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It is usually accepted that the solutions of the N/D equations are seriously affected by the
uncertainties of the input data as well as by the lack of information about short-range forces
(distant regions of the left-hand cut of the scattering amplitude). However, so far little at-
tention seems to have been paid to a systematic investigation of the mathematical ways in
which the influence of this lack of knowledge could be minimized. To this end, it appeared
desirable to also include as input data the real part of the amplitude which can be found in
essentially the same way as the imaginary part by analytic continuation from the crossed
reactions. Then, the basic idea is to exploit the fact that different theoretical methods which
are logically equivalent and yield exactly the same results for the same set of "correct" data
(we call these methods "tautological" ) nevertheless could behave in totally different ways
when faced with "wrong" (error-affected) data. "Correct" in our case would mean left-hand-
cut limiting values absolutely consistent both with analyticity and unitarity. Hence, the
problem that arises is first to find all the possible tautological integral kernels and then to
choose among them that one which is most insensitive to the lack of knowledge concerning
the input data. Such a kernel is shown to be obtained by replacing one of the Cauchy kernels
in the integral equations by a Poisson kernel weighted with a function determined by the
errors. Optimal methods of construction, not based on integral equations, are also presented.

I. INTRODUCTION

As is well known, in relativistic scattering it is
always possible to evaluate the partial waves (both
their real and imaginary parts) on their left-hand
cut by analytic continuation from the physical re-
gions of the crossed reactions. ' Then solving the
relativistic N/D equations' essentially comes to
performing a new analytic extrapolation from the
left-hand cut I' to the right-hand one y, where the
amplitude is moreover subjected to the unitarity
condition

1m&((s) =p(s) l &g(s) I',
where p(s) is a given function. So stated, the prob-
lem departs a bit from the conventional N/D one,
as the latter starts solely from the imaginary part
of the amplitude on I". Nevertheless, there is no
a Priori strong reason to throw away the informa-
tion about the real part which can be obtained from
the crossed reactions essentially in the same way
as the imaginary part. ' Qn the other hand, the use
of the whole amplitude gives one much more flexi-
bility in handling dispersion relations and leads one
to trying to write integral equations optimized with
respect to the input errors. This is an important
question as in practice the knowledge of the ampli-
tude is always limited to a small part I', of the
left-hand cut F where, moreover, it is affected by
errors. As the conventional N/D equations re-
quire the imaginary part over the whole I", the
absence of information on I', =1 N I', (the comple-

f( )= .f dt (1.2)

or by any of the weighted Cauchy integrals

f(&)g(t)
d

2wig(z) r t-z (1.3)

where g(z) is a function holomorphic in D
When f (f) on the right-hand side of (1.2) and (1.3)

ment of I', with respect to the set I') as well as the
errors on I', will cause their solution to depart in
an uncontrollable way from the true amplitude.
The purpose of this paper is just to optimize the
way of writing N/D integral equations to make
them as insensitive as we can to the errors of the
input data.

Indeed there are many (infinitely many) ways of
writing mathematically equivalent equations —i.e.,
logically deducible from each other and having ex-
actly the same solutions —as long as the data we
have to use are given with infinite accuracy. We
will say that all these equations are tautologically
equivalent. However, as long as the input data (or
the calculation) are error-affected, the tautology
may be broken, i.e., the results of formally equiv-
alent equations are no longer identical. This can
be seen on the simple example of dispersion rela-
tions:

Iff (z) is a holomorphic function in a domain D
bounded by I', its values can be computed at any
interior point either by writing a usual Cauchy in-
tegral
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D(z) = 1+ ( KD)(z) (1.4)

with K a linear operator, one can obtain the sub-
tracted equation by adding to (1.4) its value at a
specified point zo:

0=D(zo) —1 —( KD)(zo) .
Then D obeys

D(z) =D(z,)+(KD)(z) -(KD)(z,). (1.6)

By dividing (1.6) by D(z, ) one can see that D'(z)
=D(z)/D(z, ) is the solution of the subtracted equa-
tion

D'(z) = 1+( K, D')(z),

where K, is the subtracted kernel.'o
Since only the linearity of the equations was in-

volved, the subtraction point is irrelevant to the
optimization problem.

After some technical preliminaries in Sec. II,
in Sec. III we shall look for that tautology To which
realizes the minimum

min](K, —R, (] (1.8)

of the norm of the difference between the operators

actually takes on the boundary values of f (z), the
results of the integrals are of course identical.
However, if instead of f (f) we are forced to use
approximate values (which in general are not the
boundary values of functions holomorphic in D), or
if owing to the lack of information on some part
I', of I' we restrict the range of integration only to
the open contour I', = I'g I„ the values of f (z) com-
puted by (1.2) and (1.3), respectively, may differ
by arbitrarily large amounts. Therefore, it is
meaningful to choose that g(z) weight function
which makes the calculation of f (z) least sensitive
to the uncertainties of its boundary values; for dis-
persion relations this has been solved. 4 A com-
pletely similar question arises in the N/D problem,
in choosing those integral kernels which yield so-
lutions least affected by the limitation of our
knowledge concerning the left-hand cut.

At this point it may be worthwhile to notice that
there may exist some subgroups of the initial tau-
tology transformation group which leave the equa-
tions and their solutions invariant even if the data
on the left-hand cut are not accurate. These sub-
groups are obviously meaningless for our optimi-
zation problem. For instance, changing the sub-
traction point in the dispersion relation for D, al-
ways amounts to multiplying Dby a constant factor,
irrespective of the uncertainties of the input data.
This is a consequence of the linearity of the D
equation. Indeed, if D obeys an equation of the

e

K, and 2, of the exact and approximate equations
for D,

D =1+ K~D,

s, =1+@,R, .
(1.9)

(1.10)

R ~]=R of=D (1.12)

irrespectively of v, solving (1.8) amounts to find-
ing the minimum of (the bound of) the "relative
error" (~~D~~ is constant with respect to v):

il(R, —R, ) 1 II

IIN, JJ

~ const ll 0 (1.13}

As will be seen in Sec. III, the result of the opti-
mization is remarkably simple, although mathe-
matically not straightforward. It will amount to
replacing one of the Cauchy kernels appearing in
the equations by a suitably weighted Poisson one.

II. STATEMENT OF THE PROBLEM

For convenience, we first map the whole cut s
plane onto the unit circle cut between 0 and 1 (see
Fig. 1) so that the upper (lower) lip of the left-hand
cut I' comes onto the upper (lower) semicircle,
and the right-hand cut y onto the cut between (0, 1).
If the left-hand cut I runs' from -~ to s„and the
right-hand cut y from s, to ™,the mapping is given
by

(s, —s)'" —i(s, —s,)'"
(s, —s)"'+i(s, —s,}'"'

which, if s, = 0 and s, = 4, becomes

2 —Ws

2+Ms '

(2.1a)

(2.1b)

where the square root is defined as having a cut
along the negative semiaxis. As will be shown
later [see discussion following Eq. (2.13)] there is

(Here 1 is the constant function equal to unity. )
Notice that the solution of the exact equation (1.9)
is independent of the choice of the tautological ker-
nel K „(this is the whole point) whereas the solu-
tion of (1.10) is not.

Of course one would like to minimize directly
the norm of the difference between the two resol-
vents

9t, —R, =—(I-g )
' —(I —K, )

'

=N, (R, —K, ) R, ,

which is seen not to be identical to (1.8). However,
in physics we are actually interested in the mini-
mization not of the norm of the left-hand side of
(1.11) but of that of its action on the function 1 [the
unique inhomogeneous term of Eqs. (1.9) and (1.10)].

Noticing that
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FIG. 2. Holomorphy domains for N {z) and D{z), re-
spectively.

FIG. 1. The conformal mapping

z =[{s&—s) -i {s&—s&) ]/t{s& -s) + i{s2—sf) I

leading from the cut energy plane to the cut unit circle.

cumulate on the y cut, the Blaschke product in the
z(s) variable diverges, and one has to resort to
the variable g(s) defined in Sec. IV and the methods
discussed there. Since /]„(z)/B(z) has no zeros or
poles in the cut unit circle, one can write a dis-
persion relation for its logarithm:

in[A, (z)/B(z)] =n(z) —d(z) (2.5a)
no loss of generality with this special choice of the
conformal mapping.

The elastic unitarity for the lth partial wave 8,
of the whole scattering amplitude is

with

1 in[A, (z'}/B(z') J„,
2ltt r z z (2.5b)

ImdI, (s) =p(s) I 8,(s) I
'. (2.2)

and

if 8, vanishes as s ' when s goes to infinity (z-1),
and if we take into account the k" threshold behav-
ior, we define a "reduced partial wave" A„

)f 'a ln(A, (z')/ii(a')]
I

0

i' f( )-=—.f(z(+ ) iof(z —io)]) -(2.ic)
2i

A, (z) =- e, (z)/z'(I - z)',

for which the unitarity reads

lm&)(z) =p, (z) l&, (z) I',

where

p, (z) -="(1—z)'p(z)

(2.3)

(2.4a)

and

B(z) = B(z)e"&']

D(z) = e'&'],

(2.5a)

(21.5b)

Notice that d(z) is analytic in the whole z plane cut
along (0, 1) and vanishes at infinity.

Therefore, defining

=2z'(1 —z)'v z/(1+z) . (2.4b}

The last equality of (2.4b) holds only in the special
case s, =0, s, =4 when

p(s) = v's —4/Ws

= 2&z/(z + 1) .

We prove now that the amplitude can be written
as N/D, with K analytic inside the u)hole unit cia
cle, whereas D is analytic in the uAole ~ plane cut
along (0, 1) (see Fig. 2). To this end, assume that
the true amplitude has no poles (their discussion
is delayed until Sec. IV). Then, let all the zeros
of A, be included in a Blaschke factor B(z). This
can be done even if there is an accumulation of an
infinity of zeros on I"; however, if the zeros ac-

and

1 D(z")A, (z")„„
II I

2112

& p((z ')N(z ')
D(z) =1-—, dz'.

0

(2.'7a)

(2.Vb}

These equations are true remembering that D(z) is
equal to unity at infinity and that

A, (z) can be written as N(z)/D(z), where D(z) has
no zeros [A, (z} has no poles J and is equal to unity
at infinity. If furthermore Red, in[A, (l)/B(1)] in

(2.5c) is smaller than ]t, one can write usual dis-
persion relations for N(z) and D(z). [If not, one
has to introduce Castillejo-Dalitz-Dyson (CDD)
poles, but this sort of questions will not be consid-
ered here; we refer in this context to the excellent
analysis of Frye and Warnock. 'J Hence,
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imD(z'~y) = -p, (z')N(z') (2.8)

as a consequence of the unitarity (2.4a).
Substituting (2.7a) into (2.7b) we get an integral

equation of the Fredholm type for D(z):

IA (e")l&?]f on r, =rKr, . (2.11)

Both (2.10) and (2.11) can be written together
defining

M, (e's) =0 on I', and s(8) = e(8) on I',

(2.12)
IA, (e")—w](e")

I r & e(8), z =e" .

The conventional equation (2.9) is far from being
the only one consistent with the requirements of
analyticity and unitarity [Eq. (2.8)]. Indeed, fol-
lowing the Introduction, a tautological equation for
D(z) can be written using instead of (2, 7a) an arbi-
trary reproducible kernel

N(z")g, , (z")
2wi g, , (z') r z" —z'

D(z) =1 — 2. dz "D(z")A,(z")
28'

p, (z')
x dz',

)
„,) . (2.9)

0

This is a Fredholm integral equation of the second
kind, which readily yields D(z) on the circumfer-
ence 1". Further, one proceeds by analytic contin-
uation, either using the right-hand side of the equa-
tion itself to obtain D(z) at all interior points, or
the dispersion relation for N(z), (2.7a), to obtain
first N(z) everywhere, and then, D(z) via Eq.
(2.7b).

In practice, the data for A. ,(z") in (2.9) are given
on part of the left-hand cut of the s plane (i.e., a
part I, of I' in the z plane) under the form of a
function M, (e's) which approximates the reduced
true amplitude A, (e's),

IA. ,(e' ) —M, (e' ) I
& e(8), z" = e'su I', . (2.10)

As in other papers" concerning stable extrapo-
lations, we assume that some boundedness~ condi-
tion has to be fulfilled by the reduced partial-wave
amplitude A, (e's) on the remaining part I", of the
cut I'. Thus, we assume

in various situations one might use various weight
functions g(z") (the only relevant parameters are
nevertheless only z and z').

[Remark A. t this stage we can show that among
this general set of dispersion relations we also en-
counter the one written for N(z') in the original s
plane. Indeed,

1 ') Im N(s" )
7T ~ S -S
1 N(s")

Iy I 4S
27J'Z z. S —S

1 N(z") z" —z' ds"
dZ~ ri . I sarr

But there exists a tautology, namely,

Z —Z dS dZrfi
gz ( / I/ / d //

1 e' +Zc( )=exp —, )n(e/c(8)]de),

so that

(2.14)

such that, since

Z —Z dS

ztt~zl S S dZ

we have

z" -z' ds" g. (z")
s" —s' dz" g, ,(z') '

In this way we have also implicitly proven that all
conformal mappings of the I' cut plane are tauto-
logical, and thus there is no loss of generality if
one uses the special complex plane z(s) of Fig. 1.]

No similar changes can be made in the disper-
sion relation for D(z), since, in order not to spoil
(2.7b), the g. ..(z') function has to be real along
(0, 1) and analytic throughout the z plane, therefore
a constant. [In principle it could have had a single
pole, but this corresponds to changing the subtrac-
tion point and this has been shown in the Introduc-
tion to be an irrelevant tautology; see (1.4)-(1.7).]

For what follows, it is convenient to extract from
g. ..(z") an exterior weight functions C(z"), defined
as having modulus e/e(8) on r and being without
zeros in D,

(2.13) IA](z")c(z")-w, (z")c(z")I.-~r - e (2.15)

where g. .. (z") is an arbitrary holomorphic func-
tion of z" and with any dependence on the remaining
variables z, z', . . . . Indeed, one can write Cauchy
integrals for N(z")g(z") as well as for N(z"), as
long as N(z") and g(z") are both holomorphic; on
the other hand, the free dependence of g(z") on
other variables means nothing else but the fact that

g...(z") C(z")"(,
)

= (,)
[1+( ' - ")f.. ( ")], (2.16)

where e is, for instance, the mean value of the
error e(8).

In (2.13) we set
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where f„,(z") is a function holomorphic in z" in the unit circle and with arbitrary dependence on z and z'.
After substituting (2.13) and (2.16), instead of (2.7a), in the dispersion relation for D(z), we get in place

of the conventional equation (2.9),

D(z) = 1+f dz "3(z, z )D(z"), "

where

1 „„1', &&(z } 1 ', P](z')
G( 'Xz'-z)(»'- ") G( ')( ' — )

" )0

(2.17a)

-=2 .A, (z")[G.(z")+E(z")]. (2.1'Ib)

Here

A3(z") = A, (z")C(z"),

P, (z')

z, (z' —z)(z' —z") '

where

(2.17c)

(2.17d)

tion E,(z") in the D(z) equation (2.17} in order to
minimize the norm of the difference K —g, where
I' is the integral operator of (2.17b) with A, (z")
replaced by the error-affected values ~,(z"}.

A natural frame for this problem is the Banach
space C(I') of all complex functions f continuous
on I' with the norm:

P3(z')
P (z') C(,, )- llf II, = sup If(z")I

gll~ r
(3.1)

and E,(z") is an arbitrary function holomorphic in z"
and with any dependence on z. [This is due to the
arbitrariness of f„(z").]

In the next section we will look for those E,(z")
for which the difference between the exact equation
(2.17a) and that obtained by replacing A, (z") by

~,(z")=—M, (z")C(z"), is minimal.

III. OPTIMIZATION OF THE INTEGRAL EQUATION

As stated in the Introduction [Eqs. (1.8)-(1.13)]
we shall use the tautologies produced by the func-

II
» II, =sup f ]3»"

I I S(z, z") I.
ger r

(3.2)

As we do not know the true reduced amplitude,
we cannot minimize the norm of the difference of
the kernels, but we can minimize its upper bound
with respect to all reduced amplitudes consistent
with the error channel condition (2.15)

Then it can be shown (see Appendix A) that the
norm of the integral operator K: C(I')-C(1'), with
continuous kernel k(z, z"), is

sup II &, - R, lla =sup «p
2 I

«"
I IA (z") -~,(z")

I I G.(z")+E,(z")
I

A A gE'r ~ I

~ —sup I
dz"

I I G.(z")+E,(z")I,2 It
(3.3a)

where G,(z") and E,(z") are given by (2.17d); the inequality comes from the condition' (2.15).
[ftemar k: At first glance one could believe that it is possible to obtain better bounds working with differ-

ent tautologies for the exact and approximate kernels. Then (3.3a) turns into

sup llz, —(), II
= spus»sf I»(z II(u(z") —w(z"")](G,(z") ( )] sMp( z) s(z )zI,p"(3.33)

ger r
where F and F' are holomorphic functions defined by the tautologies 7, and v, . Now, if nothing is known
about the relative phases of the error term A(z") -~(z") and the data function M(z"), in computing upper
bounds one is forced to resort to the sum of the absolute values of the two terms in the right-hand side of
(3.3b). The minimization with respect to E' is then immediate (E' =-0) and one gets back the right-hand side
of the inequality (3.3a).]

Hence we are left with the problem of finding that function E,(z"}, holomorphic in z" in the unit disk (and
continuous in z), which minimizes the upper bound with respect to z of the L' norm of G,(z")+E,(z"), i.e.,
finding

inf sup II G.+E.II13=-i«sup
2 ) I

«"
I IG.(z")+E,(z")I,

F ger
' '

F ger g r
(3 4)
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where according to (2.17d) G,(z") is a given function holomorphic in the whole z" plane except for a eut be-
tween zero and unity.

A. A Minimax Theorem

Assume (it can be proven'o) that there exists a function Eo(z") analytic in z" (and continuous in z) which
for each z realizes

tnf II G.+F, ll, ~ =
II G.+F'. Il, ~

z

In that case it is true that

ra'=- tnf sup II G.+E.ll&~ = sup inf II G, +F.ffi& ~

F z&I zGI" E

Indeed, on one hand one always" has

supinf IIG, +E,ff~~ inf sup flG, +F, ff~~.
zcI S, Z, zCI"

But since E,'(z") is continuous in z and analytic in z", and therefore is an admissible function, we get,
owing to (3.5),

(3.5)

(3.6)

(3.7)

sup I« ll G.+E.ll, ~ -=sup ll G.+E'. Ilz~
~ inf sup II G.+F.lli~ (3.8)

zEI E zEI F zEI

this inequality being a consequence of the fact that the infimum of the right-hand side of (3.8) is meant to be
taken over all functions E,(z") depending not only on z", but also on z. Hence the "minimax" property (3.6)
is proven.

B. A Dual Problem

II G.(z")+E,(z")ll, ~ = '"P —'I h.(z")G.(z")dz"
c Hl hzEH 27t' & Iz lfhz ll —1

Here, first, I2,&L", which is the space dual" to L', and also, because it has to be "orthogonal" to all
E,HH' (the subspace of analytic functions belonging to I.' on the boundary),

(3.9a)

The search for the function F,(z ) analytic inside the unit circle which realizes the infimum of II G, +F, ff~~

for every z, is a well-known problem in mathematics. Partial solutions can be found in the work of Riesz."
It can be readily" turned into its dual problem (see Fig. 3)

dz "h,(z")F,(z") = 0,
r

h, (z") has to be holomorphic in the unit disk, i.e., h, (z")WH ". The norm in L" is

fl h, ll
= ess sup

I h,(z")
I

z"C r
so that the second condition in (3.9a) means

ess sup I h, (z")
I

~ 1 .

(3.9b)

(3.9c)

It can actually be shown" that lh, (z")I=1 almost everywhere on I'. Then it is obvious that the optimal
h, (z")= ho(z") should be such that the phase of z"ho(z")[G,(z")+Fo(z")]be constant along the unit circle.
Indeed,

I
dz"

I I G.(z")+E.'(z")
I =2„, ,„ I

h!(z")z"lG.(z")+F'.(z")]
I

r 2772 I

dz "h'(z")G (z")j.
2

(3.10)

and equality holds in the last bit of (3.10) if and only if z "h,'(z")[G,(z")+E',(z")] has a constant phase along
I'. On the other hand, we know from (3.9a) that equality does occur, so that h', (z") has indeed the specified
property.

This property of ho(z") makes the construction of the function Fo(z") straightforward once ho(z") is found:
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$8 f1

—:[a[a* '(z"G, ho) l(I/z" ~) + 1J —(z"G, ho)+(z")}/z"h, (z"), (3.11)

where (~ ~ ),(u) are the Fourier positive- and negative-frequency parts of (~ )(u), where u stands either
for z" or for 1/z"*, and a=-(z" G, h', ),(0).

C. The Point z = 1 and Determination of m

With these preliminaries, although we are not always'~ able to construct the function Eo(z"), we are
nevertheless in a position to find the bound

m =—sup inf jj G, +E, jjzx =supjjG, +E,jj.
geI z

Indeed,

8 p r IIG, s.ll, =s p I p . f d '|,(z-)c,(*-)
zC1 E eel" ljh~ll=y ~~ I

(3.12)

P g(z')h (z')
= sup sup — dz'

llh '. l= 1 ~ 0
z' —z

P ((z')
~~ sup — dz Iz' -z l

iI i(z')
dz'

0 1 Z (3.13)

The first inequality in (3.13) holds because p, (z'), defined by (2.1Vd), is always positive and j h, (z')
j
(1

for z' inside the unit disk, by the maximum modulus theorem and (3.9c). The second inequality is obvious
on geometrical grounds: If 0 (z' (I and z =e'e, then jz —z' j) 1 —z'. Moreover, it can be immediately
seen that for z =1, h', ,(z')=—1, because h, ,(z') =1 effectively saturates all the inequalities'" in (3.13). At
the same time, the last inequality in (3.13) ensures that sup, „-r jj G, +E,jj~| is really attained for z = 1 and
equals

1 ', Pi(z')
PE = — dZ

n 0 1 —Z''

For z = 1 and h,', (z') —= 1 we get from (3.11)

p, (z )z 1 & p, (z') ~ 1/z" 1 1 P (z')
z 'hg, (z")[Gg,(z")+E', ,(z")J=—

J) dz'(, 1)(z, z„)+z «(z, 1)(z, 1/z„)+z

(3.14)

dz', d'(z"; z') .1 ', Pi(z')
r 0 1-z

Here g(z"; z') stands for the poisson kernel for the unit circle

6 (z";z')dg" =-id[g(z"; z')+iX(z"; z')]-=,', —de",sg(z"; z')
~+ III)

(3.15)

(3.16a)

where g(z"; z') is the Green's function of the unit circle with respect to z' and &(z",z') its harmonic con-
jugate,

zll ~ zl /2

z" -z' 1 —2r' cos(8" —8')+r" (3.16b)
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D. The Poisson Kernel

(3.18)

For other points z &1 (ze I') one might again proceed by finding directly the optimal function F',(z"). This
is not an easy task "but one can avoid this by noticing that the function E, (z") which realizes (3.14)

P (z')
(3.17)mc= inf sup II G, +F, III ' -=- dz'I'

gEI 0

is not unique. Indee we no ice ad t' th t the holomorphic function FP(z") which is used to construct the Poissonz
kernel in (3.15), namely,

P, (z')1/z" 1 '„,p, (z')

0

although for z+1 it does not attain

t«IIG. +E.II,~=- IIG, +F,'II, ~ (F, ,gE',.,),
F

nevertheless satisfies

1 „1 ', Pg(z )
II G, +F, II i =2 I

dz"
I

dz', 6'(z"; z')
2 7f 0

(3.19)

(3.20a)
l p(z) 1 P (z') 1

0

In (3.20a) we have use ( / s) f z, zd (1/2 ) f de"4'( " ') =-1 and the last inequality is the same as the last inequality of
(3.13).

Since for z=1 E,(z")—= E', ,(z"), the bound m [Eq. (3.14)] is attained by Ep(z") as well, and so the7 Z=].

proof of its optimality, together with Ec(z"), is completed.

E. Short Review

Recollecting all the results obtained so far, the
optimized kernel of the integral equation should
then be written

0"" "(z, z")=,W, (z")C(z")

C ,(z') d (z", z')
C(z')(z' —z) z"

(3.21)

P (z')
I
«"

I IG.(z")+E.(z")
I
-.—,

21r 0

(3.20b)

together with the Schwarz inequality [and

g r dz "E,(z") = 0]

where M, (z")represents [see (2.10)] the data func-
tion for the reduced amplitude A, (z") defined in
(2.3), whereas p, (z') and C(z') are defined in (2.3),
(2.4b), and (2.14), and 5'(z", z') is the Poisson
kernel (3.16). The optimized equation to be solved
for B(z) then reads

H,

4GFs r

0tdGF

p=S]F) „

tl

~(z) =1—,; „~(z")~,(z")C(z")
21K 2 I- 8

p, ( )z

(3.22)

It is probably illuminating to notice that the in-
equalities (3.20a) observed by E, (z"),

Pl~ 4$F SUp Sp)
IF' jHj

FIG. 3. A geometrical view of the duality principle:
fPoints are to be interpreted as elements of a L space,

while planes mean level surfaces of linear functionals
over L, i,e, , elements of the dual space L . Then,
the smallest (L ) distance n~z between a given point G
and points of a linear subset (F}coincides with the
greatest distance d(z)s between the linear subset (E} and
the planes whose normals are orthogonal to (F},passing
through G.
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sup — dz" G, z" +E, z"
zgI 1

) sup . dz" G,(z")1

zgI 21Tg

1 ' p, (z')
= sup Az

gC 1- lr 0
8'-Z

dz' 1',=-m', (3.23), p, (z')

0

are enough to prove the optimality of the Poisson
kernel. However, by itself, Eq. (3.23) does not
show that the bound m~ is actually attained; for
this, one has either to resort to a direct guess of
the optimality of the Poisson kernel [i.e., to
(3.20b)], or to the duality principle which, as we
have seen, provides a constructive proof of it.

so that it is clear that the optimal extrapolated
S(z) is the one obtained by using that E,(z") which
renders the I,' norm iiG, (z")+E,(z")xiii minimal,
and so we fall back on the problem of Biesz, '
However, as we have pointed out, only partial
solutions (i.e., corresponding to some z only) are
available at present.

In what follows we construct a solution which,
although not optimal, should be good enough for
practical purposes. To this end, we take
~,(z")B(z")with the $(z") solution of (3.22) as a
good enough determination of &(z"). We then use
the tautologies (2.13) available for the dispersion
relation (2.7a) in order to obtain an optimal extra-
polation of this X(z"). For this, we take exactly
the same steps as described in Ref. 4. Following
it closely, one comes to the conclusion that the
required dispersion relation reads

F. Analytic Continuation of N and D

We now proceed to the determination of the am-
plitude, i.e., of N(z) and D(z) in the whole cut
unit disk; there arises the problem of finding
optimal values 3I(z), u(z) for these two quantities
at every point of the cut disk [optima, l with respect
to all admissible amplitudes in the error channel
(2.12)]. In principle, an optima, l S(z) can be found
by using the integral equation (2.17}as an integral
representation for B(z) in the cut unit disk in terms
of the solution of (3.22) appearing on its left-hand
side, and optimizing with respect to the available
tautologies.

It is apparent that the latter again consist of the
set of functions E, (z"), holomorphic in z" [so
that they do not spoil the integral representation
when Q(z) is exact, i.e., $(z) =D(z)], and of any
dependence on z. [This means that the optimal
X)(z) need not be holomorphic in the cut disk, but
that, as far as the tautology group is concerned,
it departs least from the admissible exact D(z). ]
As a matter of fact, if we use E, (z"), i.e., the
one that led to Eq. (3.22}, the B(z) extrapolated
by (3.22) is a function holomorphic in the whole
cut Plane [the solutions of (3.22) being its values
on the unit circle]. Nevertheless, this extrapolat-
ed x&(z) is not optimal.

In general, for an arbitrary E,(z"),

sup I D(z) —&(z) I

d 'I

3I(z) = . „M,(z")C(z")S(z")6'(z";z).
WL z r z

(3.25)

Here, C(z) is again a weight function, necessary
to bring the problem to the canonical form

~
A, (z")C(z")-M, (z")C(z")i(e throughout the

boundary of the unit circle, and is the same as
that used in (3.21)for the optimal kernel 0'" "(z,z");
6'(z", z) is the Poisson kernel (3.16). After having
found X(z), one uses it in the dispersion relation
(2.7b) to find B(z) everywhere. It is easily seen
that due to the happy recurrence of the Poisson
kernel in both (3.25) and (3.22}, we find the same
z(z) as the one yielded by (3.22) used as an inte-
gral representation for u(z} in terms of its values
on I'.

IV. MSCUSSION

We have shown that one can always find a tauto-
logy for which the norm of the difference between
the real and approximative kernels is least. As
was shown in Sec. III, the result turned out to be
very simple, namely, one obtains this kernel by
first introducing an exterior weight function [de-
fined in (2.14)] in bothy, (z") and p, (z') and sub-
stituting the Cauchy kernel of the dispersion re-
lation for 3I(z') with the Poisson one. The result-
ing optimal kernel is written in (3.21).

= sup . dz "[A,(z")D(z") -M, (z")B(z")]
A 27Tz I

A. Range of Validity of the Results

x [G.(z")+E.(z")I

~ e const
2

dz" G, z" +F z" (3.24)

There are two possible limitations of the above
method.

(a,) First, as it was pointed out in the Introduc-
tion, the fact that the kernels are close to each
other does not always mean that the resolvents
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(the solutions) are close to each other. Indeed,
it may happen that the data are such that the eigen-
values of the tautological kernel obtained with
E ~(z") get close to unity, and in this case the
norm of the resolvent (R of R in (1.11) will be very
large (and strongly dependent upon the chosen
tautology).

»wever, Rt least in the case III' II smail (weak
potential ease), the exact and approximate solu-
tions should approach each other, and the opti-
mized kernel (3.21) should yield excellent results.

(b) Another question may arise when the input
data MI(z") are wrong (at least from the point of
view of Rnalyticity) in the sense that there is no
function&, (z) holomorphic inside the cut unit disk
and obeying the unitarity (2.4a) which passes
through the given error channel (2.12). This situ-
ation arises in the dispersion relation case, too,
and is treated in detail in Hef. 6.

%hen uncertainties arise concerning these two
possible situations, one should compare the re-
sults with those obtained by the optimal unitary
8-matrix method, to be sketched below.

B. Optimal Unitary S-Matrix Method

llrn s

Res
s, 0 s,

IRe g ('s}

I S(&)-~(()lr «(~),
and if we define

(4.5)

FIG. 4. The canonical mapping

g(s) =t(1+u) —(1 -u) ],/[(1+u) + (1-u)
u = (2s —s) —sp)/(s2 s()

transforming the left-hand cut I' into the left unit semi-
circle and the right-hand cut y into the right semicircle.

Following the methods of Sec. 3 of Ref. 19, one
can directly find a function S'(6) satisfying the S-
matrix partial-wave unitarity on the physical
region

S(~) -=S(~)~,(~)~.(~),

6 I (ee 6) —6(+e 8)p (+I 6)p (ee 6)

then (4.1) and (4.5) merge into

(4.6)

I $8(s) —6'(s)l/8(s) -minimum=a„. (4 2)

Here 8(s) is an error function connected with the
progressive fading of the information along I', as
in (2.12). If we use the canonical variable g(s),
which maps the right/left-hand cut on the right/
left-unit semicircle (see Fig. 4), and if we define
the {"-wej,ght functions 9

e"+ g(:,(e}=exp ——,, )n(e(e)]«), (e.ee)
2n „~ e"-g
1 " e +gc.(e) ee —— =e»(e(e)I«) (e»)

2m ~ e"-g
y2

I
S'(6) I,, =I

IS'(s)l, =II(s), O&II(s)&1, X.=rl,r„(4 lb)

and which is closest to a data function 6 = 1+2ip&(s)
on the left-hand cut I',

I s'(~) —6'(C) I, & I (4.7a)

II ("')-f'(.")I„,= .II I (4.6)

so that there do not exist other holomorphic func-
tions f (g) with

I s'(~) I„=l. (4.7b

Our aim is to discover among all functions S'(g)
satisfying (4.7) (if they exist) that one, S"(g),
which best approximates the data function 6'(e'6)
on the left-hand cut l", To this end, we shall take
RdvRlltRge of 'tile fRC't 'tllRt glveI1 R (dR'tR) fllllc'tloI1
II(e'6) on the whole unit circle I pl = l., one knows
how to construct (Ref. 6 and Appendix 8) that
holomorphic function f'(g) which is "minimal" in
the sense that

I ~, (e)I = 1/ (~), I ~,(a)I„= 1,
I &.(~)l„„=l, I &.(~)l„=l/n(e),

(4.4a)

(4.4b)

we can bring the conditions to be obeyed by S(g)
into a suitable standard form. Indeed, if

throughout I"+y, with ~ smaller than 88lhj. The
value of e, lII] is completely determined by the
negative-frequency Fourier coefficients c „c„.. .
of h(e'6), being the norm of the matrix M,
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(a,
M[5]=~ '-'

c
C-3

c

(4.9)

co[a] = Illlfll -=square root of the largest eigenvalue
of the Hermi. tian matrix MM~.

Let then C(e; r) be a weight function with

l C(e; g) l„=1, l C(e; g) l „=e

and with a still undefined e, i.e.,

C(e; f) = exp ———ln . Ine
i+i/
&-i f

Then, for the data function

(4.10a)

(4.10b)

-(,, 0 on y (--,'v&8&-,'s)
C(e; e'e)s'(e'e) on I (-,'rr &8 &-,'z) '

lf'(e")/c(e; e")
l

= e,[s'; e) /e,
e,[s', e] being determined by (4.9) via the Fourier
coefficients

(4.11b)

37'/2
e „[S;e]=— S(e")

271 p/2

xexp ——lneln . e" dH .cosH )„6
1+ sin8

(4.12)

Therefore, it is apparent that if we pick out that
very e =e« for which e,[s'; e] [corresponding to
it by (4.9) and (4.12)] is just equal to it, i.e., the
solution of the transcendental equation"'

coo = eo[s ~ coo] i (4.13)

we manage [see (4.11b)] to satisfy the unitarity
condition (4.7b) with the function

the minimal function f'(p) satisfies

l f'(e'e)/C(e; e'e) —S'(e'e) lr = e,[s'; e], (4.11a)

of the minimal function happens (it is proved in
Ref. 19) to be strictly constant along y. As has
been repeatedly stated, the optimal 8-matrix par-
tial wave constructed above is expected to be close
to that obtained from the solution of the optimized
N/D equation (3.22), at least when the norm of the
Poisson-weighted kernel is small.

C. Dynamical Poles

If the data are wrong, i.e., M, (e' ) are not the
boundary values of a unitary function holomorphic
in the z-plane cut unit disk (Fig. 1), but rather of
a function exhibiting one pole, it is to be expected
that the &(z) constructed in Sec. III will have a
zero (dynamical pole).

In contradistinction to the conventional (error-
less) N/D equations, the appearance of the zero of
K)(z) is dependent upon the relative magnitude of
the influence of the pole upon the data on the left-
hand cut I' and of the width of the error channel.
This is especially clear in the optimal unitary 8-
111atl'1x appl'oacll (descl'lbed 111 Sec. IV B). Illdeed
if the error is so small that the analyticity of the
boundary values is strongly affected by the pole,
it will be very hard to find a function holomorphic
in the unit disk and close (within the error) to '

these data. In other words, z,o will be very high.
Then, ' to find the actual position of the pole, one
multiplies S'(e' ) with a factor

&8 e —&0
S6

~.,~e

and then solves the e problem for the function
S'(e'e)B& (e'e) for every (real) &0 until e«(&0)
reaches a minimum. This minimum corresponds
to the exact cancellation of the pole of the ampli-
tude by the zero of the factor B+(g). Computer
calculations done2o on model amplitudes show in-
deed a dramatically narrow dip of e,o(&0) in the
neighborhood of the pole.

S"(~)=f..(C)/C. (C) . (4.14)

Here f«(g) is the minimal function j'(g) corre-
sponding to

1(~)=C.(~)s'(~) (~ =."), (4.15a)

C.(C) -=C(e..; C) . (4.15b)

It is obvious that S"(i)given by (4.14) is the
optimal holomorphic unitary function, which is
closest to the data function S'(g) on I . For the ef-
fective construction of S"(g), see Appendix B.

%e would like to stress that, as far as unitarity
was concerned, it was essential that the modulus
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APPENDIX A: PROOF OF FORMULA (3.2)

We show that if K is an integral mapping from
C(I') to C(I"}with continuous kernel k(z, z"}, then
its norm is

on the left semicircle I',

I
s' '(g) —3'(g)

I
= e„ for g ~ r

(i.e., l =e', —,'v&8& —,e). (B2)

ff&ffc = sup I«"
I fk(z, z") f.

~mr r
Indeed,

(A1)

Here Epp is the smallest number c for which a
holomorphic function S'(I') satisfying both (Bl) and

IS'(g) —3'(r)
I r & e still exists, and is the solution e

of Eq. (4.13) [see also (4.9) and (4.12)]

IIKllc = sup sup dz"k(z, z")f(z")
fee r) ~Er
II flic=1

-II&Il ~ u + I«"
I

I+(*,
ger r

coo = eo[ 3 i coo] ~

Conditions (B1) and (82) are equivalent to

ls"(~) —6'(~) I=e..
on the whole unit circle I'+y with

(B3)

(B4)

=sup fdz"
I fk(z, z") f.

zer
(A2)

I«"
I Ik(., z")

Ir

is continuous, there exists a point z =op where the
supremum is attained; then let

f,(z") = exp( ip-hase [k(z„z")]j. (A3)

f,(z") is continuous, since k is continuous and has
norm unity. Thus

ll&f olfe =-sup dz "k(z, z")f,(z "}
zer r

Conversely, there exists a function folic(r) for
which the right-hand side of (A2) is attained. Since

I 0 for -ion& 0&-,v

C,(e' )3'(e' ) for —2v & 0 & o7i,

where the new C-weight function Co(&) is defined
in terms of coo by (4.15b} and (4.10). We write

ie) si ( ie) gl ( ie)

s'(~) = 3,'(~) —x(~),
(B5)

where 8,' are the positive- and negative-frequency
parts of the Fourier series for 8'(e' ) on the unit
circle. Since 8,'(e' ) can be continued analytically
inside the unit disk, the problem comes to finding
that holomorphic function -X(f) which best approx-
imates the "nonanalytic" part 8' (e' ) of 8 (e' ) on
I"+ y.'

dz" k zp) z" Ix(e*')+6'(e"}I=coo (B6)

=sup fdz"
f fk(z, z") f,

~cr r
(A4)

Restricting ourselves to a finite number, N, of
negative Fourier coefficients (4.12),

Si(eie) Si&e&(eie)=c,e ie+c, e-2&e+ ~ ~ +c „e "'
the last equality of (A4) resulting from the defini-
tion of z, . Combining (A4) with (A2), we get (AI).

APPENDIX 8: OPTIMAL UNITARY PARTIAL V(AVES

(as)

we come to the problem of finding' a holomorphic
function

We show here how one can construct an optimal
S-wave amplitude without solving N/D equations
but following the direct functional methods de-
scribed in Sec. 3 of Ref. 19. We shall, namely,
construct the weighted S-matrix partial wave

s"(g) = c,(g )c,(g )s'(g)

[see Eq. (4.6)] which obeys the (weighted) unitarity

C.(~) = ~"[6""'(~) x(~)]ie..
of unit modulus on

I g I
= 1 and with its first N

Taylor coefficients fixed,

4o(~) 4o, o+4o, &~+
' ' '+to, &i-&~ +

&"x(&)

~pp

Po, i -(N -i) igloo ~

f y, (e")
I
= 1 .

(as)

(89)

Is"(c) I
= I I» v ~~

(i.e., g = e' e, --,'7i & 8 & —,
'

v) (Bl )

(see Fig. 4) and which deviates least from the
(weighted) "data function"

6 (g) =c,(I)c,(g)s(g)

The existence of this function is granted by Eq.
(B3) and the function itself can be constructed in a
recurrent way. Indeed, if the first N —k Taylor
coefficients go; of the unit-modular function g„(&),
I g, (e'e)

I
=1 are given, then

(B10)
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is again a unimodular function,

but with only N —(0+1) preassigned coefficients

P„, ; [which may be determined via Eq. (B10)
from the g. .. and hence from c „c„.. . , c „].
It can be shown that it follows from (B3) that the

last function P„(g) has to vanish identically; hence,
coming back step by step, one can determine g, (g)
completely [and hence y(g) and also S'(g)] in terms
of the constants c „.. . , c „[Eq. (4.12)], in the
form of a (finite, for N finite) Blaschke product.
It is obvious that the amplitude constructed above
is the best unitary amplitude one can produce from
the left-hand cut data function, S(e' ).
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