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Continuing the program initiated in a recent work on three-point functions, we present a detailed study of
the establishment in source theory of spectral forms for four-point functions. Both single- and
double-spectral forms are treated, and the particles are all allowed different masses (although some
inequalities among the masses are employed). Most of the work is carried out for the lowest-order nontrivial
contributions, but some considerations are also presented for higher-order contributions. The major new
element here, relative to the three-point-function work, is the matter of mass extrapolation. That is, the
double-spectral form as first -obtained refers to external particles with certain off-shell momenta, since it is
derived from a causal realization of the amplitude in which the momenta are thus specified. So one must
then extrapolate to real external particles, and that in turn causes an extrapolation of the original
spectral-mass domain. A somewhat different extrapolation occurs for the single-spectral form. The paper
concludes by generally reviewing the source-theoretic procedures for establishing spectral forms, with some
speculations ‘regarding further developments, and by presenting a brief comparison with the conventional,

analytic approaches.

I. INTRODUCTION

A principal motivation in the founding of source
theory was to provide a theoretical framework,
expressible in configuration and momentum space,
that maintains a close association with the circum-
stances of high-energy experiment, in contrast to
the remote connection provided in operator field
theory. At the most rudimentary level, one thus
studies''?+® the passage, as in an accelerator
beam, of noninteracting particles between causally
related production and detection sources. Next,
specific dynamical mechanisms are inserted for
the general sources®-%; interaction among the par-
ticles is thereby realized, with the regions of in-
teraction being causally separated. Upon consid-
eration of a few examples of these causal process-
es,?*~% jt became obvious that such naturally pro-
vide the basis for the derivation of spectral forms
for scattering amplitudes. Our interest is to more
generally and systematically study this establish-
ment of spectral forms from causal processes. In
a previous work’ we investigated single-and dou-
ble-spectral forms for three-point functions, and
in the present one we turn to the consideration of
four-point functions. A general goal for our pro-
gram is to employ the physical ideas of source
theory to elucidate the analytic structure of ampli-
tudes more simply, and possibly more completely,
than is done in the detailed complex-variable
studies of S -matrix theory.

We shall in particular be concerned with the
double-spectral form in (p,+ pg? and (p,+ pg? ,and
with the single-spectral form in (p ,+p3)% where
bi,i=aB,7, 0 are the momenta of the particles to
which the four-point function refers. The relevant
causal processes, apart from some interchange
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among the external particles, are illustrated, re-
spectively, in the causal diagrams of Figs. 1 and
2. (In such diagrams time is read vertically, the
long thin lines refer to real particles, the short
heavy ones to virtual particles, and K designates
the source.) There are of course other four-
source causal processes (two of which are shown
in Fig. 3); they are related to spectral forms in
sets of invariants which include some p, 2, and it
also would be of some interest to investigate these.
Our work here is carried out for scalar particles
with simple trilinear primitive interactions, as
was the case in TPF,” but as discussed there, the
conclusions are easily generalized. It is instruc-
tive, though, to explicitly illustrate some of the
modifications necessitated by such matters as
gauge invariance and identical particles, and as a
simple example of such we have prepared a work
on spectral forms for elastic photon-photon scat-
tering.”™

Two main steps are required to proceed from
the amplitude for the causal process illustrated in
Fig. 1 to the double-spectral form applicable to
the conventional scattering situation: space-time
generalization and mass extrapolation. In the
former the restrictions corresponding to the
causal propagation of the internal particles are
removed. In the latter the momenta of the ex-
ternal particles are brought on shell, and it turns
out that this leads to an extrapolation of the causal-
ly established spectral-mass domain. Such an ex-
trapolation also arises, in a somewhat different
way, during the single-spectral studies, in addi-
tion to space-time generalization, The application
of space-time generalization in both the single-
and double-spectral studies is quite similar to that
in TPF. And, as there, it can be carried out for
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FIG. 1. The causal process leading to the double-
spectral form.

causal processes of general order.

Although the matter of extrapolation was con-
sidered to some extent in TPF, its execution in
the present instance is quite different. We defined
in TPF two kinds of extrapolation, physical and
mathematical. In the former one obtains the am-
plitude for the extrapolated values of the external
momenta by directly considering new causal pro-
cesses where the momenta have these values,
whereas in the latter one must study the variation
of the originally obtained amplitude as the momen-
ta are varied.! Use was made in TPF of the form-
er, but not the latter. In the present studies
physical extrapolation is not directly available;
rather, we follow an approach that is somewhat in-
termediate between the two. That is, we must
study the variation of the original amplitude upon
extrapolation, but this is not just a mathematical -
task: It is provided with some physical meaning
and, in a loose sense, is related to causal pro-
cesses with unphysical momenta.

Previously in source theory,** for a few simple
examples, the extrapolation for the double-spec-
tral form was carried out. That work was highly
dependent on the specific form of the spectral
weight function. Consequently, one was quite lim-
ited in the variety of mass values that could be
assigned the particles in the lowest-order causal
process (Fig. 1), and there was little hope of being
able to consider higher-order processes. The ex-
trapolation procedure developed in the present
work is much less dependent on the specific form
of the weight function. And we easily treat the
situation in which all particles in the lowest-order
process have different masses, although some in-
equalities involving the masses are imposed.

Also, some progress is made in treating general-
order processes, but further work remains there.
Similar conclusions apply to the extrapolation re-
quired for the single-spectral form, a matter
which has not been previously considered in source

IVANETICH

fco

Ks K

Ka

FIG. 2. The causal process leading to the single-
spectral form.

theory.

The double-spectral form is treated in Sec. II,
and the single-spectral form in Sec. III. In each
case, following the treatment of space-time gen-
eralization and then extrapolation, we next study
the additional causal processes that are in general
necessary for the complete lowest-order results.
For example, for the single-spectral form in
(bo+ po)?, with (pg+ p,)? considered as fixed, we
must also consider the three additional causal
processes obtained from that of Fig. 2 by the in-
terchanges 8 —y, v+ 0, and 3~ y,3 — 0. Lastly
in each of these sections, some considerations on
higher-order processes are presented. Finally,
in Sec. IV, we generally review the source-theo-
retic methods for obtaining spectral forms and
present some speculations toward further develop-
ments. Also provided there is a brief comparison
with the conventional, analytic approaches.

II. DOUBLE-SPECTRAL FORM

A. Derivation of the Spectral Form

The vacuum-amplitude contribution to which the
causal process of Fig. 1 corresponds is obtained
by the effective-source technique, which was de-
tailed in TPF. The result is
J @)@ g0 8205 - 37) i) a(a - x7)

X gﬂy(x")Af(X" —x”’) (Pa(x"') A:(x"' - x) . (1)
Propagation functions are expressed as

N (dp) eiﬁ(r—x')
Ax =x1) = f(21r)4 PP+mi—ic ’ (2a)

and for the causal situation x°>x’° this reduces td
A(x=x)=1i fdw,e"(""') (2b)

=1 ’/p;>0 ((;11:))3 8(p® + m?) eip(x-x,), (2¢0)
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where

__1 (@)
%= 30 (2m)®

$= (B + m?) /2. ®)

Because the source specifications require
x"0>x'0 x"0>x0 the causal form is employed for
the propagation functions in Eq. (1). The numeri-
cal-valued fields are defined in momentum space
by ‘

o= | S 0 0), @

m)

j=a,B,v, 6 (all external momenta thus being de-
fined as incoming). According to the causal speci-
fications, the ¢,;(p;) can be nonvanishing only for
the p, satisfying —p 2= (m,+m,)?, pg®=0, —pyz
= (mg +my)?, ps?=0; more specifically, each
¢;(p;) is taken to be nonvanishing at just one fixed,
but arbitrary, p,? within this domain. Upon sub-
stitution of the propagation-function and field
expressions, the vacuum amplitude (1) can be
reworked to give

J 1ap)o@)1 (20 o0 ps b, 595, (5)

where
5= [ (@) o -po-p97+ me)

X&((p - pg?*+m,?)

X 6(p* +m.?) 8((p + p,)? + m,?) (6)
and
- (dp,)
o= I1 [ o) ] @

It is useful to display some of the details of the
evaluation of p. Consider the frame in which
P+ Dp=0 and the orientations are chosen so that
Po,s are along the x direction and '137.5 are in the
xy plane. We then have

5= [ (@) S=me= (0 24p e m,?
+ 200"+ % 0°)
X 8(=m 2+ pp®+my® + 2pp°P° = 2pp, b,)
X&(=m >+ py 2+ mg® = 2p, %O
3 byt 2y,D)

X8(mo?=p°%+ p7+ b7+ b). (8)

The § functions, starting from the one on the left,
determine the values of the components of p, so
the integration is immediate. The result is

B= 20 2+5 5% 208, 20y, 0.
= |8€qu0paupsupy)‘pal —1, (9

where thelatter, covariant form reestablishes pin
any frame. We further have (p = p.)

(6” ukopaupﬂvpy kpa)z = (EMUXOP:: “‘bb vpc )\pa 0)2
== A4(paypb’pcypd)’ (10)
the Gram determinant being generally defined by

A,,(Pl, . .,P,,)= det(Pi ’P;), i,j=1,...,n.
(11)
And the p, - p, for the case of present interest are
evaluated as

pnpc == %(Mz "maz —mcz) ’

byba=— 3(Mm? _mbz -mg?),

baby= 50"+ m+m,?), (12)
Ppbe= _%(pﬂz"'mbz"’mcz)’

beba= %(pyz + m’c2 + de) s

Paba= = 3(Ps®+ ms*+m,?),

where the definitions M?= —(p,+ pg)? and M2
= —(po+ Ps® have been used. So, with the inser-
tion of these evaluations understood, p is given by

B=5[=2,0b0,Pys e, 0172 . (13)

The existence of real particles in causal pro-
cesses imposes certain kinematic constraints.
That is, it must be that the simultaneous solution
of the mass-shell and conservation-of~-momentum
conditions admit real (i.e., not complex) momen-
tum components for these particles. For four
particles—a, b, ¢, d—this reality condition is
equivalently expressed by the following equations,
as is common for physical-region statements®:

Az(parph) S0,
Aa(pa,p,,,pc)gm (14)
A4(Pa,1>,,,pc,p,,)s0,

For our particular example we substitute into
these equations the evaluations (12). This result,
however, is not sufficient to uniquely specify the
causal process of present interest since there are
also two other four-source causal processes with
four real internal particles, as illustrated in Fig.
3. But the present example is uniquely singled out
by supplementing Eqs. (14) with the simple thresh-
old statements
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FIG. 3. The two additional four-source causal pro-
cesses in which the four internal particles are real.

Mzm,+mg,

(15)
M'zmy+m,.

The result (13) for p is of course true only if the
arguments of all the 8 functions in Eq. (8) can van-
ish; otherwise the result is zero. We expect that
the former of these circumstances corresponds to
the conditions for the existence of the causal pro-
cess, and this is easy to explicitly show. Namely,
the vanishing for the first three 6 functions re-
quires that the values of the p,?, i= a, 8,7, 6, be
chosen so that the p;, and hence p, ,,, are real.
And for the remaining 6 function it is required
that the p,? determined in terms of p, , , be posi-
tive. Or equivalently, by conservation of momen-
tum, the internal momenta p, , . . must have real
components.

Returning to the vacuum amplitude proper, Eq.
(5), we rework it to express the exhange of the
two two-particle excitations ac and bd. Exchanged
excitations, as noted in TPF, play a central role
in the establishment of spectral forms. First the
vacuum amplitude is multiplied by unity expressed
as

' Cy

-
1}

[ (aPy(aP ") 6P = po~pd 5P =D o=

J (21)* 8(P = p o= g) (2M)* 6(P’ =P —D )

dM/Z
27

2
Xil-”—-dw;:

dwp, 16
27 “r (16)

in which use was made of the definitions (3) and
M?= = (p,+Pp? M?=—(p,+ps? These last two
d functions and the one originally occurring in the
vacuum amplitude are reexpressed according to
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(21)28(p o + P+ Dy + D) O(P = p o= D) 8(P'=D o =9
= j(dx)(d’é)(dﬁ') etPalx—E-¥) piog=t)

Xe“’)’ elﬁé(x—g') elPE elP’g' . (17)

Then, upon return to configuration space, the vac-
uum amplitude may be stated as a double-spectral
form™:

1
~ 20t f(dx)(dﬁ)(ds’) @, (%) ps(x - £)

X@s(x=E)@olx~E=¢E)

XA, (& M%) A, (8, M%) p(M?,M"?) dM? dM".
(18)

Here, Eq. (4) was used for the fields, and the P
and P’ integrals supplied the propagation functions
according to Eq. (2b) since, by the causal specifi-
cations, ¢ and &’ each refer to the displacement
between causally related fields, i.e., £° £7°>0.
The range of the M?, M2 integrations—the'spec-
tral-mass domain—is the variation admitted by
the causal process. As discussed above, such is
given by Egs. (14) and (15), and in this domain the
spectral weight function p is nonzero and given by
Eq. (13). [An example of this domain, considered
in Sec. II B1, is illustrated in Fig. 4(a).]

As discussed in TPF, structures such as Eq.
(18) can be space-time generalized.!' Namely, the
description of the physical situation in which £°
and £’° may have any value is provided by Eq. (18)
with the conditions £°, £’°>0 removed. Further-
more, the temporal distinctions between the
sources in this equation can be dropped. Hence-
forth, we shall always mean by Eq. (18) this space
time-generalized result. The expression of this
result in momentum space requires the use of the
noncausal form of the propagation function, Eq.
(2a), and one obtains

-GaF [ ) o)20)* 600 + 5+ £+ 9

1 1
"Wt b T M —ic (bt P + M7 —ic
XB(M2, M%) dM? d M2 . (19)

Complementary to the generalization in £ and &',
(b o+ pa)® and (p,+ p»* may now take on any values,
timelike or spacelike.

B. Mass Extrapolation

In the casual process it is required that the dis-
placements ¢ and £’ have positive time components
and that the sources emit particles with certain
off-shell momenta. The former of these restric-
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tions was lifted from the vacuum amplitude by the
process of space-time generalization. The re-
moval of this restriction makes it no longer physi-
cally necessary to maintain the latter restriction,
so0 we now consider if indeed it can be removed in
the vacuum amplitude, and, in particular, if the
sources can be brought to describe real particles.
This procedure, known as mass extrapolation, is
necessary to complete the establishment of the
double-spectral form for the usual scattering sit-
uation of the four particles a, B, v, 6, with any two
forming the initial state.

1. Previous Work

Let us first briefly recall how mass extrapola-
tion was treated previously in source theory for
the four-point function.®*2+* The basics of that
work are clearly illustrated by considering the

simplest possible kinematic situation:
—pl==pF= —pl==pl=m?, (20)
=b, = =p, = pg=ps=m?,

whichl is applicable only if one intends to extrapo-
late to real external particles of zero mass. For
this case A (p,, Py, Pe,bg) reduces to

A= 1 fifa) (21)
with

fi=MPM? -4m?, (22a)

fo= (M2 = 4m®)(M"® — 4m?) —(4m?)2. (22p)

Then the spectral-mass domain, generally deter-
mined by Egs. (14) and (15), is easily specified.
Namely, from the region admitted by A, <0 and
the threshold statements, A, <0 picks out the part
with f, <0, f, =0, while the A, condition guaran-
tees that such is not empty. This result is illus-
trated in Fig. 4(a). Upon extrapolation to real ex-
ternal particles, m -0, f, becomes a positive ob-
ject, while f, is unaffected. The spectral-mass
domain after mass extrapolation is thus taken to
be given by f, >0, f,> 0, although the former in-
equality can be dropped since it is now implied by
the latter. This extrapolated spectral-mass do-
main is shown in Fig. 4(b). Also, after extrapola-
tion 5= 3(-f,f,)"'/? is an imaginary object (with
its over-all sign remaining to be determined,
which is done below).

A critical feature of this analysis is the simple
form into which A, factorizes. For a few other
choices of masses such persists, but in general
A,, considered as a function of M2 and M"?, is
neither simple nor factorizable. Also, the extrap-
olation of the external momenta brought about an
extrapolation of the spectral-mass integration do-

m'2

(a)

(b)

FIG. 4. The spectral-mass domain before extrapola-
tion (a) and after extrapolation (b), for the simple
choice of masses considered in Sec. IIB 1.

main. And the manner in which this was carried
out appeared natural for the simple example. But
for a more complicated A,, such a natural path is
not apparent. It is possible, though, to generalize
the above method to the situation where all parti-
cles are allowed different masses,'? but that work
requires a detailed examination of A, as a function
of M? and M'?, and the whole approach appears
quite forced. So next we turn to two new methods
of extrapolation that are better suited for treating
the more general situations for the four-point
function.

2. First Method

The obvious thing to attempt first is a simpli-
fication of A,, and also a,;, by change of variables,
with this simplicity then being employed to con-
struct a natural scheme of extrapolation. Toward
this end, consider the frame in which p,+ Pg= 0,
the aB c.m. frame. Then, proceeding from Eq.
(10), we can rewrite A, as
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- 8,= [M(®sxDc) - B,
=M*pg" D B, (1 - 2)(1 =~ 0%, (23)
and similarly

—8y=M*Dg%DA(1 - 2%, (24)

where z is the cosine of the angle between Pg and
P., and o is the cosine of the angle between 137 and
the plane formed by Dg and B, .

In carrying out the extrapolation, we shall only
consider, at least in the present paper, the situa-
tion where the factors pg® P.°, and p,” play an in-
ert role, i.e., retain positive values after extrap-
olation. Furthermore, pending any possible in-
dications to the contrary, we assume that the most
minimal of the causal restrictions for the spectral
masses, the threshold statements (15), persist
after extrapolation. From the first threshold
statement it immediately follows that .2, being
evaluated in the aB ¢.m. frame, remains positive
when the external particles are brought on shell.
Similarly, the same conclusion is found for Pg?
and P, ? if the restrictions

Mo+ Mg, M +Ms<M,+ M, (25a)

Y

are imposed. The evaluation of A; and A, and the
analysis to follow could also have been carried out
in the By c.m. frame. So, for consistency we also
require, analogous to Eq. (25a), that

Mg+ My, Mo+ Ms<My+My . (25b)
Mass restrictions also enter in another way. In
order that the original causal process exist as
specified (a point discussed extensively in TPF),
it is required that particles o and ¥ be stable. Al-
ternately, one could have employed the causal pro-
cess in which Kp acted as the production source,
so for consistency stability is also required of
particles 8 and 6. Thus we impose the conditions

moysm,+m,,

mg SMy+ Mg,
(26)

my<mg+myg,

ms<mg+m,.

Now, changing from the variables M2 M2 to z,
o, we have from Egs. (23) and (24) that before ex-
trapolation the integration domain in the spectral
form is specified by**

z2:=1-1, o:=-1-1, (27)

This variation of z of course refers to the fact that
z is a cosine evaluated in terms of the momenta
at a physically realized vertex (8c). But, when
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the external particles are brought on shell, this
evaluation then becomes one referring to three
on-shell particles at the vertex. Such is an un-
physical situation, and thus'® z takes on unphysical
values, satisfying z>1. On the other hand, for the
variable ¢ we find no physical argument relating
to a change of domain. An obvious suggestion is
thus presented for the spectral integration domain
after extrapolation, with it being only natural to
admit all values of z exceeding 1. We accordingly
take this domain to be given by

z2:l=ww, g¢g:=1~1, (28)

Next we return to the variables M? and M2, The
spectral-mass integration domain after extrapola-
tion is given by Eqgs. (28) and (15), which, by use
of Eq. (23), are equivalent to the statement that
M? and M'® take on all values satisfying

2,20, Mz=m,+m,, M z2m,+m,. (29)

[A, is given by Eq. (11), with the external momen-
ta in Eq. (12) on shell.] This domain is similar to
that illustrated in Fig. 4(b), with the asymptotes
being M?= (m, +m.)? and M"%= (m, + m,)>.

Since A, has changed sign, p, Eq. (13), is now
imaginary, but its over-all sign remains to be de-
termined: p=%*i%(A,)"'/?. This sign is deter-
mined by a simple comparison with a noncausal ex-
pression for the vacuum amplitude, as we now ex-
hibit. The initially generated vacuum-amplitude
term (1) may be space-time generalized as it
stands. That is, it is meaningful'® to remove the
causal restrictions between the space-time coor-
dinates, which introduces for the four propagation
functions expressions of the form (2a). And fur-
thermore, owing to the simple structure of this
type of result, the extrapolation of the sources to
describe real particles can immediately be carried
out. The result—which is said to be a noncausal
expression because its derivation did not make any
substantial use of the specifications of the causal
process—is given in momentum space by

[ 1) 0@ 2)* 80+ D+ 1y 22

1 1
xf(dp)(P—Pa—Pa)z'*‘maz(P"Pa)z"‘mbz

1 1
XPrmp2 G+p)y+mg” (30)

where the —ie factors have been suppressed. This
result and the mass-extrapolated double-spectral
form are two different expressions of the vacuum
amplitude referring to the same source specifica-
tion. Thus they must be equal, and their compar-



8 SPECTRAL FORMS FOR FOUR-POINT FUNCTIONS 4551

ison will determine the over-all sign in the latter.
Any special case may be considered to effect the
comparison, and in particular we consider the
mass- choice ma,am,;:O in the limit of all external
momenta approaching zero. In Eq. (30) one can
then immediately transform to a Euclidean mo-
mentum (p,—~¢p,), which illustrates that the p in-
tegral is +7¢ multiplied by a positive factor. Com-
parison with the double-spectral form then estab-
lishes'’

p=-iz(a)"/?=-ip. (31)
So, in summary, the mass-extrapolated double-
spectral form is given as
i
o | @) 9@ (20)* 6.+ £+ 5, +)

1 1
><([)m+pﬂ)2+M2—ie (Pt Dd®+ M?—ic

X p(M?, M'?) dM>dM " (32)

or its configuration-space counterpart. Here the
spectral weight function p is given by Eq. (31) and
the spectral-mass integration domain is specified
by Eq. (29). In this result all masses are allowed
to be different, and each may take on any value,
subject to Egs. (25) and (26). This result is of
course the same as that first obtained by Mandel-
stam'®—and often referred to as the Mandelstam
representation—and later by the conventional ana-
lytic methods, e.g., the Landau-Cutkosky ap-
proach.® However, less labor is required in our
approach in that it is not necessary to study the
analytic structure of the amplitude, which is a
rather detailed task.”® Also, the spectral form
(32) is one with normal thresholds, and so Egs.
(25) and (26) may be regarded as predicting a re-
gion of masses where such spectral forms exist;
this conclusion is consistent with the conventional
predictions.

3. Second Method

There is one point in the above extrapolation
procedure that stands out above the particular de-
tails: The spectral-mass domain after extrapola-
tion is related to the unphysical situation specified
by all particles, internal and external, being on
shell. This suggests that we attempt a more direct
approach to extrapolation; that is, work this un-
physical situation into the consideration of the
causal process, rather than waiting until the spec-
tral form has been achieved and then extrapolating.
Now we cannot directly mass extrapolate the vac-
uum amplitude for the causal process, since then
some momentum components become imaginary,

and such would invalidate the steps in the rework-
ing of the vacuum amplitude into spectral form.
But this reworking concentrates mainly on the ex-
ternal-particle structure of the vacuum ampli-
tude—that apart from p. Furthermore, 7 in the
form directly obtained from the causal process,
Eq. (6), expresses the central feature of the causal
process, the reality of the internal particles. A
more direct approach to the extrapolation is thus
provided by the following procedure: Carry out
the space-time generalization to spectral form as
usual, but with p retained in the causal form (6).
Then perform the mass extrapolation, and finally
evaluate p. In some ways this procedure turns out
to be more appealing than the first method of ex-
trapolation.

In this second method, the external momenta
that appear in the evaluation of p are unphysical.
On the other hand, those appearing in the external-
particle structure of the extrapolated vacuum am-
plitude are physical on-shell momenta, since there
the demands of the causal process were removed
upon space-time generalization. The external mo-
menta appear with these two different evaluations
simply because, as made clear in the spectral-
form derivation of Sec. I A, the external momenta
occurring in p do not upon space-time generaliza-
tion maintain their association with the fields, but
rather serve to provide the spectral variables M
and M.

Now we turn to the specifics of this second meth-
od. Consider the space-time generalization, but
not the mass extrapolation, to have been carried
out, with  in causal form. And choose the par-
ticular Lorentz frame so that the explicit expres-
sion of p in terms of the momentum components is
given by Eq. (8). Now bring the external momenta
from the virtual to the on-shell values. To see the
extrapolation that is thus induced in the vacuum
amplitude, we need examine the components of the
external momenta as they appear in p. As in the
first method, the two threshold statements (15)
are assumed to apply after extrapolation. The ex-
ternal momenta are thus unphysical, which means
that some of their components must be imaginary.
With the mass-sum restrictions (25) imposed, it
is easily seen® that such are the y components;
that is,

o= (o, Pax,0,0),

ps= (Pao, =buxs0,0),

by =1, Dy, iDyy, 0),
Ps= 05 =Dyx, =iDyy, 0,

(33)

where p, , is real. In the expression for 5, Eq.
(8), the imaginary momentum component enters in
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only one place, the Pyyb, term in the m,; & func-
tion, which is also the only place p, occurs. It is
required that the vacuum amplitude, and hence p,
remain meaningful under extrapolation, and thus
as a part of the extrapolation procedure we take

by~ —ip,, (34)

where 13,, is real. [+ip, is of course also possible,
thus giving an undetermined over-all sign, which
is resolved in favor of Eq. (34) by the argument
leading up to Eq. (31).]

The extrapolated weight function is thus given as

5= =i | dbodp, dBydp, =P = (b o24D ") +m,?
+ 2002+ 1% P°)
XO(=m 2 =mg>+m,?+ 2p;%° = 2pg.. p,)
XO(=me?=m,®+my®=2p °p°+ 2p, . P,
+2p,,b,)
X 8(me® = pZ+p,2=p 2+ 0,0

This integral, involving only real quantities, is
evaluated as was Eq. (8) in Sec. IIA, the result
being

P= 1|20+ 05" 26 2By y 0,1

(35)

= =i i 2(p o+ 0% 208, 20y, 0. |77 - (36)

And this is recast into covariant form as in Sec.
I A, but with the 7 serving to provide i*= - 1:

B=—is (a2, (37)

Here A, is given by Eq. (11) with the external mo-
menta in Eq. (12) being on shell.

Concerning the spectral-mass integration domain
in this second method, it is taken to be the domain
for which the integral expression for the extrapola-
ted weight function, Eq. (35), is nonvanishing (and
Mzm,+m,, M'>2m,+m,). As the discussion be-
low Eq. (15) shows, the unextrapolated domain can
be viewed as similarly specified. But that domain
is also directly associated with a physical-region
statement; here, the association is, in some
sense, with an unphysical region. It is manifest
that the arguments of the first three 6 functions
in Eq. (35) can vanish (in distinction to the situa-
tion of Sec. ITA), so the only restriction comes
from the last 6 function: p,>>0. The steps which

i
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lead from Eq. (36) to Eq. (37) also provide
pzZ: A4/M2pﬂx25yy2v (38)

and hence we have A, > 0. Thus the mass-extrap-
olated double-spectral form (32) is again
achieved.

C. Complete Lowest-Order Contribution

The causal process of Fig. 1 is not the only one
providing a lowest-order contribution to the mass-
extrapolated space-time—generalized vacuum am-
plitude. That is, contributions from other causal
processes of the type of Fig. 1 but with sources
interchanged must also be considered, since these
contributions, upon space-time generalization and
mass extrapolation, also apply to the same source
specification as does the previous result—namely,
to real-particle sources with general space-time
disposition. The basic thing to determine is the
full set of causal source arrangements necessary
to obtain the complete vacuum amplitude. For a
given source arrangement more than one lowest-
order causal process may occur, Oor none may
occur, depending on the primitive interactions that
are allowed. /

It is convenient to designate a given source ar-
rangement by the order of the sources as read
counterclockwise around the causal process, start-
ing with the production source; so the causal pro-
cess of Fig. 1 corresponds to the sequence apys.
In forming the complete set of source arrange-
ments, we do not admit any arrangement for which
the source sequence is a cyclic permutation of one
already in the set, since these two just provide
two ways of calculating the same final vacuum-am-
plitude contribution. Also, we do not include in the
set a sequence which is the reverse of one already
in the set, since any coupling that can be estab-
lished among the former configuration of sources
may also occur for the latter. Thus, out of the 4!
possible sequences, the complete set of source
arrangements may be taken to be given by the three
aByd, aypd, and aBdy. These are illustrated in
Fig. 5.

The calculation for each of the new configurations
is carried through exactly as in Secs. IIA and II B
for the original configuration. Analogous to Eq.
(32), the complete lowest-order vacuum amplitude
thus has the expression

1 1

\ 1 1 ’
o) (@) ) @00 by 22 [0 G a7 G e 0T * Pa G b O G h

1 1

+ Py (po+ 8>+ M? (Dot D)+ M’

2} dM?dmr
(39)
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FIG. 5. The complete set of source arrangements
necessary to obtain the complete lowest-order double-
spectral form.
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where I, II, and III refer to the contributions to
which Figs. 5(a), 5(b), and 5(c), respectively, cor-
respond. Also, the weight-function arguments and
—t€ have been suppressed, and it is understood
that the contributions from different causal pro-
cesses may have different spectral-mass domains
of the type (29) associated with them.?

D. Higher-Order Contributions

" In TPF a discussion of the higher-order general-
izations of the lowest-order processes was pre-
sented in which we argued the existence of the cor-
responding spectral forms. The same ideas can
be applied here, prior to the point at which mass
extrapolation must be considered, and this we now
do.?® Then some considerations toward the mass.
extrapolation will be presented.

The basic notion of the generalization, in the
present instance, is the replacement of the individ-
ual particles that propagate between the sources
by excitations composed of any number of inter-
acting particles. These generalized causal pro-
cesses can be schematically organized in the man-
ner shown in Fig. 6(a), and analogously for the other
two source arrangements. In that figure all shaded
areas refer to regions of particle interaction.
Those regions attached to the sources Kz and K
are localized ones (i.e., contain no propagating
particles), while the other two are composed of
an assemblage of such regions, causally related
via the exchange of real particles. Furthermore,
the region attached to K, and similarly that at-
tached to K,, can be decomposed as shown in Fig.
6(b), where each shaded area refers to an assem-
blage of causally related localized interaction re-
gions. Note that these generalizations of the low-
est-order process do not include those processes
in which particles pass directly between the re-
gions associated with K, and K, .

In order to specify the spectral-mass domains
associated with these causal processes, it is use-
ful to first establish some notation. The two sys-
tems of interacting particles into which the K, in-
teraction region has decomposed, as depicted in
Fig. 6(b), and which propagate to the K5 and Kp lo-
calized interaction regions, are referred to as,
respectively, excitations ¢ and b, and their mo-
menta are designated by P, and P,. Continuing
this analogy with the particles of the lowest-order
process, we similarly define excitations ¢ and d,
with momenta P, and P,.** Among the various
real multiparticle states that comprise, each at a
different time, the excitation @ in a given causal
process, there is one state for which the sum of
the individual particle masses is largest. Call this
sum M,, and likewise specify M,, M,, and M, .



4554 RICHARD J.
K)’
Ks Kg
Ka
(a)
Ka

(b)

FIG. 6. (a) Illustrative example of the class of higher-
order causal processes discussed in Sec. IID. (b) The
further decomposition of the interaction region in (a)
associated with K, with the emergent particles attached.

Also, for the system of interacting particles from
which excitations ¢ and b separate, and for that in-»
to which ¢ and d coalesce—excitations ab and cd,
respectively—we similarly define maximum mass
sums, M,, and M ,.

The spectral-mass domain for a given one of the
causal processes is specified, as in the lowest-
order case, by the kinematic constraints due to
the existence of the real particles in the process.
For the real multiparticle states appearing in ex-
citations ab and cd, the constraints are —p 2> M,,?
and -p,2>M,°. These are taken simply as part
of the source specifications, along with —p 2
> (M, + M,)* and = p,*> (M, + M,)*. For the excita-
tions ¢ = a, b, ¢, d, the —P,% may take on any values
satisfying —P,2>M? and (- P,2)'/?+ (- P,?)/?
S(=p A% (=PAV24 (=P < (- 5,2,
which are also conditions independent of the spec-
tral masses. The basic constraints are caused by
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the interrelation of all four of the excitations i .
If the — P,® are momentarily considered as fixed,
then the matter is exactly as in the lowest-order
case, and the constraints are given by Eqgs. (14),
(15), and (12), with the substitutions m %~ — P2
These equations then specify a part of the spec-
tral-mass domain. And the full domain is the
union of all such parts obtained upon letting the
- P2 vary over their allowed range, as stated
above.

Now consider the establishment, before mass
extrapolation, of spectral forms from these pro-
cesses. The basic point is that the steps in pro-
ceeding from the initially generated vacuum ampli-
tude to the space-time generalized expression
only involve a reworking of the external-particle
structure of the vacuum amplitude, which is the
same as in the lowest-order example. All refer-
ence to the internal particles is contained in the
p associated with the generalized process and, in
a much simpler manner, in the spectral-mass do-
main. The vacuum-~amplitude contributions are
thus expressible as double-spectral forms of the
type (18) and (19), or their analogs from the other
two source arrangements, although p remains only
some general function.

Next is the matter of mass extrapolation. To be-
gin, we again momentarily consider that the — P ?
i=a,b,c,d, are held fixed. With such, the deter-
mination of the new spectral-mass domain that re-
sults upon mass extrapolation is carried out exact-
ly as in the first method for the lowest-order ex-
ample, because the relevant equations in the pre-
sent case are those of the lowest-order case with
m;®~—P,% And so, the domain is given by Eq.
(29) with this substitution. The union of all such
domains which are obtained as the —P,;® vary
over their range is the complete extrapolated
spectral-mass domain corresponding to the given
process. The range of the — P ? after extrapola-
tion is from M,® to «, this latter value being chosen
since after extrapolation the causal circumstances
which enforced an upper bound in terms of the
source momenta have been removed. Thus, the
complete extrapolated spectral-mass domain is
simply given by Eq. (29) with m,~M;, since any
domain for fixed —P ;%2> M,? is contained within
that for —P,?= M,? (which also shows that the up-
per limit of the — P,? is inconsequential in deter-
mining the complete domain). Also, in carrying
out the steps of the extrapolation method, we must
impose the analogs of the restrictions (25) and (26)
for each fixed set of the — P,%. To enforce all these
inequalities it is sufficient to demand that the re-
strictions (25) and (28) with m; ~M, be satisfied.

So, the spectral-mass domain after mass extrap-
olation has been obtained. However, such is not
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all that is involved in mass extrapolation, and it is
really not correct to just consider such by itself:
In any extrapolation it is necessary that the vac-
uum amplitude remain meaningful. In particular,
we must investigate if the spectral weight function
remains well defined as the spectral-mass domain
is extrapolated, or, in the language of the second
method, as some momentum components become
imaginary. But this is the point at which our pres-
ent efforts stop. The fact that there is a structur-
al similarity between the higher-order processes
and the lowest-order one,?® and that the extrapola-
tion of the lowest-order weight function was quite
simple, leads us to have some optimism concern-
ing the task which remains.

Turning to a different matter, we briefly discuss
the fact, passingly noted at the outset of this sec-
tion, that not all possible higher-order causal pro-
cesses with the given source specification are in-
cluded in the set obtained by the generalization
from the lowest-order process. In particular,
not included in this class is the causal process
shown in Fig. 7 (where the three-particle produc-
tion and detection acts may each be realized via
either a four-particle primitive interaction or two
three-particle primitive interactions coupled by a
virtual particle). From this process it should be
possible to obtain, prior to mass extrapolation, a
double-spectral form according to the methods
presented in Sec. IIA. But the determination of
the spectral-mass domain requires a new set of
Gram-determinant physical-region statements.
Also, the internal momenta are no longer com-
pletely determined in terms of the invariants
formed from the external momenta, as is the case
in the lowest-order example (apart from the sign
of p,). For these reasons, and also because of the
different form of the weight function, the structure
upon which mass extrapolation should be per-

“formed would be quite different from the lowest-

Ky

Ks Kg

Ka

FIG. 7. A higher-order causal process, with the re-
quisite source specification, not included in the class of
Fig. 6(a).

order one considered in Sec. IIB. It would thus be
quite interesting to test the general ideas of that
section against this new, more involved example,
and see what further insights (and complications !)
we can uncover concerning mass extrapolation.

III. SINGLE-SPECTRAL FORM

A. Derivation of the Spectral Form; Extrapolation

The relevant causal process is illustrated in

- Fig. 2. The vacuum-amplitude contribution to

which this process corresponds is again found to
be given by the expression (1), but the fields there-
in are now understood to refer to the new source
specification. In order to guarantee the temporal
separation of the production and detection scat-
tering acts in the causal process, it is necessary
to impose certain restrictions. This matter is
discussed in detail in TPF, and the analysis there
immediately applies to the present situation. Suit-
able restrictions are the inequalities

Mo +Mg, M+ Ms<M,+ M, (40a)

Y
and

m,<m;+my, (40b)
e i 3

the latter being applied at each of the four vertices,
where e refers to the external particle, and i and
i’ to the two internal ones. [These inequalities

are of course the same as Eqs. (25a) and (26), and
the arguments leading to them in the two instances
are not unrelated.]

The reworking of the causal vacuum amplitude
into single-spectral form proceeds according to
the usual technique illustrated in TPF or in Sec.
IIA. Namely, upon use of the temporal stipulations
of the causal process the vacuum amplitude is
brought into - momentum space, wherein the ex-
changed excitation (ac) is made manifest by the in-
sertion of a unit factor, the vacuum amplitude then
being returned to configuration space and space-
time generalized. The result is

EiE f (dx)(dx") @, (%) @ 5(x) x(M?) A, (x = %, M?)

cha(x') (pB(x,)szy (41)
or, in momentum space,
o | (D) o)) (2m)* b o+ £ + by + 5

1
X(pa+pe)2+M2—ie

x(m?)dm?, (42)

with the weight function being given by
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| dw, dw, (21*0(p o+ Po= Dy = Po)

x[(pa "pa)z + mbzl.-l [(py + pc)z + mdz]_l .
(43)

Some remarks on the consequences of the space-
time generalization should be made. This general-
ization removes the stipulation that the a8 and yd
interaction regions be causally related, i.e., that
(x =x”)°>0, in the notation of Eq. (41). Complemen-
tary to the generalization of this displacement, the
invariant (p,+ pg? in Eq. (42) may take on any val-
ue, timelike or spacelike. But the other of the
two independent invariants for a four-point func-
tion, (pg +p7)2, did not so participate in the space-
time generalization, and thus maintains its orig-
inal identity and domain of variation, that appro-
priate to a momentum transfer squared. [Accord-
ingly, since all the momenta in the weight function
refer to the causal situation, in the evaluation of
the integral (43) one replaces — (p,+ pp? by M>
but leaves (pg + p,)* as is.] Space-time general-
ization also allows the removal of the production-
detection distinction of the sources, but only to the
extent that pg + p, appears as a momentum trans-
fer. Thus, the vacuum amplitude (42) applies to
all possible (real-particle) source specifications
in which (pg + p,)* is so restricted, (p,+ pg* having
any value.

Still to be determined is the spectral-mass in-
tegration domain in the single-spectral form. To
this end, as usual, we consider the conditions im-
posed by the existence of real particles in the caus-
al process. But the entire causal process refers
to six real particles, while the weight function
only refers to the reality of two internal particles.
This situation is different from those encountered
in TPF and Sec. ITA, where the demands of the
causal process and the weight function were equiv-
alent. So which set of demands do we employ to
determine the spectral-mass domain? The
former, referring to the usual physical-region
conditions of scattering processes, requires for
a given value of (pg + py)2 that M in general is above
and cannot reach the threshold value m + m,,
whereas the latter admits all values M=2m,+ m,
independent of (pp + p,)?. Now, the mass-extra-
polated double-spectral form also provides an ex-
pression for the vacuum-amplitude contribution
under consideration, so we may compare the sin-
gle- and double-spectral forms to resolve between
the two possibilities for the spectral-mass domain.
And this comparison immediately shows the latter
possibility to be the correct one.

The vacuum amplitude describing the causal pro-
cess is a priori well defined since the causal pro-
cess is guaranteed to exist. But the considerations
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just presented show that for the space-time—gen-~
eralized single-spectral form, the spectral-mass
domain must be extrapolated from that correspond-
ing to the causal process by extending the lower
limit down to m,+ m .. Thus, we must explicitly
investigate if the weight function remains well de-
fined in this additional region. To this end one
could study in detail the expression (43) or its ex-
plicit integrated form, but a simpler alternative
is available. It is sufficient to show that for the
allowed values of (pg + py)z, particles b or d can-
not be on-shell while particles a and ¢ are, i.e.,
the denominators in Eq. (43) cannot vanish. This
does not follow immediately from (pg + py)2 being
below the bd threshold since the momenta involved
are unphysical. But it is a direct implication of
the second method of mass extrapolation for the
double-spectral form that no such kinematic con-
figuration provides a contribution to the vacuum
amplitude until - (pg + 1)7)2 exceeds the value

(my+ my)®. So, this shows that y remains well de-
fined under the extrapolation of M, but it also al-
lows us to extrapolate (pg + 1)7)2 slightly beyond the
domain associated with a momentum transfer and
claim the applicability of the single-spectral form
for all

(ps + Py)z 2 = (m, +my)®. (44)

Also, since the double-spectral form has been in-
voked here, and in the previous paragraph, the
mass restrictions associated with it must now be
imposed on the single-spectral form; thus Egs.
(40) are amended by Eq. (25b).

Because the single-spectral form only applies to
source specifications included in those of the dou-
ble-spectral form, and also because its derivation
twice invoked the double-spectral form, one might
consider the single-spectral form to be of little
interest. However, it is useful as another example
toward the development of general technique. And,
in particular, in Sec. III B we find a certain fea-
ture which has not heretofore appeared in the
source-theoretic study of spectral forms. Ina
different vein, for those examples of double-
spectral forms involving contact terms, it is nec-
essary to also calculate single-spectral forms
in order to determine the contact terms, as will
be illustrated in our fourthcoming work on elastic
photon-photon scattering.™.

B. Complete Lowest-Order Contribution

Analogous to the situation in Sec. IIC for the
double-spectral form, the single-spectral form
obtained from the causal process of Fig. 2 is not
the only lowest-order contribution to the vacuum
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FIG. 8. The four types of causal processes necessary
to obtain the complete lowest-order single-spectral form.

amplitude. Rather, we must also consider other
causal processes of the structure of Fig. 2, but
with sources interchanged, that provide space-
time-generalized contributions referring to the
same source specifications as does the above re-
sult. Since, in the original calculation, (pg+p,)*
remained fixed, we take it that only those causal
processes should be included for which this vari-
able again plays such a role. And this leads to the
four types of causal processes shown in Fig. 8, the
additional ones in which pg + 2 also appears as a
momentum transfer being excluded since they only
provide alternate ways of calculating the contribu-
tions associated with the given ones. Also, note
that all the causal processes of Fig. 8 may be real-
ized between only two arrangements of sources,
the original one and that differing from it by g-v.
The derivation of the spectral forms for the new
contributions is carried through exactly as in the
original case, except that (p,+ 1)7)2 is the spectral
variable in two of the instances. The resulting
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single-spectral expression for the complete lowest-
order vacuum amplitude is then

-Zi:n- f[(dﬁ) ‘P(.p_)](27)4 5(p o+ Ps +py+p6)

% xli}'xm1 . XIl+Xlllz
(batp0® + M? " (py+ D)+ M®

J dM?, (45)

where I, II, III,, and III, refer to the contributions
to which Figs. 8(a), 8(b), 8(cl), and 8(c2), respec-
tively, correspond. It is understood that the con-
tributions from different causal processes may
refer to different spectral-mass thresholds, and
in all cases the other variable on which the weight
functions depend is (pg +p,)®. Also, (po+p,)? may
be eliminated in terms of (p,+ pg? according to
the relation

_(pa+pﬂ)2_(pﬂ +p7)2_(pa+py)2

=mi+mg®+m2+mg®.  (46)

As the notation is meant to indicate, the contribu-
tions to the vacuum amplitude (45) designated by
IIT, and III, are related. That is, once a set of
primitive interactions is admitted so that a causal
process of the type of Fig. 8(cl) exists, so does
one of the type of Fig. 8(c2) [note Fig. 8(c1) “ro-
tates” into Fig. 8(c2)], and vice versa, whereas
in this sense the I and II contributions are indepen-
dent from each other and from III, and III,. A
more specific statement of this matter is that two
causal processes must be considered to provide
the space-time-generalized vacuum-amplitude
expression corresponding to one noncausal vac-
uum-amplitude contribution [the latter being de-
fined in conjunction with Eq. (30)]. Such a feature
has not appeared previously in the source-theoretic
study of spectral forms.?® That two causal pro-
cesses corresponding to one noncausal structure
must be considered is because the complete low-
est-order vacuum amplitude is obtained from all
causal processes (excluding those which just pro-
vide duplicate results) in which pg+ p, appears as
a momentum transfer. And that the two may occur
within this restriction on pg+ by is because in them
B and y are not adjacent external particles.

This last property is also related to the fact,
which we now discuss, that the range of (pg + p,)*
for which the spectral forms corresponding to
these two processes are valid, is not the same as
for the original process. For definiteness, first
consider a causal process giving a III, contribution,
and label its internal particles, in the manner cor-
responding to Fig. 2, by a’, b/, ¢/, and d’. As in
the original case the spectral mass domain is ex-



4558 RICHARD J.

trapolated down to threshold, m, . +m, ., and associ-
ated with this an argument analogous to that leading
to Eq. (44) is carried out. Since the sources of the
given causal process are related to those of the
original one by the interchange y- &, the analog of
Eq. (44) is

(pa+py)2>—(m,,,+md,)2. 47

To express this in terms of the variables of in-
terest we use

M2 =(pg+p )= (Dot P)?=m i+ mp?+m >+ mg®
(48)

(the external momenta under consideration being

those that appear in the evaluation of the weight

function). Thus, the single-spectral form corre-
sponding to the III, causal process is valid for all

J

2
= (my+m)? <(Pg+ D) < (Mg + M) + (my +my)” =m 2 =mg® —m

where the internal-particle terms on the left-hand
and right-hand sides now refer, respectively, to
the largest and smallest such terms obtained from
all relevant causal process.

Although in developing the single-spectral form
we made a few comparisons with certain features
of the double-spectral form in order to resolve
some points, it remains a useful consistency check
on our methods to show exact agreement between
the complete single-spectral and double-spectral
forms, the latter being taken only for the range
(50). We shall not present the details, but this
equivalence can be shown by explicit calculation.?’
In particular, the I terms in Eqgs. (39) and (45)
agree, likewise for the II terms, and the III term
in Eq. (39) agrees with the III, + III, term in Eq.
(45).

C. Higher-Order Contributions

We now presént, briefly, some considerations
about the expression of four-point vacuum-ampli-
tude contributions of arbitrary order as single-
spectral forms. Following the discussion of the
Sec. III B, we must consider all arrangements
of sources in which pg + P, appears as a momen-
tum transfer, and these are just the original one
and that related to it by g—~vy. The causal process-
es for each of these arrangements are all formed
by exchanging a compound excitation from the two
incoming external particles to the two outgoing
ones. And, as in the previous discussion of
higher-order processes, this excitation is com-
posed of real multiparticle states, causally relat-
ed, and coupled by localized interaction regions.

IVANETICH

|

(b + D)? < (Mg + mo))? + My + my))?
-m-mg®=m,?—ms. (49)

In other words, the extrapolation may be carried
out, in the simple way we argued it, only for a lim-
ited portion of the values that a momentum trans-
fer may assume, although in addition the vacuum
amplitude is obtained for all timelike values of the
variable. [That the right-hand side of Eq. (49) is
a positive number follows from the mass restric-
tions required for the single-spectral forms.]

For the III, situation one obtains the analog of
Eq. (49) in terms of the corresponding internal
particles, and the II case is similarly related to
the original restriction, Eq. (44). Thus, from
Eqgs. (44) and (49), we have that the complete low-
est-order vacuum amplitude (45) is applicable for
all (p,+ pp)? and those (pg + py)2 satisfying

72_m629 (50)

r
Some mass restrictions are required to ensure the
causal stipulations associated with these pro-
cesses; the treatment of this point need not be
presented here since it is the same as for the sin-
gle-spectral form in TPF.

The causal vacuum-amplitude expressions for
these processes can be reworked into single-spec-
tral form since the procedure for such only in-
volves the external-particle structure of the vac-
uum amplitude. The complete space-time general-
ized vacuum amplitude for any given order is then
that which is obtained from all causal processes of
this order which can occur for the two source ar-
rangements. But remaining is the extrapolation of
the spectral mass domain. As a generalization of
the lowest-order studies, we take the spectral
mass for any given contribution to vary from M,
to «, where M, is the largest of the mass sums
formed over each of the multiparticle states in the
compound excitation. Then, in that portion of the
domain not realized in the causal process, we
must investigate if the spectral weight function
remains well defined, and this matter is left pend-
ing.

IV. DISCUSSION
A. Review and Extension

In this section we review the basic ideas pre-
sented in TPF and above for the establishment of
spectral forms. Included are some remarks, often
speculative, concerning the possible extension of
these ideas to other processes, both general and
specific.
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The most fundamental idea, emphasized mainly
in TPF, is how the identification of an exchanged
excitation in a causal process leads to a spectral
structure in terms of the displacement and vari-
able mass of the excitation. In vacuum-amplitude
expressions thus obtained, the spectral-mass do-
main is that specified by the causal process, and
the displacements (or complementary momenta)
have undergone space-time generalization. As is
indicated by the examples in one and two variables
that have been presented, this step of our methods
appears to be similarly applicable to processes
involving any number of exchanged excitations.

And this statement refers to processes of any
order, owing to the basic considerations concern-
ing the organization of such processes that were
made in TPF and, to some extent, were also dis-
cussed in this paper. The central point is that
such processes could be viewed as lowest-order
ones—or more correctly, as lower-order ones, as
indicated by the example at the very end of Sec.

II D—in which one- or two-particle states have
been replaced by excitations composed of any num-
ber of interacting particles. (These are not to be
confused with what we refer to as exchanged ex-
citations, which, briefly stated, are more specific
in that their total momentum is equal to some sum
of external-particle momenta.) Then, the identifi-
cation of the exchanged excitations is immediate,
given that of the parent process, while consider-
ations such as the determination of a causal spec-
tral-mass domain or the imposition of mass re-
strictions (see below) are just simple generaliza-
tions of that for the parent process, although one
of course cannot claim explicit expressions for the
spectral weight functions.

But two qualifications must be amended to the
conclusion stated in the paragraph before the last.
The first is simply that the displacements associ-
ated with the exchanged excitations must be inde-
pendent—i.e., it must be possible to vary them in-
dependently of one another®—since the space-
time generalization in them refers to each one
separately. The second, which we now go on to
discuss, relates to the basic matter, considered in
TPF, of the enforcement of the temporal stipulations
associated with a causal process.

The casting of the causal vacuum amplitude into
spectral form, without space-time generalization,
is nothing more than a mathematical rewriting. It
is thus required that the stipulations on certain
time variables which are central to this task are
consequences of the original vacuum-amplitude ex-
pression, reflecting the fact that it vanishes out-
side the domain which they specify; the stipulations
are not just conditions arbitrarily and externally
imposed on the vacuum amplitude. So, for the
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given space-time and energy-momentum specifica-
tion of the sources, it must be that the only way

in which the given coupling between the sources
can be realized is by the one specific causal pro-
cess. However, often the source specification is
not sufficient to guarantee such. Of use then are
mass restrictions [e.g., Eqs.(40) | and overlap
considerations (the latter being discussed only in
TPF). But beyond these two things nothing further
seems to be available, and consequently the struc-
ture of the causal processes suitable for calculation

is severely limited. For example, the causal pro-

cess shown in Fig. 9(a) cannot be employed in the
scheme of calculation since, for the given source
specification, it is not possible to exclude the ex-
istence of alternate realizations of the coupling,
namely, the causal processes of Figs. 9(b) and
9(c). A general lesson then is that we cannot argue
the types of spectral forms that would naively

be associated with causal processes involving
three or more real external particles interacting
in the same localized region. On the other hand,
available for calculation are realizations of these
same couplings in terms of.causal processes in-
volving at any localized interaction region only one
or two external particles, where in the latter in-
stance, if the two particles are real, both are
either incoming or outgoing.

These remarks, though, do suggest a possible
direction for generalizing the calculational scheme,
and we interject it here since it may bear looking
into. Namely, in those instances where more than
one causal realization can exist with the given
source specification, one should calculate for each,
in some way related to the previous, and then take
the space-time-generalized vacuum amplitude for
the given coupling to be the sum of such contribu-
tions.?® Note, however, that different contributions
will not generally refer to the same spectral vari-
able or set of spectral variables. Also, on a
somewhat different matter, one can generally ex-
pect that, at fixed order and for a given set of prim-
itive interactions, more than one specification of
the sources must be considered in order to get the
complete space-time-generalized vacuum ampli-
tude, as is simply illustrated in the example of
Sec. III B.

So, the discussion up to this point has indicated
that space-time-generalized spectral forms can
be argued in some generality. But this, of course,
is not the whole story: There is also the matter of
extrapolation. That is, there is a change in the
spectral-mass domain, and an attendant modifica-
tion of the spectral weight function, caused by the
bringing of virtual external particles on shell (or
more generally, taking invariants not in spectral
form from their original domain of variation), or
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caused simply by the structure of the weight func-
tion, as in the single-spectral example of Sec.
IIIA. And this matter is the one point in which our
methods are seriously incomplete.

FIG. 9. Example of three causal realizations of one
coupling for a given source specification.

IVANETICH

oo

Extrapolation was a major concern in the work
presented earlier in this paper. We could have
viewed the matter as just a mathematical problem,
but, in the spirit of source theory, an attempt was
made to provide a physical basis for it. In so doing
we have gained some insight into the matter, but
more is necessary. One general notion that might
be pursued further is the point, made at the be-
ginning of Sec. II B 3, that, loosely speaking,  the
extrapolated situation corresponds to causal pro-
cesses with unphysical momenta. (The same re-
mark holds for the extrapolation of the single-
spectral form since there the weight function was
also retained in causal form after the space-time
generalization.) The more the extrapolation can
be brought into the causal considerations, the
more general its execution is likely to become.

More specifically, the study of certain new pro-
cesses may shed some further light on extrapola-
tion. In particular, the causal processes of Fig.
3, and also that of Fig. 1, reemployed, should
lead to spectral forms in some of the p,?, i
=a, B,Y, 0. So extrapolation will not be necessary
in the corresponding external-particle masses
(but will in other variables), and a comparison of
these spectral forms with each other and the pre-
viously derived ones might serve to fix some of
the elements of the extrapolation. Also, we should
return to the consideration of extrapolation for
higher-order processes, including that of Fig. 7,
which was left hanging in Secs. IID and IIIC. On
a related matter, we must also consider extrapola-
tion away from mass restrictions such as Eqgs.
(25), (26), and (40), some work in this direction
having already been done.3®

There remains a broad and rather appealing
speculation. We start by remarking that, in con-
sidering the various causal realizations of any
given coupling contributing to an n-point function,
it would seem desirable to especially study those
realizations which would allow the contributions
to be expressed with the largest number of invari-
ants in spectral form. This is achieved by con-
sidering causal processes in which no more than
one external particle couples to any localized in-
teraction region, since in this way the number of
independent exchanged excitations is maximized.
A drawback to such might be that a more extensive
extrapolation is required than in the case where
two external particles are allowed at a localized
interaction region, because in this latter instance
the particles can be real. But if our experience
with the four-point function says anything general,
there is no such drawback; in fact, the extrapola-
tion above for the double-spectral form proceeded
more simply and more naturally than did that as-
sociated with the single-spectral form. So, con-
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sidering the said class of causal processes, one
might hope to get all independent invariants for the
n-point function (not including the external masses)
into spectral form. However, in the framework
thus far presented this is not possible for » >4,
since there the number of such invariants appears
to exceed the number of exchanged excitations with
independent displacements.

But, as a possible way of accomplishing this aim,
we conjecture the following method: Consider a
theory in which the number of time dimensions has
been increased, establish the spectral-form in a
manner analogous to the usual, and then extrapo-
late back to one time dimension (which means the
imposition in the spectral form of nonlinear con-
straints®' among the invariants formed from the
external momenta). The details of course must
be supplied, but the suggestion is that by increas-
ing the number of time dimensions, the number of
independent exchanged excitations is increased,
and so the number of invariants that can be put in
spectral form. Now, as the dimension of space-
time is increased, the number of independent in-
variants also increases, but some simple consid-
erations nonetheless suggest that it might be pos-
sible in the present scheme to get all invariants
(including external masses) into spectral form.
With this taken to be the case, an appealing pic-
ture emerges: We do not expect, as has been in-
dicated by some conventional studies,>? that any
simple spectral forms exist for general n-point
functions in the usual space-time. But rather, in
the multiple-time situation these functions are ex-
pressible as spectral forms in all independent in-
variants, with the spectral-mass domain being
specified by the causal process. The complicated
situation occuring in the case of one time dimen-
sion then arises from this simple structure solely
by the imposition in the spectral denominators of
the nonlinear constraints which enter in the extrap-
olation back to one time dimension. It should be
quite interesting to turn to specifics and see if
there is any substance to this speculation.

Even if this scheme of extrapolation in the di-
mension of space-time does not live up to the sub-
lime expectation just stated, there are still sug-
gestions that it might be of some utility, as we now
briefly mention. First off, a few paragraphs above
we remarked that it might be helpful for carrying
out extrapolations if the “causal processes with
unphysical momenta” could be brought on a more
equal footing with the usual causal processes. And
this might be accomplished in the multiple-time
situation since there the scalar product has ad-
ditional terms with negative signature, which is
what characterizes the unphysical momenta [e.g.,
p,~ip,, Eq. (33)]. Secondly, even if all indepen-

dent invariants cannot be gotten into spectral form,
it seems at least that more can than in the usual
situation—including more external masses—and
this fact alone might be of assistance. Lastly, the
determination of the causal spectral-mass domain
and the consideration of its extrapolation in the
manner of the first method (Sec. II B 2) will be sim-
pler than in the usual situation, since there the
spectral variables will be related by the nonlinear
constraints. (Increasing the number of space di-
mensions also provides the simplification.) And
this may not be just a matter of algebra, but may
also be, in a less encompassing manner, another
expression of the point made at the end of the last
paragraph concerning the complicated structure of
spectral forms in the case of one time dimension.

B. Comparison with Conventional Approaches

In going through Secs. II and III, the reader may
well have said to himself on occasion, “But this is
obvious from conventional studies.” Obviously.
But let us again note, as we did in the Introduction,
that we are attempting to create new methods, in-
dependent of the usual, analytic ones. If, when the
opportunity seemed ripe, we were constantly to
resort to the conventional arguments, we would
most likely also inherit the conventional difficul-
ties. And it is just such that we are attempting, in
part at least, to overcome.

Nonetheless, some comparison between our ap-
proach and the conventional ones is called for. In
particular, we should comment on those methods
that employ something analogous to the causal pro-
cess, the central element of our scheme. The
first instance where such occurs is in the work of
Coleman and Norton.** What they do is to show,
within the context of perturbation theory, that
whenever the external momenta, taken in the phys-
ical region (real components, not necessarily on
shell), are such that there may occur between them
a multiple-scattering process with real interme-
diate particles traveling over macroscopic dis-
tances, the scattering amplitude has a physical-
region singularity, and vice versa. In the context
of mass-shell S-matrix theory, the same conclu-
sion (external particles on shell) was obtained by
Stapp and co-workers,3*-3% and they developed it far
more extensively, including the relation with the
discontinuities across the singularities.

An important distinction is that the causal pro-
cess, in leading to an expression for the amplitude
itself, provides more information than does its
analog in the work of these authors. Or, in con-
ventional language, the former leads to a descrip-
tion of all physical-skeet singularities, whereas
the latter is only concerned with physical-region
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singularities. This difference is a consequence of
the source-theoretic premise, which has no coun-
terpart in the other work, that all contributions to
the amplitude may, upon space-time generaliza-
tion and mass extrapolation, be generated solely
from causal processes.

In connection with this, however, we should note
that in another work Norton® showed, for the low-
est-order three- and four-point-function contribu-
tions, that the multiple-scattering interpretation
and Cutkosky’s discontinuity formula could be
used to obtain the amplitude itself. But the meth-
ods we used to obtain these results seem much more
direct, and recall that for the three-point function
we were also able to argue the existence of the
spectral forms in general order. Also, in this
work Norton makes the point that while the Landau-
Cutkosky scheme provides an implicit determina-
tion of all singularities and their discontinuities,
it does not provide any information on the impor-
tant fact of which singularities are on the physical
sheet. So Norton considers his work as providing
a contribution toward the resolution of this defi-
ciency, and, if one so wishes, our work can be
viewed likewise.

The greater use made of the causal process, in
the sense of the paragraph before the last, is re-
flected in certain restrictions that are placed upon
it. As discussed in Sec. IV A, it is required, for
a given source specification, that the only way in
which the coupling may be realized is via one spe-
cific causal process. Consequently, one is con-
cerned with the localization of the interaction re-
gions occurring in the causal process (see TPF)
and is led to guaranteeing the temporal stipulations
associzted with it, which often necessitates mass
restrictions and overlap considerations.?” Nothing
analogous to any of these requirements appears in
the work of the other -authors.

A further distinction is that, although there is
a one-to-one correspondence between causal pro-
cesses and their analogs in the other work when the
two are viewed as geometric figures, there is no
such correspondence when the relation to their dif-
ferent calculational purposes is considered. This
point is simply illustrated by the lowest-order con-
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tribution to the four-point function. Namely, in the
analytic approach one is concerned with enumer-
ating the singularities of the amplitude, and these
include a normal threshold singularity, which has
a multiple-scattering interpretation via a diagram
like Fig. 2. But, according to the work of Sec. II
for the double-spectral form, our calculation of
the amplitude may be phrased solely in terms of
the causal process of Fig. 1, an entirely different
diagram.

The determination of the structure of the whole
amplitude is of course a more difficult task than
the determination of the physical-region singular-
ities. This is clearly indicated by the fact that the
latter very nicely applies to contributions of gen-
eral order for any n-point function, while the for-
mer has been completed only for three- and four-
point functions, the major limiting factor being
the necessity of extrapolation. In fact, as dis-
cussed in Sec. IV A, our program apart from
extrapolation can be considered to be applicable
for n-point functions of any order. And it is this
aspect of our program that makes the most de-
finite connection with the work of the other authors.
In particular, if we take it that the causal pro-
cesses® upon space-time generalization, but with-
out any extrapolation, still provide contributions
to the amplitude, although not the full amplitude,
then we have the Coleman-Norton theorem in one
direction: The existence of multiple-scattering
process implies physical-region singularities. In
this regard we also should make a comparison be-
tween the weight functions appearing in these
space-time—generalized results and the discontin-
uity expressions of Coster and Stapp.*® The form
of these weight functions has not been examined in
detail, but in general terms they refer to the prop-
agation of the real internal particles in the causal
process and their couplings via localized interac-
tion regions, and such structures bear at least a
cursory resemblance to the expressions given by
Coster and Stapp.
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The derivation of spectral forms in source theory has recently been systematically developed for systems of
scalar particles. Elastic photon-photon scattering in lowest nonvanishing order is here studied as a simple,
but representative, example of the additional considerations necessitated by particles having internal
quantum numbers. The amplitude is determined as a double-spectral form augmented by a single-spectral
one, the latter being related to the imposition of gauge invariance. Also presented is some discussion on
how, in source theory, one obtains at given order all the contributions to the amplitude.

I. INTRODUCTION

In two recent detailed works we have studied, in
source theory, the establishment of single- and
double-spectral forms for three-' and four-point
functions.? The basic ideas in such developments
center around space-time and energy-momentum
considerations, independent of any internal quan-
tum numbers that the particles may carry. To
aid its systematic presentation, that work was
thus carried out for scalar particles. In the pres-
ent work we take up an example that, while rather
simple, illustrates fairly well what further tech-
niques are necessary when the more realistic
situations of particles with internal quantum num-
bers are considered. In particular, elastic pho-
ton-photon scattering is studied to lowest nonvan-
ishing order in spin-3 electrodynamics, with the
photon polarizations chosen as equal and perpen-
dicular to the scattering plane.®

A brief review of those aspects of the four-
point—-function work for scalar particles that are
necessary here is presented in Sec. II. Enough de-
tail is given there to make this paper understand-
able by itself, but to fully appreciate the matter,
Ref. 2 should be consulted.

The main section of this paper is Sec. III, where

the calculation for photon-photon scattering is
carried out. The major new point there concerns
gauge invariance. We show how it is maintained,
with the consequence that the basic double-spec-
tral structure is augmented with a single-spectral
one. The final result has already been obtained
by conventional analyticity techniques.* But we
should emphasize, as Refs. 1 and 2 make clear,
that the source-theoretic approach is independent
of analyticity considerations, seemingly being sim-
pler and more physical in its basis.

The calculational scheme for obtaining spectral
forms starts from causal realizations of the am-
plitude, and then, after some reworking, pro-
ceeds to the final generally applicable scattering
amplitude. The question thus arises as to just
what set of these so-called causal processes one
must consider in order to obtain the complete scat-
tering amplitude to the given order. The matter
is simple for three-point functions (at least when
there are no anomalous thresholds), but for four-
point functions the attitude that we have developed
differs somewhat from that of Schwinger.® This
point is discussed in Sec. IV, mainly within the
context of photon-photon scattering, but also with
some consideration of pair creation by two
photons.



