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The strong-coupling limits of several ladder-graph models are explored. A correlation is found between

the power of the coupling constant appearing in the leading Regge trajectory a(t = 0) and the size of
classical orbits described by the coordinate-space Bethe-Salpeter wave function. Specifically: (i) For the
$' theory with exchanged mass m +0, the orbit radius r 0 approaches a fixed value and

a(t = 0) - g
" . (ii) For $ with m = 0, ro grows linearly with g and a(t = 0) - g. (iii) For $',

ra~0 and the leading singularity is a fixed cut in t. Expansions about classical orbits are possible in

the first two cases, and lead in lowest order to a harmonic-oscillator equation from which corrections
to the classical result may be derived.

I. INTRODUCTION

Recently there has been renewed interest in the
asymptotic behavior of trajectory functions in (P'

ladder amplitudes. The behavior of the zero-ener-
gy (f =0) ladder amplitude with ma. ssless (m=0)
exchange is known exactly through the work of
Wick and Cutkosky' and Nakanishi. ' However, no
exact solution is known for the massive case (m
t 0), or for the ma. ssless case with to 0. In the
limit of large coupling constant, it is possible to
study the asymptotic behavior of the ladder ampli-
tudes either by solving the Bethe-Salpeter (BS) in-
tegral equation approximately' ' or by estimating
the asymptotic behavior of individual terms in the
sum of ladder amplitudes. "However, in these
approaches one does not obtain simple physical
pictures or intuitive interpretations of the results.

In this paper, we shall study the asymptotic be-
havior of ladder amplitudes by analyzing the BS
equation in coordinate space. " It is easy to see
that the zero-energy BS equation can be expressed
as a fourth-order differential equation in coordi-
nate space. Since the asymptotic energy (s) depen-
dence of an amplitude is determined by the largest
allowed angular momentum n in the t channel, we
concentrate on finding n. In the strong-coupling
limit g- ~, and for a large angular momentum n,
the BS differential equation leads to a simple re-
lation between n and the radius x." This relation,
n =n(r), has a simple interpretation as the angular
momentum for a classical orbit of radius x. The
optimum orbit which gives rise to the maximum
angular momentum, n, =n(r, ) =max„n(r), can be
obtained easily. By expanding the BS differential
equation around the optimum orbit, we can work
out systematically the inverse -g corrections to
n=n, . The first-order correction to the classical
result is worked out explicitly in the text by re-
ducing the BS differential equation to a quantum
harmonic oscillator. Physically, this correction

originates from the radial oscillation around the
optimum orbit.

In (p' ladder models and in the strong-coupling
limit, we find that the size of the optimum orbit
for a massive exchange approaches a constant,
while the size of the optimum orbit for a massless
exchange increases linearly as the coupling con-
stant. These results are not very surprising be-
cause the range of interaction due to a massive
(ma, ss m) exchange is always finite (-1/m), and
that due to a massless exchange is ~. Thus, what
determines the size of the orbit for a massless
exchange is the combination of the coupling
strength and the mass (p) of the constituents. It
is interesting to see that the change of interaction
range from finite (mWO) to infinite (m=0) leads to
a change of the power dependence on g in the
Regge trajectory function n.

Further applications and physical interpretations
of our approaches to other models are given in the
discussion at the end of the paper.

II. ZERO-ENERGY BETHE-SALPETER EQUATION

(p* —v')'((() J2, ; )((P. q)((=s), (2 1)

where K(P, q) describes a two-particle irreducible
kernel. For (j) and (t)~ ladder amplitudes (Fig. 1)
we have

and

(p, q) =-(p ). (2.2a)

In this section, we shall review briefly the meth-
od for deriving a differential equation for the zero-
energy (i.e., t =0) BS amplitude. The homogeneous
zero-energy BS equation is given by
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&dk, dk, 1
(Aq)=-a&a

J (2„)~ (2„)4( "} ("& 2 q p) (}i 2 m2+fe)($2 m~+fg) ' (2.2b)

(-s'+ q')'g(x) =g'V(x)y(x),

where

(2.3)

g'v(x) = p, Z(p, 0)e-"'". (2v)' ' smaze'
(2.4)

For Q' and Q' ladder amplitudes, the x-space BS
potentials are:

(i} P'ladder, mx0

mK, ( mr)vx =
4~2r

(ii) Q' ladder, m=0

(2.5a)

respectively, where g is the coupling constant.
The mass of the exchanged particles, m, and the
mass of the two-particle intermediate states, p.,
are in general different. In both the Q' and Q4

models, K(P, q} is a function of P —q only.
After Wick rotations, we can Fourier-transform

the BS equation (2.1) and obtain a fourth-order dif-
ferential equation in four-dimensional Euclidean
space,

l

and thus Eq. (2.3) is O(4)-symmetric, we can de-
compose the wave equation (2.3) according to the
eigenvalues of 4-dimensional angular momentum

For a given 4-dimensional angular momen-
tum n, the radial equation is

3 d„,.+; „——,. + ~' C.(~) =s'v(~)C. (~)

(2.6)

Equation (2.6) is the desired differential equation
obtained in Hef. 10."

Given (2.6), we can determine the eigenvalues n
for all possible zero-energy bound states. For
each n, there exists a set of degenerate eigen-
states of 3-dimensional angular momentum with
l=n-1, n-2, . . . . In terms of Regge-pole lan-
guage, each n corresponds to a I orentz pole which
can be decomposed into a series of Hegge poles.
In particular, the leading Regge trajectory func™
tion n(t =0) is related to the maximum eigenvalue
nby

1
v(x) =

and (iii) Q' ladder, "
1 mK, (mr)

Sw'

(2.5b)

(2.5c)

o.(t =0) =n —1.
In the next section, we shall concentrate on the
determination of maximum n, and consequently,
the leading trajectory function c.(0).

IH. $3 LADDER MODEL

respectively, with r =(x')"'.
Since the potential V(x} is a function of r only In the Q' or P~ ladder model and in the strong-

coupling limit, the maximum eigenvalue n~ also
increases without limit. The asymptotic behavior
of the leading trajectory function a(0) (=n —1) can
be studied readily by expanding the radial equation
(2.6) and its eigenvalue n as inverse powers of g.
To illustrate the method, we work out the Q' lad-
der model in detail.

(a}
A. Optimal Orbits

For a fixed g, the maximum n' is achieved as
the radial kinetic term

t( Q) = m mm m

„v v

(b)

FIG. 1. Ladder amplitudes in the Bethe-Salpeter equa-
tion. (a) $3 case; (b) Q4 case.

in (2.6) becomes minimum. '~ Thus, at large cou-
pling limit and for maximum n', we expect that
the radial kinetic term can be ignored in compar-
ison with the centrifugal term n'/r'. However,
we shall keep the p,

' term in (2.6) because it has a
different scaling property from the n'/r' term and
may become important at large r.

After ignoring the radial kinetic term, we obtain
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the 4-dimensional angular momentum n for a clas-
sical circular orbit of radius r,

n ' = r '(g [ V(r)]'" —p'j,

I n(r)t' = ——u'r '.
2r

The maximum value of n(r) is located at

(3 6)

where we have also ignored 1 relative to n'. "
Equation (3.1) defines n = n(r) as a function of r.
For Q' ladder amplitudes, n(r) has a local maxi-
mum n, ==n(r, ) at r =r, We. shall refer to the orbit
at r =r, as an optimum orbit.

For Q' ladder amplitudes with mc0, we have

1/2

(3.7)

giving

n, -=n(r, ) =
4m'.

' (3.8)

Since r, increases linearly with g, it is clear that
we can no longer ignore the p, 'r' term.

Using the fact that x'K, (x) has a maximum

(3 2)

np= 2, x 1.15754~'m' +O(g "')

max„[x'K, (x)] =1.1575 at x=2.3867, (3.3)

we find that we can ignore the p, 'r ' term and ob-
tain at large g

8. Expansions Around the Optimum Orbits

We now take n, and the optimum orbit r =r, as a
first-order approximation, and expand the wave
equation (2.6) and its eigenvalue n around these
classical values. We shall use the massive (me 0)
Q' ladder model as an explicit example to demon-
strate that the optimum orbit gives a result valid
to O(1/n, ), and that more accuracy can be achieved
lf desired.

We introduce a variable y via

with

—= 1.4669(g/4w in )"', (3 4) r=r e'/ "0
0

r, (1 +y/~n,-) (3 9)
r, =2.3867/m, (3.5)

i.e., the radius of the optimum orbit for mt 0 ap-
proaches a constant, determined by the range of
the interaction, as g- ~.

For Q' ladder amplitudes with m=0, we have

to describe the deviation of r from the classical
orbit r =r, The f.actor I/~n, is included to en-
sure that quantities of physical interest remain
finite as g'-

Multiplying (2.6) by r /no', we have

1 d d, d d

np dr dr . dr dr " n, 'r ——2r ——n'+1 —p.'r' r — +2r —- n'+1- p, 'r' g„(r)=,g'r'V(r)g„(r). (3.10)

Using the fact that g'r'V(r) has a maximum g'r, 'V(r, ) -=n, ' at r, =2.3867/m, we obtain

(3.1 1)

where

d
&u' = --,'r, ' —,( In[ g 'r 'V(r)] J

= 2 —~ (mra) = 0.57587 .

r=r0

(3.12)

Substituting (3.9), (3.11), and (3.12) into (3.10), and making use of the relation r(d/dr) = v n, d/dy, we
have

1 d4 2n' d' n4
, „,+, q„= [ n, —2~'y'+O(y'/~n, )]y„.

np dg np dp n
(3.13)

In (3.13), we have ignored terms which are mani-
festly O(1/n, ) or smaller. Considering this equa-
tion without the (1/n, )d'/dy' and y' terms, we see

that it reduces to the harmonic-oscillator problem.
The expectation values of y and d/dy are hence of
order 1, so that in fact the (1/n, )d'/dy' and y'/~n,
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terms also may be dropped for large n, . Doing
so, we find, for large g', n= n„r = r,[1+O(1/
~n, )]= r„and

where p„ is the radial momentum, and n'/r' is
the relativistic centrifugal potential. The classi-
cal bound-state solutions correspond to the posi-
tive square root of (3.19),

2 2 0

n p

(3.14) n'
P, '+ —,+V' =g [ V(r)]'". (3.20)

The energy eigenvalues of the harmonic oscillator
equation (3.14) are well known:

with

4

0
(3.15)

n „=0, 1, 2, . . . , x = 0.75886 . (3.16)

n= —(n„+—,)+0g, 1
47l'p, n p

(3.18)

The exact solution to a t =0, massless p' ladder
is known, "and is consistent with (3.18). The
eigenvalue n of a massive Q' ladder was obtained
recently by Cheng and Wu through solving an ap-
proximate integral equation. ' Their result is
identical to (3.17)."

We can solve for n trivially from (3.15), getting

n=n, —(n„+2)&v+01 1

0

= 1.4669 — — n „+-,' e +0
0

(3.17)

One can see that the corrections to Eq. (3.17) due
to the terms ignored in (3.13) are O(1/n, ) as well.
A perturbation expansion in 1/n, can then be used
systematically to calculate higher-order correc-
tions.

It is straightforward to see that this method also
can be applied to t =0, massless (m=0) P' ladder
amplitudes. We expand both the wave equation
(2.6) and the radius r around the classical values
r, =g/4wtL' and n, =g/4wp. The equation again re-
duces, up to terms of O(1/n, ), to a quantum har-
monic oscillator. The resultant eigenvalues can
be shown to be

The largest angular momentum n, is obtained
classically by first setting P„=O, and then maxi-
mizing the remaining relation n=n(r). The cor
rection to n =n, due to small oscillations in r
around r, can be understood readily. For mw 0,
we expand (3.20) around r =r, to leading order in
1/n, and obtain

2 — 2

+-,'M~'q'(~E„) =
np

(3.21)

n = n, E„+-O(1/n, ) . (3.22)

Equation (3.22) coincides with (3.17) if one identi-
fies the classical E„with its quantum™mechanical
analog E„„=(n„+-,')&u. A similar semiclassical
picture applies to the massless case as well.

IV. DISCUSSION

The method outlined in Sec. III applies as long
as the classical angular momentum n(r) has a lo-
cal maximum at r =rpe0. However, there is an
interesting class of theories in which n(r) has a
maximum at r =0. The &f&' ladder amplitude is a
typical example; it appears that this property is
shared by many other renormalizable theories.
In the p' ladder model, [n(r)]' is found to be

[n(r)]' —1 =g[ V(r)]"'

~ mr K,(mr), (4.1)

which is a monotonically decreasing function of r.
Its maximum value (at r =0) is

where &u is givenby (3.12), q= r —r„an-dM=-n, /
The left-hand side of (3.21), which is denoted

by F.„, is the Hamiltonian of a harmonic oscillator
with frequency &u. Inverting (3.21), we have

n, '- I =g/wM8 . (4.2)
C. Semiclassical Features

The results obtained in Secs. IIIA and IIIB have
features expected from the semiclassical approx-
imation. It is known that for a system with large
quantum numbers, we can ignore the quantum na-
ture of the system and treat the problem classical-
ly. Under this classical approximation we have a
c-number relation,

Thus, the leading eigenvalue of n is dominated by
the small-r behavior of the wave equation (2.6).
For n&n„ the combined centrifugal and potential
terms in Eq. (2.6) produce a net repulsive poten-
tial for all r, while for n & n, the net potential is
attractive and admits a continuum of bound states
near r =0."'" Hence the spectrum of n' is also
continuous with branch points lying at

(
n2 2

p„'+ —,+ P' =g'V(r), (3.19)
n = ~(I +g/w P8 )"' . (4.3)

The emergence of cuts in this class of theories is
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known, and has been discussed by several au-
thors. '"" Since our conclusion depends only on
the small-r, or equivalently the large-P, behavior
of the wave equation, one expects that the positions
of t:he brRnch cuts Rx'8 t-1ndependent. This 1s ln
fact the ease.""

We wish to conclude this paper by summarizing
the nature of classical orbits in various cases. In
the massive P' ladder model, the size of the orbit
approaches a constant as g- ~. One finds in this
case that the trajectory function o. =n-1 is pro-
portional to the square root of g. In the massless
Q' ladder model, the size of the orbit increases
linearly with g and the trajectory function is pro-

portional to g. Finally, in the &f&' ladder model,
the size of the orbit shx'inks to zex'0 Rt large g Rnd
one obtains a fixed cut rather than a leading pole.
Since our results depend only on the gross features
of the potentials, the above three examples may
weQ represent three general categories of bound
states and the corresponding asymptotic behavior
of their trajectory functions.
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