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as in Sec. IIIA by reference to the double-spectral form,
it seems that as certain mass values are reached, the
situation with four on-shell unphysical internal momen-
ta can exist. Thus, the standard single-spectral form
should be augmented by a contribution correspond-
ing to this new "unphysical causal process. " This
seems to be related to the occurrence of anomalous
thresholds in conventional studies.
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For the purposes at hand, we should allow the possib-
ility of more than one causal realization of a coupling
for a given source specification.
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The derivation of spectral forms in source theory has recently been systematically developed for systems of
scalar particles. Elastic photon-photon scattering in lowest nonvanishing order is here studied as a simple,

but representative, example of the additional considerations necessitated by particles having internal

quantum numbers. The amplitude is determined as a double-spectral form. augmented by a single-spectral

one, the latter being related to the imposition of gauge invariance. Also presented is some discussion on

how, in source theory, one obtains at given order all the contributions to the amplitude.

I. INTRODUCTION

In two recent detailed works we have studied, in
source theory, the establishment of single- and
double-spectral forms for three-' and four-point
functions. ' The basic ideas in such developments
center around space-time and energy-momentum
considerations, independent of any internal quan-
tum numbers that the particles may carry. To
aid its systematic presentation, that work was
thus carried out for scalar particles. In the pres-
ent work we take up an example that, while rather
simple, illustrates fairly well what further tech-
niques are necessary when the more realistic
situations of particles with internal quantum num-
bers are considered. In particular, elastic pho-
ton-photon scattering is studied to lowest nonvan-
ishing order in spin- —, electrodynamics, with the
photon polarizations chosen as equal and perpen-
dicular to the scattering plane. '

A brief review of those aspects of the four-
point-function work for scalar particles that are
necessary here is presented in Sec. II. Enough de-
tail is given there to make this paper understand-
able by itself, but to fully appreciate the matter,
Ref. 2 should be consulted.

. The main section of this paper is Sec. III, where

the calculation for photon-photon scattering is
carried out. The major new point there concerns
gauge invariance. We show how it is maintained,
with the consequence that the basic double-spec-
tral structure is augmented with a single-spectral
one. The final result has already been obtained
by conventional analyticity techniques. 4 But we
should emphasize, as Refs. 1 and 2 make clear,
that the source-theoretic approach is independent
of analyticity considerations, seemingly being sim-
pler and more physical in its basis.

The calculational scheme for obtaining spectral
forms starts from causal realizations of the am-
plitude, and then, after some reworking, pro-
ceeds to the final generally applicable scattering
amplitude. The question thus arises as to just
what set of these so-called causal processes one
must consider in order to obtain the complete scat-
tering amplitude to the given order. The matter
is simple for three-point functions (at least when
there are no anomalous thresholds), but for four-
point functions the attitude that we have developed
differs somewhat from that of Schwinger. ' This
point is discussed in Sec. IV, mainly within the
context of photon-photon scattering, but also with
some consideration of pair creation by two
photons.
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II. SCALAR PARTICLES

It is first necessary fo review the establishment
of the spectral forms for the scalar case. This is
done here as briefly as possible; the details can
be found in Ref. 2.

The vacuum-amplitude term to which the causal
process of Fig. 1 corresponds is, as originally
obtained, given by

(dx) (d x"')y„( x)a', (x- x')ys(x')a,'(x' —x")
x y„(x")a',(x"—x"')y~(x"')a', (x"'- x) . (l)

Here y is the field, referring to the particle as-
sociated with the source E; and 4, is the propa-
gation function, referring to an internal particle.
Two basic characteristics of the causal process
are the existence of real internal particles and
the pairwise combination of these particles to
form propagating compound excitations (ac and

bd) of variable mass (Mand M'). The vacuum
amplitude (l) may be rewritten to express these
two characteristics. As detailed in Ref. 2, this
rewriting makes use of the causal specifications
of the process, and involves an intermediate ex-
pression of the vacuum amplitude in momentum

space, followed by a return to configuration space.
The result is

P,. being the momentum associated with external
particle i. Thus, the structure of Eq. (2) refers
to the propagation of the compound excitations,
while the form of p bears on the reality of the in-
ternall

particles.
Evaluation of the integral yields

p=s(-&) "',
where

4 -=det(P, P,), i, j = a, b, c, d,

(4)

(5)

a 4 &&4 Gram determinant. These internal momenta
are eliminated in terms of the external momenta
by conservation of momentum, and, correspond-
ing to the compound excitations, one writes
-(p +ps)'=M' and -(p +p, )'=M". So, A is a
function of M', M", and P, ', i = n, P, y, 5. Also,
the kinematics of the causal process implies that
6 is negative. And it is this statement, along
with an analogous one for the Gram determinant
formed fromP„P~, P„plus M ~ m, +no, and
M' ~ nz, +m„, that determines the M, M' integra-
tion domain in Eq. (2).

Two related steps are necessary in order to
render the vacuum amplitude (2) applicable to the
usual scattering situation of the four particles
o., P, y, 5 (with any two forming the incoming state).
First, the stipulations referring to the causal
propagation of the internal particles must be re-
moved —space-time generalization —and this is
simply achieved by directly applying the result
(2) to such circumstances. Second —mass extrap-
olation —the external particles must be brought
on shell, with the source localizations being
changed to describe the scattering configurations.
This amounts to changing the M, M' integration
domain to all values satisfying 6& 0 and 18& m,
+m„M' ~ m, + m„, and in p we must write
(-6)'"=+id, '~'; here b, is given by Eg. (5), but

now with -P'- m' for each of the external parti-
cles. So, expressing it in momentum space, we
have that the scattering vacuum amplitude is given

by the double-spectral form'

Ks

FIG. 1. Causal process leading to double-spectral
The long thin lines refer to real particles, and

the short heavy ones to virtual particles.

f (dP) e(P)] (2~)'5(p. +Ps +P, +P~)

1 1

(P.+P,)'+M'-i~ (p. +P,)'+M" —i~

xp(M' M")dM dM"

with the weight function

p
& g-1/2

Also, we hive written

((dP)e(PH =- .[.[ „', @, (p,),
i=a, S,yb ~
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q,.(p) being the Fourier transform of y, (x). In the
result (6), as a consequence of space-time gen-
eralization, (P-+Ps)' and (P„+P~)' are indepen-
dent of M' and M "p and may take on any values,
timelike or spacelike.

The causal process of Fig. 1 represents only
one way in which, to the given order, the external
particles may be coupled together. All told, there
are three independent ways, as manifested in the
causal processes of Fig. 2. (Of course, there may
exist more than one causal process, or may exist
none, for any given source arrangement of Fig. 2,
depending on the particle interactions that are
admitted. ) The complete double-spectral form is
thus Eq. (6) plus that result twice with the appro-
priate interchanges among the external particles
(and with an appropriate relabeling if there is a
change in the identity of the internal particles):

where

(12}

The weight function X also depends on (ps+p }' in
addition to M', which is the causal -(P„+Pa)2,
and which ranges from (m, +I,}' to ~.' The vari-
able (Ps+P&)', in not being associated with a prop-
agating compound excitation for the causal process
considered, has the same identification before
and after space-time generalization, in distinction
to (P„+Ps)'. Consequently, the result (10) is de-
rived only for (P8+P )' having the range admitted

by the causal process, that of a momentum trans-
fer, whereas (P +pa)' may assume any value.

The set of independent causal processes that
provides the complete single-spectral form is
shown in Fig. 4. This complete vacuum amplitude
is thus given as'

We shall also, need the single-spectral form.
The basic causal process here is that of Fig. , 3,
and the initial vacuum-amplitude expression has
the structure of Eq. (1), but with the new source
specifications applied. This vacuum amplitude is
reworked, the compound excitation ae being
brought to fore, and the final result is

2'
J [(dP)V(P)](2,)'6(P.+P8+P, +P, )

x( „, . y(M')dM'. (10)
p +p&) +M

Here we have

ICOS leap 21T 5 p~+p8-p -p

x[(p -P, }'+m„']

x[(p +p, ) +yn„']

Note in the third and fourth terms here that the
momentum variable in the spectral denominator is

(P.+P„)'= (P +P8)' —(-PB+P„}'

2 2 2 2m me P8 Slg ~(X (14)

Also, in the weight functions in these two terms
one uses -(P„+P )' =M', with the appropriate new
threshold value, and the variable other than M'
in all the weight functions is (Ps+Pz)'.

III. PHOTON-PHOTON SCATTERING

Consider the causal process illustrated in Fig.
5. The corresponding vacuum amplitude is de-
rived as was Eq. (1), with the appropriate electro-
dynamic quantities now being employed, ' and is

(b)
FIG. 2. The set of source arrangements necessary to obtain the complete lowest-order double-spectral form.
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Ky K

Ka

FIG. 3. Causal process leading to single-spectral
form. (a)

explicitly given by

A" (k) = e "A(k), (18)

where e" (k) is the photon polarization vector.
Then, similarly to the scalar case, and labeling
the external momenta as there, we obtain

(dx) (dx"') tr[ey"A»(x)G, (x- x')

xey" A, „(x'.)G, (x' x")-
x ey ~A, ~(x")G,(x"—x"')

x ey'A „,(x'")G,(x'" -x)] . (15)

Here A is the photon field, associated with the
source Z, while G, is the electron (charge e)
propagation function, and tr means trace over the
y-matrix structure.

First the vacuum amplitude (15) is rewritten to
bring out the structure associated with the ex-
change of the compound excitations, i.e., to ob-
tain the analog of Eci. (2). As noted, the steps
leading from Eg. (1) to Eq. (2) employ the vacuum
amplitude in momentum space. In the present
instance we there write

Kp K

K~ Ku

(c)
FIG. 4. The four types of causal processes necessary

to obtain the complete lowest-order single-spectral form.

i-,' dx d d 'A, xA3X-

xA, , (x- $')A, (x- $ —t')

xa, ($, M)a, ($', M)ip( M' M")dM'dM", (17)

WM1

p=-Bn2 dP 5 P —k —k '+m' 5 P-k +m' 5 P'+rn' 5 P+k '+m'

x tr[ey[m- y(p —k„—ks)] ey[m- y(p —k8)] ey(m- yp)ey[m- y(p+k )]), (18)

o. being the fine-structure constant, and m the
electron mass. For simplicity in calculations be-
low, the polarizations of the four photons have
here been chosen as equal, and furthermore we
shall take them as perpendicular to the scattering
plane of the photons. (So, with the scattering
plane and polarizations of the real photons in the
final scattering situation considered as stated,
the virtual photons in the causal process are taken
to be in this plane and have the given polarizations. )

The four 5 functions in Eq. (18) completely de-
termine p, apart from the sign of the component
perpendicular to the scattering plane, the explicit
determination being aided by working in, say, the
nP center-of-mass frame. So, with this P being
substituted into the explicit evaluation of the trace,
the integration over P is immediate. This work is
simplified by taking -P ' = -P ' =Pe' =Pq' =~'
which may be done since all these P,

' will eventual-
ly be extrapolated to the on-shell value zero. The
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result is [F (k.)F.(k, )] [F,(k,)F (k, )]

where

4, XZ'-M'/16m'-2[1- xx'/(z+x')j'
[ (-XX'+M'/4m')(A. X' A —A')] '" -=[F,""(k.)F...(k 8)] [F,"(k„)F, ,.(k, )]

=4(k ks)(k kg)A, (k„)A,(kq)A, (k )A, , (k ), (22)

-(k„+ks)' =M' =4m'X,

—(k„+k )' = M" = 4m'X' .
(20)

where use was made of ~k„s
& & =0, as is appro-

priate for the above choice of polarizations. And
'from Eq. (20) this may be written as

And the range over which M and M" vary is de-
termined just as in the scalar case.

Next, as noted in Sec. II, in order to render the
vacuum amplitude (17) applicable to the usual
scattering situation, a space-time generalization
and mass extrapolation of it must be carried out.
Concerning the former, we first must take into
account an important aspect of electrodynamics—
gauge invariance. The original vacuum-amplitude
expression, Eq. (15), is gauge-invariant, "and
hence so is Eq. (17) because the two equations are
mathematically equivalent. But when Eq. (17) is
space-time generalized, a new result is obtained,
and it is not guaranteed that this result will have
maintained the gauge invariance, as it should. In
order that Eq. (17) does maintain its gauge in-
variance upon space-time generalization, we first
rewrite it in manifestly gauge-invariant form by
expressing it in terms of the field-strength tensor.

To this end we consider the vacuum amplitude
when expressed in momentum space during the
transition from Eq. (15) to Eq. (17). The field-
strength tensor is

F"'(k) =i[k"A "(k) -k "A~(k)]

=i(kI'e" —k "e")A(k) .
From it we can form scalars quartic in the fields
such as

(P;F,)(F,F, , ) = M'A. ,A,A,A,

When the vacuum amplitude, thus expressed in
terms of the field-strength tensor, is space-time
generalized and then brought back to momentum
space, one has in it, since Eq (20.) is no longer
appllc able

(F2F,)(F,F~ )/M = [-(k„+kg) /M ] A2A, A,A3

(24)

The above, however, is not the only way to ex-
press the vacuum amplitude in gauge-invariant
form. There are three linearly-independent quar-
tic structures, and they may be taken as Eq. (23)
plus

(F2F3 )(F,F3) =M' A2ASA, A3,

(F2Fg)(F,F, ) —(FgF,)(F,F,.) —(F,F, )(F,F,)
= 2 (M'M' —2M4)A, A,A,A, (26)

These three expressions for A,A,A,A, , are of
course equivalent in the causal situation, but after
space-time generalization they are not. It is
thus ambiguous just as to how the causal vacuuxn
amplitude should be reexpres sed in gauge-invariant
form and space-time generalized. But the ambi-
guity is of a rather simple type. The difference
between the space-time-generalized A,A,A,A, ,

expressions provided by Eqs. (26) and (23) [sim-
ilarly (25)] is A,A,A,A, , multiplied by

-(k.+k,)' [ 1, ' —

~

—,[(k„+k,)'+M']

— -~[(k +k, )'+M"], (27)

FIG. 5. Causal process leading to four-photon double-
spectral form. The wavy lines refer to photons, and
the straight ones to electrons.

where the M-0 of mass extrapolation has been
taken. And the (k +ks)'+M' and (k„+k~)'+M'
factors here cancel against those factors in the
spectral denominator. Thus, the ambiguity is that
to the known double-spectral form, expressed using
Eq. (26), one must add unknown single-spectral
forms. Terms like the latter, local in the dis-
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placement of a compound excitation, are called
contact terms. Shortly'we will see in the present
instance how they are determined.

With regard now to mass extrapolation, we first
note that the 4 defined in the scalar case here re-
duces to

~ =16m'u. '(u.'- ~- ~') . (28)

The argument for the'change in the spectral-mass
domain as the external particles are brought on
shell is the same as that developed in the scalar
work, it being independent of the additional quan-
tum numbers of the present particles. Thus, the
spectral-mass domain is given by b, ~ 0 with

M, M'~ 2m, or equivalently, by A.A.'-A. -A,' ~ 0 with
A., A.'» 1. The square root of negative argument
thereby appearing in the weight function (19)—and
this is the only place where there is any question
about the M -0 behavior in the vacuum ampli-
tude —is exactly the one occurring in the scalar
case, so we follow the prescription obtained there;
namely, [-Xx' (xX'-Z-X')] '"=+ f [XZ'(XZ' —Z-Z')] '".

With all this, then, the four-photon vacuum am-
plitude has been developed to the point analogous
to the scalar result (6). Next, the contributions
due to additional causal processes must be con-
sidered. First, there is an additional one with

k =k~+ks, k'=k~+k~, k" =k +k

the result is given by ( ie's s-uppressed)

(29)

the sources taken as in the original causal pro-
cess, Fig. 5. In that causal process an electron
and positron propagate from A, to A„one scatter-
ing off A„and the other off A, . What also must
be included is the process in which the electron
and positron are interchanged. This corresponds
to interchanging A., and A, . in the initial vacuum
amplitude (15), and it is easily argued that the
resulting spectral form is the same as that ob-
tained from the original causal process.

Second, the contributions from different source
arrangements must be included, analogous to the
situation associated with Fig. 2. In the present
case these additional contributions must be in-
cluded because, given the momenta of the external
particles, they complete the different ways in
which these momenta can be coupled together.
The calculation proceeds exactly as for the origi-
nal source arrangement with the appropriate sim-
ple interchanges, indicated in Eq. (9).

These considerations, then, bring us to the fi-
nal expression for the four-photon vacuum ampli-
tude. With the definitions

i dk Ak 2p 5 k +ks+k +k~

p(M' M")
~2M' 2 (/2 +~2)(p r2 + ~a~) +

(y2 +~2)(y zisi2 ~z2) ($1~ +~2)(pIr& +~I 2)

, o m' k'' k"' k'"'
jg2 2 k2+~2 +kP2 ~2 k~g2 M2 (30)

The double-spectral weight function is

,~~'-2[1-u.'/(~+V)]2
[xz'(zz'- z —z')]'" (31)

ent case because there is only one spectral vari-
able.

The additional contributions related to the latter
three causal processes in Fig. 4 and specified by

and a is the weight function, not yet determined,
of the single-spectral forms introduced by gauge-
invariance considerations. (By symmetry, the
same weight function applies to all three of the
single-spectral forms. )

To determine cr we calculate the complete vacu-
um amplitude as a single-spectral form and com-
pare Eq. (30) with such. Thus, we consider the
causal process of Fig. 6 and proceed to the analog
of Eq. (10). To ensure gauge invariance we use,
at the causal level, the substitution [cf. Eq. (23)]

[z,(k )z, , (k, )] [z„(k,)y, (k, )]

~'X, (a„)~„(I,)a „(r,)a, (k, ) (32).
There is no ambiguity of substitution in the pres-

FIG. 6. Causal process leading to four-photon single-
spectral form.
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the interchanges of Eq. (13) must also be included.
Because of the symmetry in the present example,
the weight functions associated with the analogs
of Figs. 4(a} and 4(c) are equal, as are those of
Figs. 4(b) and 4(d). That is, M' =-(p„+ps)' or
-(p + p )', respectively, enters identically in the
two causal processes, and so does (P8+P )', the
only other variable on which the weight function
depends, it being unchanged by the interchange be-
tween the two processes. Furthermore, in addi-
tion to the four causal processes considered, we
must also include those which differ from each of
these by interchanging the exchanged electron and
positron (or, if you prefer, by interchanging both
the incoming photons and the outgoing photons).
It is easily shown that each of these contributions
is equal to its original counterpart. Thus, the
complete single-spectral form is given as

i dk A. k 2m 5 k~+ka+k +k~

(M2) (k2)2 (kll )2

(M2) 2 k2 M2 kll2 M2 l ( )

with

x =-16wcP d~2 d~2 (»)45(k„+ks —p. —p, }

&& [(k -P)'+m'J '[(k +P)'+m'] '

x tr( ay[ m- y(-p, )J ay[m- y(k„-p, )]

&«r(m rp. )~r [m- -y(k, +p.}])
+(k -kg) (34)

M running from 2m to ~. Expression of the inte-
gral (34) in the nP center-of-mass frame aids its
explicit evaluation, with the result then being re-
cast in terms of Lorentz scalars.

For our present task of determining o; it is not
necessary in the vacuum amplitude (33) to keep
(Pa+ Pz)' as an arbitrary momentum transfer,
since o depends only on M'. (That is, the con-
tribution involving 0, being local in one of the dis-
placements, is like a two-point function and so
depends on only one invariant, as distinct from
X.) So we consider just forward scattering,
pa =-p~. The evaluation of the weight function X

that must be carried out is thereby simplified,
and the result is

x. =- ((xp +ps, )'=o}

=4cP[- (1+-'.x-')(1- x-')"'

+2(1+X ' ——,'X ') cosh '(X'")] . (35)

Now, the vacuum amplitude (30), with k'
=(P&+P ) taken as a momentum transfer, ' and the
vacuum amplitude (33) describe the same physical
situation. Thus they must be equal, and, in par-

ticular, must be so for k' =0 (whence k"2 =-k2).
From this equality, upon taking k' & 4'' and ex-
pressing (k'+M'- ie) ' as the sum of principal-
part and 5-function terms, we extract the relation

,2p(M, M' ) 1 o(M ) Xo(M')
M2Mr2 ~2 M I2' ~2 2 ~2 2

The M' integration, whose range is determined
by XA.

' —A.-l' ~ 0, can be carried out upon substi-
tution of A.

' and X', and the result gives

c=32cP [-(-,'+X-')(1 —X-')'"

+(2'+X ')cosh '(X'")] . (37)

The derivation of the representation (30}is thus
completed. " From that vacuum amplitude one can
extract an expression for the scattering amplitude,
and hence for the differential cross section, by
following the general procedures for such given
in Schwinger's text. We are not here concerned
with cross section calculations, but for the sake
of reference we record the cross section formula
for our conventions. Namely, with the term in
the ( ] in Eq. (30}called 3R, and with the photons
of momenta k and ka taken as the two incoming
ones, the differential cross section is given as

do 1 1
d„=84,. -(k,k) (38)

This formula refers to the nP center-of-mass
frame, with dQ being the element of solid angle
for the relative spatial momentum of the final
state.

IV. DISCUSSION

The complete vacuum amplitude, either as the
single-spectral form (33) or the double-spectral
form (30), is composed of more than one contri-
bution. In this section we compare our method
and Schwinger's method' "for specifying these
complete sets of contributions.

Central to Schwinger's scheme is the concept of
the unity of the source. This means that the
space-time-generalized vacuum amplitude should
be expressible not only in terms of the field (or
source) "pieces" referring to the individual ex-
ternal particles, but also, and solely, in terms of
the total field, which is the sum of all these in-
dividual pieces. That is, the vacuum amplitude,
in being a structure of general space-time validity,
is taken to be dependent on only the acausal total
field, rather than on just the causally-related
field terms of the individual particles.

For the examples of this paper, unity of the
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source is applied as follows. Consider, in con-
figuration space, the vacuum-amplitude contri-
butions that have resulted from the causal pro-
cesses of one given source arrangement —e.g. ,
the double-spectral form (1V) (rendered gauge-
invariant, and multiplied by 2 to take into account
the causal process with electron and positron in-
terchanged). Then, after space-time generaliza-
tion and mass extrapolation, this structure is
expressed in terms of the total field, which means
that in it one makes the replacement

A,A,A, ,A2 - 8 AAAA.

Here

A=A, +A, +A, +A, ,

is the total field, and the factor of —,
' is to reduce

to unity the number of times the left-hand side
(as written or in equivalent permutation) is in-
cluded in the right-hand side in Eq. (39). What
has been introduced by the replacement (39) is
the additional vacuum-amplitude contributions
with the field products A,A,A„A, and A,A,A,A3
and these along with the A,A,A, ,A, term are
taken to provide the complete vacuum amplitude to
the given order. (Of course, there are also prod-
ucts in which a given label occurs more than once,
but the associated vacuum-amplitude terms do not
contribute for the conventional scattering circum-
stances, where the sources of the four external
particles are separated in space-time )In a.
similar way, proceeding from one source arrange-
ment (e.g. , Fig. 6), one generates the complete
single-spectral form.

It is quite natural to generate the complete vacu-
um amplitude by application of unity of the source
when treating systems with identical particles,
but otherwise, this procedure is not available.
And it was in these latter circumstances that the
w'ork of Ref. 2 was carried out, with the procedure
adopted in the present paper for obtaining the
complete vacuum amplitude being simply a reduc-
tion of that developed in Ref. 2. That is, we have
fitted the present situation into the context of that
previous work by employing in the role of the dis-
tinguishing particle properties the different mo-
menta of the external particles.

When identical particles are not present, the
most natural attitude for obtaining the complete
double-spectral form is simply to admit the con-
tributions of all different" causal processes of
the given type because, upon space-time general-
ization and mass extrapolation, they all refer to
the same scattering circumstances. For the com-
plete single-spectral form this statement is some-
what amended. Namely, since the momentum
transfer [(Pz+P )'] of the original causal process

is held fixed as such throughout the entire calcula-
tion, as opposed to the spectral-invariant
[(p„+Pz )'], we take it that only those causal
processes in which (PB+Pz)' thus appears should
be considered. In this way, then, we obtain
the complete vacuum-amplitude structures de-.

veloped in Ref. 2 and applied here. Since no
contact terms are expected in the scalar case, a
check on the results in Ref. 2 is that the complete
double-spectral form, with (P8+P )' taken as a,

momentum transfer, ' should be equal to the com-
plete single-spectral form; this indeed has been
ve rifled.

So, with all this prelude, let us now compare
our vacuum-amplitude results with those of
Schwinger. To this end we express the latter,
given three paragraphs above in configuration
space, in the momentum-space forms of Eqs. (30)
and (33) (where the individual-particle fields have
been reinstated). It is then easily seen that the
two ways of obtaining the complete double-spectral
form give the same result, while for the single-
spectral form Schwinger's result differs from ours
f Eq. (33)] by the addition to the sum of spectral
propagators in that equation of the term (k")'j
(k' +M'). We should immediately note, though,
that for their purpose in this paper and in
Schwinger's work' —the determination of a con-
tact term —the two single-spectral forms are
identical because they are applied only for forward
scattering, k' =0. However, if one employs the
unity-of-the-source scheme as above for nonfor-
ward single-spectral forms —an approach which
Schwinger neither encourages nor cautions against
—then a real difference does develop. And note
that the extra term in k' is one that we would be
rather suspicious about: k' has been taken as a
fixed momentum transfer, but in this term it
comes out appearing as a general spectral vari-
able.

Pair creation is another example where our
scheme for obtaining complete single-spectral
forms may be compared with that of Schwinger.
In particular, he has carried out' the calculations
in the instance of forward scattering with spin-0
charged particles. He considers the '.w'o causal
processes of Fig. V(a), '4 and upon source unifica-
tion no additional contributions result. This pres-
ent constant-angle situation is not one of constant
momentum transfer, and it is the latter that our
developments have been framed in terms of. But
it seems quite reasonable to apply the basic rea-
soning there also to situations of fixed angle. So,
according to the di.scussion above, we would con-
sider all causal processes in which the angle can
assume the given value. Thus, with forward scat-
tering taken to refer to the particles associated
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with the sources J and E, we would consider in
addition to the causal processes of Fig. 7(a), those
of Fig. 7(b)." However, Schwinger employs his
single-spectral form only to determine a contact
term, analogous to the comparison (36), and the
extra terms associated with Fig. 7(b) would not
enter there, their spectral denominators being
nonvanishing in the momentum range of the com-
parison. (Note, though, that single-spectral
forms are of interest for purposes other than de-
termining contact terms. "}But there are indica-
tions in Schwinger's work of the necessity of a
contribution such as that provided by the extra
terms. Namely, in the forward-scattering re-
duction of the pair-creation double-spectral form
[see Eq. (4-13.152) in Ref. 5J, there occurs a
piece which is not matched in his single-spectral
form and which has the same spectral-denominator
structure as our extra terms. It would be of in-
terest to explicitly carry out the calculations for
the extra terms and see if they are exactly what
is needed.

Unity of the source is a basic element of source
theory, finding much wider application than the
few examples mentioned here. And we should be
quick to point out that the two disagreements with
its application that me have discussed above do
not bring its whole use into question. Rather, the
explanation seems much simpler. Namely, this
unification, in referring to the equivalence of
different causal dispositions of the source, is a
symmetric operation and so would seem to pre-
sume a symmetric vacuum-amplitude structure.
But the single-spectral form is an asymmetric
structure, treating quite differently the variables
(P +P8)' and (Pa+P )'. So it simply appears that
such structures are not suitable for applica-
tion of the unification. On the other hand, the
other methods of calculation developed in source
theory —double-spectral forms and the so-called
noncausal methods" —treat all variables on an
equal footing. Such would thus appear to be the
natural places to apply the unification. Also,
there are the applications of unity of the source
for single-particle-exchange processes, and
these too are appropriately symmetric situations. K

ACKNOWLEDGMENT

As noted, ' part of this work mas done some time
ago, when the author was a student under Profes-
sor Julian Schwinger. Professor Schwinger's in-
struction then, as mell as afterwards, is grateful-
ly appreciated.

(b)

FIG. 7. (a) The two causal processes considered in
Schwinger's calculation of the pair-creation single-
spectral form. (b) The additional processes that would
be brought in according to the approach of Ref. 2.
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