v
commutation relations which Kogut and Soper had
guessed. They found that the Feynmnn propagator
was identical to the usual one for spin zero, but
differed for spin —,'. But they mere able to show
that the extra term in the spin- —,

' propagator ex-
actly canceled the terms arising from the seagull
term in the interaction Hamiltonian, so that their
theory formally agreed with the usual one for re-
normalized amplitudes. Their expressions for the
renormalization constants differed from the usual
Feynman ones.

These results are easily understandable in terms
of ours. Because the Feynman propagator only in-
volves free fields, and because all free particles
have x&0, the fermion propagator does not include
fermions with negative x. These must be contained

they quantized the theory at equal v. When pass-
ing from the Lagrangian to this Hamiltonian in this
approach they found that the interaction Hamilto-
nian contained in addition to the usual piece a sea-

(b)

FIG. 17. Feynman graph contributions to the sixth-
order magnetic moment computed using time-ordered
perturbation-theory techniques.
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in the effective interaction Hamiltonian, and they
are exactly the seagull term. We have seen that
fermions of negative x extend only over one time
interval, so that no other interaction can occur be-
tween its vertices. One can then effectively as-
sume that its vertices are simultaneous. Formally
one can also see this by noticing that the energy
denominator aasociated with a state containing a
particle of negative x is independent of the exter-
nal energy, so that its Fourier transform is a 5

function in time. Moreover, the seagull term, a
contracted z graph, clearly involves two external
fermions and two photons.

In a theory of scalar particles with no derivative
coupling, our rules showed that at I'-~ there were
no particles of negative x. Thus, the free propa-
gator should agree with the Feynman result.

We can also understand why, for example, their
expression for Sn, does not agree with ours. As
a field theory, it was natural to interpret the sea-
gull term as a normal-ordered expression. But
that means that it will not contribute to 5m, since
its expectation value must be taken between states
which have no photons. But we have seen that the
seagull does contribute to the usual Feynman an-
swer for Sn„although its omission does not alter
any renormalized amplitude. Bouchiat et gl .' have
shown that if one does not normal-order the sea-
gull, the Feynman expression for Sn, is obtained.

VI. CONCLUSIONS

We have demonstrated that TOPTh at infinite
momentum is a viable practical calculational
technique for higher-order processes in QED. We
have shown how to implement the renormalization
procedure in a manner which closely parallels the
usual method, and have demonstrated that for re-
normalized amplitudes the limit P-~ may be taken
before performing the phase-space integrations,
although this is not true in evaluating the renormal-
ization constants themselves. Many of the concepts
of the Feynman approach, such as off-mass-shell
behavior, factorized vertices and self-energy
parts, and trace techniques, have a natural place
in TOPTh„.

We have shown that our rules are equivalent to
those obtained from quantizing on the light cone,
but the study of the limit I'-~ allows us to extend
that analysis to include a consistent renormaliza-
tion program. Moreover, the discrepancy between
the value of the renormalization constants evalu-
ated in the light-cone method and in the usual Feyn-
man method is resolved. Our analysis puts field-
theoretic parton calculations on a rigorous basis,
provided that a covariant regularization procedure
ls used.

Some of the advantages of TOPTh at infinite mo-
mentum are:

(1) There is manifest unitarity, i.e., interme-
diate states have a definite number of on-mass-
shell particles. This is sometimes more useful
than manifest covariance. This is particularly
true for bound-state problems where one is deal-
ing with wave functions.

(2) The integrations over k' and x in renormal-
ized amplitudes are well behaved at the end points
and are suitable for numerical evaluation.

(3) Because of the close resemblance of this
formulation with nonrelativistic theory, it is hoped
that this approach will lead to a deeper understand-
ing of field theory and to new approximation
schemes for both QED and hadron physics. A pro-
cedure for calculating the bound-state energies of
positronium has already been developed by Feld-
man et gl. 27 This method has been used to ex-
tend the impulse approximation to relativistic
problems, ' to calculate high-energy Compton scat-
tering" and rearrangement collisions for relativ-
istic systems. "
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APPENDIX: THE CONNECTION BETWEEN FEYNMAN
AND INFIMTE-MOMENTUM RULES

In this appendix we give a simple connection be-
tween the Feynman rules and TOPTh in the infi-
nite-momentum frame for some low-order graphs.
This discussion extends the work of Chang and
Ma' and Schmidt. 'o

Consider, as a first example, the calculation
of the lowest QED vertex labeled as in Fig. 10. We
retain the kinematics of Sec. IV. The Feynman
rules give

d'0 i Z",+m y, ,+m y„
(2&) (P) -W +is)(p2 -m +i@)(jp-X + jg)

'
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We Darametrize the four-momenta as follows
(|I'= -q'):

q=(0, $, 0),

P= P+, O, P- (A2)

Thus P is an arbitrary parameter of the frame
choice; y=ln(2P/m) is the rapidity of the incident
electron. Of course, in the frame where P-~,
the quantity x -=(ko+ k,)/2P is the fractional longitu. -
dinal momentum carried by the photon.

The four degrees of freedom of k' are replaced
by x, k, and k'.

k'+ k' k '+ k'
k= xP+ --,k, xP- d4k d 2k dk2

2/ x/
(A3)

Notice that the mass-shell conditions for P+—,'q, q,
and k are satisfied independent of the value of P.

Assuming uniform convergence, the k' integration
may be performed immediately from the pole
structure of the integrand of (A1).

p, '-m'+ is= (p+ —,
' q-k)'-m'+ ie

( ), , ~, (k)'+k' (k- —,'fi)'+

p, '-m'+ ie= (p--,' q-k)'-m'+ ie
(A4)

( ), , ~, (k)'+ k' (k+ —,''fl)'+m'

The k' integration clearly is zero unless 0~x~1. Closing the contour below, we pick up the O'= X -i&
pole and obtain

dx y (p',™)y„(/2™)y, I, 2 qm

2x(l-x), (k+ 2xfi)'+X' (k+ —,'x@2+m' ', (k- —,'xI|)'+X' (%- xq)'+m'
x 1-x x I-x

(A5)

which is exactly the infinite-momentum TOPTh result. Notice that p~ and p2" in the numerator are com-
puted from energy conservation using the on-mass-shell calculation for the photon

m'+ —,
' i|2 X'+ k' m'+ -'g' ~2+k2

P,-(P-~q)-k~~2 &2
—— (1 x)P+ -—,-k- —,''fl, (1-x)P- +

4P 4xP ' 4P 4xp (A6)

This coincides with the rule for automatic z-graph inclusion given in Sec. II. Equation (A5) is valid for
any component of I„, assuming regularization in the photon mass.

Let us also consider a two-loop example, the crossed-graph contribution to the electron vertex (see Fig.
15 II). We again parametrize the loop momentum as in Eq. (A2) with

k +k2 - k +k
k())= x)P+ „,k), x]P- (A"I)

The poles in k, ' derive from the photon propagators and

2

(p-~q-k, )'-m +ie- -(1-x,) ' +ia+ ~ ~ ~,
1

2

(p+ —,'q-k2)'-m'+ie- -(1-x,) ' +iq+ ~ ~,
2

(A8)

2 2

(p+-, q-k, -k, ) -m +~a- -(I-x,-x,) + +gg. . . .1 2 2 k2

1 2
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For 1-x,-x, &O, we close the contours below, pick up contributions from 0,'=X -i&, 4,'=A.'-i&, and obtain
a result identical to that of the infinite-momentum frame for Fig. 15 II(a). The lepton energies are obtained
from energy conservation from the initial-state particles and the on-shell photons. However, for 1-x,-z,
&0, we close the k,' and k,' contours above, and pick up contributions from

(p+,' q-k-,)'=m ic-and (p- ,'q—k-,)'= m. ' ie-, (A9)

andobtaintheinfinite-momentum resultfor Fig. 15II(b). Inthis casetheenergyoftheleptonlinesP+ —,q-k,
and p- —,q-k, (which cross two time intervals) is obtained from the on-shell condition. For the other lepton
lines, we use energy conservation between the initial and intermediate states,

k,+ k, -P+ ', q=q+ -(P-';q)-(P- ,'q-k, )--(P+ ,' q-k, )— (A10)

to determine the correct energy values. These results again agree with the automatic z-graph rule given
in Sec. II.

It is of course obvious from this explicitly covariant approach that the same basic Dirac algebra or trace
occurs independent of the time ordering, and it is identical to the Feynman result.

One important caution in carrying out this procedure is that the resulting d k dx integration must be fi-
nite after the k' integration is performed; otherwise the lack of uniform convergence can be reflected by
extra 5-function contributions, which reflect surviving contributions from nonforward graphs in the P-~
TQPTh calculations.

As an example of the occurrence of an essential 5(x) contribution, let us return to the 6m calculation
of Sec. III F. The Feynman result is

e'
(

d'k ", , u(P) y„(P'-P+m) y" u(P)
(2w)' " i ~ P (k'-X'+i&)[(P-k)'-m'+i~] (A11)

or e', dx dk' p (X')dX'(2m '+ 2p ~ k)
(2m)' 2( x~ i (k'-X'+ie)[(p-k)'-m'+is] ' (A12)

Here we covariantly regularize in the photon mass by setting the zeroth and first moments of the spectral
function p(X') to zero. As always the X' integration is to be performed first.

The numerator can be written in the form

k'+m' (p-k)'-m'4m'-2p ~ (p-k)= 3m'+xm'- 1-x 1-x (A13)

. The first three terms correspond to 5m, of Sec. III, and gives Eq. (3.40) after the k' integration is per-
formed. For the last term we note the distribution identity '

1
2/x

f

d k p (X dA. =--,' x 5(x) p(X')dh'ln(k'+~2) . (A14)

This follows from the fact that the left-hand side of (A14) vanishes for xc0, and

I d2$ p P2 d)2 l k2+y2 (A15)

which is the usual result obtained from doing the
ko and k, integrat;ions.

Thus the origin of the 5m~ term Eg. (3.41), which
corresponds to the singular x- 0 contribution of
the backward graph in the P-~ TOPTh calculation,
is the singular nature of the transformation (A3) in
the k' integration method. Note that the explicit

occurrence of the Sn, contribution can be formally
avoided if one uses (the unconventional) regulariza-
tion in both the internal photon and lepton masses. "

The extra 5-function terms can always be avoid-
ed if covariant regularization of the photon and lep-
ton propagators is assumed, and thus never occur
in our QED calculations of regularized or renor-
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malized amplitudes. In the vacuum-polarization
calculation, regularization in the mass of the loop
fermion must be used. . In the vertex calculations,
photon regularization is sufficient.

Unfortunately, this prescription of performing
the 0' integral does not always generate the .

TOPTh„ integrands. This is perhaps most easily
seen in tree graphs, which require no integrations.

One can easily see that the Feynman amplitude is
then a sum of different TOPTh„graphs, and no
simple operation on individual propagators can re-
produce the separate time-ordered integrands, be-
cause the number of surviving time orders is not
always of the form (constant)", where n is the
number of internal propagators. "
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