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The question of the Beggeization of the elementary particles in renormalizable gauge
theories with the Higgs-Kibble mechanism is examined. It is concluded that the massive
non-Abelian gauge vector mesons and J= 2 fermions of these theories lie on Regge trajec-
tories in every case in which a counting criterion due to Mandelstam is satisfied. Several
explicit examples are presented which verify that the necessary factorization condition of the
Born helicity matrices is satisfied at J= 1 and J= 2, supporting this conclusion.

I. INTRODUCTION

The idea that the elementary pa, rticles of a La-
grangian field theory, which at first sight give
rise to nonanalytic Kronecker 5 terms in the com-
plex angular momentum plane, in fact l.ie on Regge
trajectories dates back more than ten years to a
series of papers of Gell-Mann et al. ' Although
their ideas initiated a sizable industry which spe-
cialized in summing Feynman diagrams, ' with the
objectives of exhibiting possible Regge asymptotic
behavior of the 8-matrix elements and demonstrat-
ing that the elementary particles of the theory lie
on these Regge trajectories, their program was
to a large extent unsuccessful. The only positive
result' was the Reggeization of the fermion in a
particular model with a spin--,' particle coupled to
vector mesons by means of a conserved vector
current. Subsequently, Mandelstam' presented
criteria to establish when an elementary particle
m~st Reggeize, which indeed agreed with the con-
clusion that the fermion of the vector-spinor theory
should lie on a Regge trajectory. His arguments
also indicated that the elementary particles of
other Lagrangian theories need not Reggeize, and
explained the results of the theoretical experiments
carried out by computing Feynman diagrams. The
Mandelstam criteria are to a large extent kinemat-

ical and suggest where one should look for Reg-
geization. These criteria involve comparing, for
the particular model being studied, the number of
arbitrary parameters appearing in the scattering
amplitudes with the number of constraints satisfied
by these amplitudes. The dynamical criteria of the
program are very general ones requiring that the
theory lead to amplitudes which satisfy analyticity
and unitarity, they appear to be related to the re-
normalizability of the Lagrangian field theory.
Indeed Teplitz and collaborators' ' have exhibited
a number of models which satisfy Mandelstam's
counting criteria but fail to Reggeize because of
the absence of renormalizability, which implies
a violation of unitarity bounds in each order of
perturbation theory. A particularly interesting
example' is the failure to Reggeize the gauge vec-
tor mesons of a (nonrenormalizable) massive
Yang-Mills theory.

Since renormalizable theories of massive Yang-
Mills fields are now known, ' we have reexamined
the questiop of the Reggeization of gauge vector
mesons. Our study was further motivated by the
fact that the zero-slope limit of certain dual mod-
els' leads to amplitudes which are identical to
those constructed from particular renormalizable
Yang-Mills Lagrangians. Although our work has
not given us any special insight into this aspect of
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Regge theory, we do believe that there are many
physically interesting Lagrangian theories which
have better behavior in the angular momentum
plane than one might expect.

Qur calculations have been limited to low orders
of perturbation theory, ' and in particular to the
first nontrivial condition that a theory must satis-
fy" in order to Reggeize, the so-called factoriza-
tion condition of the Born approximation (see Ap-
pendix A). If indeed the Mandelstam arguments'
apply and the theory Reggeizes, the factorization
condition must hold. Even though the factorizktion
condition follows from general principles, we feel
that an explicit check is worthwhile, because of
possible subtleties in crypto-renormalizable the-
ories' and in the derivation of the Mandelstam
criteria. Furthermore, explicit calculations pro-
vide information as to the actual number and be-
havior of the Regge trajectories in the theory, as
contrasted with the Mandelstam argument, which
only indicates the maximum number of trajectories
in any given channel.

In this paper we discuss in some detail the Reg-
geization of the gauge vector mesons in a renor-
malizable SU(2) Yang-Mills theory. ' We check
the factorization of the Born-approximation helicity
amplitudes for vector-vector scattering at J=1,
I =1, and deduce, to order g', the form of the vec-
tor-meson Regge trajectory and residues. (It
turns out that it is not possible to demonstrate
that Abelian vector mesons Reggeize by our meth-
ods because of the absence of two-body "nonsense"
states at J=1 in this case, and of trilinear vector
couplings. A discussion of the Abelian case may
require consideration of many-body scattering, a
task beyond the scope of this paper. ") The non-
Abelian vector mesons appear as elementary-
particle poles in other I =1 two-body channels that
couple to the vector-vector channel: vector-scalar
states as well as fermion-antifermion states if
fermions are present in the theory. We verify
that the factorization condition is in fact satisfied
by all relevant two-body amplitudes at J = 1, I=1.

To see if all elementary particles of a renormal-
izable massive Yang-Mills theory Heggeize, one
should also investigate the situation at J=0. This
has been done with mixed results, which will be
described in a sequel to this paper. " We merely
note here that the Mandelstam argument indicates
that the theory need not Reggeize at J=0.'

If fermions are present, one can also study Reg-
geization at J= —,'. It is already known that factor-
ization holds at J = —,

' as a result of the work of
Gell-Mann et al. , ' as extended by Abers et al.'
to the Yang-Mills case. (However, the Lagrangian
considered by Abers et al. was not renormalizable;
ours is, so we expect the fermion to Reggeize. }

Qur work is easily extended to other groups. For
U(n} models of the type discussed by Bardakgi and
Halpern, "the. Reggeization of the SU(n) gauge me-
sons fo11ows easily. We have no results for the
Abelian gauge meson present in the U(n) model.
Another example of physical interest is provided
by a theory of chiral SU(2) x SU(2) with p and A,
gauge mesons. (No identification with physical
vector mesons is implied; we use the labeling for
identification purposes only. ) One can then consid-
er a spontaneously broken chiral symmetry along
the lines of Bardakqi and Halpern. ' In this ex-
ample the p and A, mesons need not have equal
masses; nevertheless both the p and A, mesons
Reggeize, as in the previous cases. Qne may also
add fermions to this particular model. However,
in contradistinction to the other examples studied,
the presence of fermions in a chiral SU(2)x SU(2)
theory raises some questions, since the interaction
of the axial-vector meson with the spinor field
can lead to anomalies" in diagrams involving
closed spinor loops. If such anomalies are pres-
ent, the theory is no longer renormalizable, so
that unitarity bounds need not be satisfied order
by order in perturbation theory, and the Reggeiza-
tion program along the lines we are considering
may ultimately fail. We illustrate these problems
by considering a model discussed by Gross and
Jackiw" and show that in lowest order factoriza-
tion still persists; anomalies do not play a role
in the Reggeization program until one reaches the
one-loop approximation. "

II. GAUGE VECTOR MESONS AS REGGEONS

A. Vector-Vector Scattering

In this section we discuss the simplest model
known to us in which elementary gauge vector me-
sons Reggeize, the so-called SU(2} restricted
spectrum model of Gervais and Neveu. ' The model
is constructed from a renormalizable Yang-Mills
Lagrangian for massless SU(2) gauge mesons in
interaction with a complex doublet of scalar me-
sons. The self-interaction of the scalars can be
arranged so that the I =0 member of this scalar
quartet has a nonvanishing vacuum expectation
value. The Yang-Mills mesons thus acquire a
mass by means of the Higgs-Kibble mechanism. "
The theory in the U gauge then describes a triplet
of I =1 massive vector mesons in interaction with
a massive I =0 scalar meson, which are the phys-
ical elementary particles of the model (If the.
masses of the vector and scalar are arbitrarily
set equal in lowest order, one arrives at the "re-
stricted spectrum" model considered by Gervais
and Neveu, ' in the context of the zero-slope limit
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Here V'„ is an I =1 gauge field with mass m, while
0 is a scalar field for a physical meson with I =0
and mass p.

Let us now concentrate on vector-vector scatter-
ing in this model, as it contains an elementary
vector-meson pole which is a candidate for Reg-
geization and may have Kronecker 6 terms at J =1.
The Born approximation for vector-vector scatter-
ing in the U gauge is described by the diagrams
of Fig. 1. For I =1, the s-channel partial-wave
helicity amplitudes, computed in the Born approx-
imation, contain terms of the form bz, (s -m') '
coming from the amplitude described by Fig. 1(a).
%e now argue that this nonanalytic term in complex
angular momentum is converted into a Regge pole
by the procedure of Gell-Mann et al. ' The helicity
amplitudes for Figs. 1(a) were computed by Dicus,
Freedman, and Teplitz, ' but they did not consider
Fig. 1(b) since there was no elementary scalar
meson in their model. (There are some misprints
in their helicity amplitudes. ) The theory consid-

(a)

of a dual resonance model. We will not set these
masses equal in our work, since this restriction
is not necessary for the Reggeization of the vector
mesons to succeed and since the general case is
easy to analyze. ) For the purpose of this paper the
relevant part of the U-gauge interaction Lagrangian
is

g = -g6 & 8 V V&V —& g&6abeccdeVaV VcVI u ~ u u p u p

ered by Dicus et al. ' was nonrenormalizable, and
as a result scattering amplitudes exceeded unitarity
bounds in the Born approximation. Furthermore,
the Born-approximation partial-wave amplitudes
at J=1, evaluated from Fig. 1(a) alone, did not
factorize. '

Our finding is that when all the diagrams of
Fig. 1 are added together with couplings given
by the Higgs-Kibble mechanism as required by
renormalizability, the resulting partial-wave he-
licity amplitudes do factorize at J=1. The general
argument of Mandelstam' implies that the vector
meson lies on a Regge trajectory, to all orders
in the coupling constant and with no restrictions
on the value of the coupling constant or the vector
meson mass xe

Let us describe some of the details leading to
these results. Given the scattering amplitude corn-
puted from the Feynman diagrams of Fig. 1, one
reads off the J-plane behavior near J=1 from the
large-z behavior of the s-channel helicity ampli-
tudes. " (The cosine of the s-channel scattering
angle is cos8, = z.) The I=1 amplitudes increase
linearly with z while the I=0 and I =2 amplitudes
approach constants. Therefore, only the I =1 am-
plitudes have nonanalytic behavior at J=1, with
Kronecker 5's for the sense-sense transitions
and singular sense-nonsense and nonsense-non-
sense transitions. The actual partial-wave pro-
jections of the helicity amplitudes near J=1 are
carried out using the prescriptions, formulas,
and tables of Ref. 1. Unless otherwise specified,
we adhere to the notation and conventions of Ref.
1 (see also Appendix B).

The methods of Appendix A as adapted to vector-
vector scattering require that one calculate the
normal-parity partial-wave helicity amplitudes
T „'z .„z (s, J) for vector-vector scattering in
the Born approximation. These amplitudes, near
J=1, fall into three sets, sense-sense (~X

~

=

[Z, —Z, f
&]., / p, f

= fX, —Xj ~l), sense-nonsense
([y/ ~~1, fXf=2), and nonsense-nonsense (fXf
=

~ p ~
=2), and their singular parts have the follow-

ing behavior':

ct.o~mh

FIG. 1. The Feynman diagrams for vector-vector
scattering in the Born approximation. The wiggly lines
represent vector mesons and dashed lines represent
scalar mesons. (a) The vector-exchange graph and con-
tact graph; (b) the scalar-exchange graph.

g bx nba x(s)4x
(sense-sense), (2.2a)

B, i,.x, ),, =8'b, , ibg x (s)(J —1)

(nonsense-sense), (2.2b)

h. ... ,= g'[b, ,(s)]''(~- 1)-'

(nonsense-nonsense). (2.2c)

As we observed in Ref. 9, the Born-approxima-
tion helicity matrix factorizes and is of rank 1
near J=1. According to our discussion in Appen-
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j}cga =Pa, -x( s) Px x~(&)[J n(&)]

(nonsense-sense), (2.3b)

T. . .., , =[P, ,(s)]'[n(s) —l][J—n(s)] '

(nonsense-nonsense), (2.3c)

with P „„(s},computed in lowest order, given by

3 4 1/2

Pu g ~a( }2 (n

3 Rs q j/8

Po g ~ (, .) ( — )

4
P00

= g 3 ~s(, sg (-'s+2m')(n —1)"',
I

(2.4)

'2(s-m') "'(
1) „,

dix A, the Reggeized amplitude near J=1 takes
the form

Tx$x/, x~x~ =Pxsxg(s)Px~xg(s)[J n(s)]

(sense-sense), (2.3a)

unitarity bounds. " It is remarkable that factoriza-
tion is then achieved simultaneously with the im-
proved high-energy behavior.

B. Vector-Meson Pole in Other Processes

At J= 1, I=1 there exist, in addition to the two-
vector-meson state, a vector-scalar state and a
fermion-antifermion state. Fermions are intro-
duced into the theory in a gauge-invariant, renor-
malizable manner by adding the interaction term

(2.6)&r=g$rp'g4~'„

to Eq. (2.1), where T is the appropriate isotopic-
spin matrix. (Notice that there is no direct fer-
mion-scalar coupling. ) Transition amplitudes
between these states all contain a vector s-channel
pole and Kronecker 5 terms. They must Reggeize
if the program is to be consistent. In Born approx-
imation the relevant diagrams are shown in Fig. 2.
The only nonsense state is still the helicity-2 vec-
tor-vector state. We have computed the helicity
amplitudes for all the processes described by

and

S — 2

Imn =8g', p(s) . (a)

This is consistent with8g', " ds' p(s')n(s)=1+ (s —m)
( g )( p 4 Q)

(2.5}

as discussed in Appendix A. This representation
should, of course, be checked by higher-order
calculations. If indeed Eq. (2.5) is the correct
form of n, we shall have a single Regge pole pass-
ing through J=1 at s =m'. The elementary massive
gauge vector meson of a renormalizable SU(2)
Yang-Mills theory thus lies on a Regge trajectory.

In examining the detailed dynamical features re-
quired for this result, two factors seem to be
crucial:

(1) The non-Abelian structure of the gauge group
introduces a A ainear self-coupling of the vector
mesons. Thus Abelian gauge mesons do not Reg-
geize by means of the mechanism studied in this
paper, "since there is no vector-meson pole in
Abelian vector-vector scattering, and no nonsense
amplitude in vector-scalar scattering (which does
have a vector-meson pole}.

(2) The presence of a scalar meson, with cou-
plings as given by the Higgs-Kibble mechanism, "
is required in order to improve the high-energy
behavior so that the Born approximation satisfies

(c)

+ X

(~)
FIG. 2. The Feynman diagrams for two-body processes

which in Born approximation couple to vector-vector
scattering at J =1. The solid lines represent fermions.
(a) The graph for vector-vector to vector-scalar transi-
tions; (b) the graphs for vector-scalar scattering;
(c) the graphs for fermion-antifermion scattering;
(d) the graphs for fermion-antifermion to vector-vector
transitions; (e) the graph for fermion-antifermion to
vector-scalar transitions.
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Fig. 2, and have found that the factorization con-
dition is maintained for this enlarged system. The
8&&8 matrix of Born terms has rank one, and can
be written (as in Appendix B) in the form v, &

=g'b, b&, where the b's are given in Table I. Hence
the coupled-channel system maintains the Regge
behavior exhibited by the vector-vector scattering
states. The Reggeized form of the amplitudes for
all of these processes is T„=y,y, [J—o.(s)] ' near
J=1, with the y's being obtained trivially from
the b's given in (2.4) and Table I. The Regge pole
is still generated by the vector-vector nonsense
state, and is coupled to all other states through
the sense-nonsense terms in the various scattering
amplitudes.

HI. THE J= —FERMION AS A REGGEON

It is known from the classic work of Gell-Mann
et al. that the fermion Reggeizes in a theory of
fermions coupled to a neutral vector meson by
means of a conserved current. This result was

TABLE I. The Born-approximation normal-parity
helicity matrix expressed at J=1 and I=1, as e&&

-—g2b&
x b& for the SU(2) model with the "restricted spectrum. "
In all the tables, we denote the vector-meson, scalar-
meson, and fermion masses by m, p, and M, respec-
tively. For a given two-particle channel we denote the
center-of-mass energies for the vector meson and fer-
mion by co and E, respectively, the center-of-mass mo-
mentum by k, and the (total energy)2 by s. {a) The vec-
tor-vector states; (b) the vector-scalar states, " (c) the
fermion-antifermion states for the special case of the
I = 2 fermion.

(a) (VV)

i/2
2 3

k (s —m)bii

i/23s
m 2k (s -m~)

i/2
1 + 2 1(-s+4m )

t z&s-m')
k

boo

(b) {Vo.)

2
m 3(s-m )g2

2
3(s —m2)

i/2
bi

i/2
bo

(c) (EE) for I =2 fermions
')/2

,
3(s-m )~2

S t 1/2

M 3(s -m2)J

FIG. 3. The Feynman diagrams for two-bo'dy processes
which contribute in the Born approximation to the
Reggeization of the elementary fermions. (a) The vector-
fermion scattering graphs; (1) the graph for vector-
fermion to scalar-fermion transitions.

b i/2, i/2

extended to the case of a fermion interacting with
a massive Yang-Mills vector meson by Abers
et al. ,

' who showed that the Born approximation
for the vector-spinor scattering amplitude factor-
ized. One may doubt that the work of Abers et al.
demonstrates that the fermion Reggeizes in Yang-
Mills theory, since they studied a nonrenormal-
izable theory. However, the renormalizable SU(2)
gauge theory described in Sec. II will lead to the
identic."a/ Born approximation found by Abers et al. ,
since the model described by Egs. (2.1) and (2.6)
does not have a direct coupling of the scalars to
the fermions. Thus, if one uses this renormal-
izable SU(2) gauge theory to calculate higher-order
corrections, Mandelstam's arguments' should be
applicable in implying that the fermion must Reg-
geize. Hence in fact the conclusion of Abers et al. '
that the fermion Reggeizes is confirmed.

One can also consider the question of coupled
channels containing a J = & pole, as shown in Fig. 3.
Although there is no fermion-scalar scattering,
there is a fermion-vector to fermion-scalar tran-
sition in lowest order, made possible by vector-
meson exchange, as illustrated in Fig. 3(b).

The implications of Appendix A are that the non-
sense-nonsense part of the fermion-vector-meson
amplitude, the nonsense-sense part of the fermion-
vector to fermion-scalar transition, and the sense-
sense fermion-scalar elastic amplitude (which is
zero in the Born approximation) must factorize
near j= i2~ as prescribed by Eg. (A10). I't turns
out that Eq. (A10) is satisfied in the SU(2) model
of (2.1) and (2.6), because the singular part of the
nonsense-sense fermion-vector to fermion-scalar
transition of Fig. 3(b) vanishes for purely kinemat-
ical reasons. However, we can easily introduce
additional scalar and/or pseudoscalar mesons,
with gauge-invariant couplings to the vector me-
sons and fermions, into the SU(2) Lagrangian. In
these cases there are nontrivial singular parts in
the scalar-fermion and pseudoscalar-fermion chan-
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nels. We find that even with these additional chan-
nels, the Reggeization of the fermions still per-
sists. ' We illustrate this by introducing an iso-
spin-one pseudoscalar meson % into the SU(2) mod-
el, with the relevant interactions:

g, = gV-„x fr e „fr ——,
' g'(V„x v)

~ (V„xv)

TABLE II. The contribution to the Born-approxima-
tion J=1 normal-parity helicity matrix of the I =1 mar

state in the SU(2) model.

(g7r)

2y 2 1/2
2 2„3(s-m )

+i G$7 vy, g. (3.1)

IV. OTHER GROUPS

In this section we consider Beggeization in other
renormalizable Yang-Mills theories. These ex-
amples lead us to believe that non-Abelian gauge
mesons will Reggeize in any xenormalizable mas-
sive Yang-Mills theory when Mandelstam's count-
ing criterion' is satisfied for vector-vector scat-
tering.

A. U(n) and the Extended Spectrum

Consider U(n) as a local gauge group, and con-
struct a theory of massive gauge vector mesons
using the scheme of Bardakqi and Halpern. " Let
—2X, (a=0, 1, . . . , n' —1) be the generators of U(n)
and let Xo be the generator of the U(1) subgroup
The A., can be represented by the n~ n matrices
which satisfy

[~., X,] =2if.,p„
(X„Xq}= 2d, q~X~,

x, = 42/ni,

and

(4.1)

with f„,the structure constant of the group and

d„, defined by the anticommutation relation, and
with repeated indices summed.

Let

1
v„= g —x.v'„ (4.2)

and

M = —g ~. (o'+in'),
a

(4.3)

where V„' is the gauge vector field, and o' and m'

are Hermitian scalar fields. Accordingly, the co-
variant derivative appropriate to (4.3) is

We have one additional channel: mm for the vector
mesons and mI' for the fermions. The normal-
parity Born matrices, which are 9@9for J=1, I=1
and 4x 4 for J= 2, I =-,', both factorize as prescribed
by (A10), and both are of rank one. We list the
result for the pp channel in Table II and the result
for the I" V and mI' channels in Table III.

D„M =B„M— V'„M.

Assume that the self-interaction of the scalar
mesons can be arranged so that (ao) = v, which
allows one to write o'= v5~+s', with (s') =0. In
the unitary gauge one finds the Lagrangian

TABLE III. The contribution to the Born-approxima-
tion J= 2 normal-parity helicity matrix of the I= 2. We
denote the total energy by S'. (a) VF states; (b) mS'

states.

bo

(a) (FV)

3m (8+M)
SMk' (W-M)

3(Z - —M)' (Z+ M)
16Mk' (W-M)

3(E+M) (W-M)
8M@

(b) (F 7t')

3 (F. -an)
2 M (8' —M)

+2gm~ ~ ~'„~~~ +~ g ~~~~~~e~~~~~ s

+ (2ss')' + g2f„,(s's „s')V'„+p(s), (4.5)

where m' =g'v /2n is the common vector-meson
mass squared.

Note that it is only the SU(n} non-Abelian sub-
group that has trilinear self-couplings for the
vector mesons, so that our discussion of Reggeiza-
tion applies only to these n' —1 non-Abelian gauge
mesons. On restriction to the SU(n) subgroup, one
finds that the Born approximation for vector-vector
scattering is identical to that described by Fig. 1,
with the couplings suitably modified in accord with
the Lagrangian given by (4.5}. One can transcribe
our results directly from the SU(2) model consid-
ered in Sec. II, with the replacement 5,~-d„, for
the vector-vector-scalar coupling, and e„, f„, -
for the trilinear vector coupling. One then ob-
serves that the non-Abelian vector meson Reg-
geizes, and there is no other pole at Z =1 (neither
sense- nor nonsense-choosing). The crucial com-
putational ingredients for this conclusion are the
relations
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fae2fc2e =fcaefite2 fuaefce2
L

dcaedgeQ dtf „d„ (4.6)

with repeated indices summed.
As explained in Sec. II B, one must also consider

the vector-meson pole in other processes coupled
to vector-vector scattering in order to establish
the consistency of the identification of the vector
meson as a Regge pole. A few additional remarks
must be added to the discussion of Sec. IIB, since
Eq. (4.5) allows a greater variety of two-body pro-
cesses than discussed earlier. For simplicity, we
describe details for the group U(2). [The model of
Sec. II is the SU(2) "restricted spectrum" model
of Gervais and Neveu, ' while the U(n) model of
Eq. (4.5) is their "extended spectrum" model. ]
For purposes of notation we denote the (I=1, I =0)
vector-meson and scalar-meson multiplets as
(V„, v„) and (s, o), respectively. One may also add
a fermion to the theory exactly as in Eq. (2.6).
The coupled two-body processes to be considered
are

(4.8)

Lq= ~r L„.

Consider a set of scalar fields" y„p„and M
transforming according to the (0, —,'), (-,', 0), and
(-,', —,') representations of the group, respectively.
The appropriate covariant derivatives are

and

Drr P~ =err Pr. —igR2 rtr~,

Drr Q2 =err p2 —igLrr Q2 ~ (4.9)

try breakdown play no role in determining whether
gauge mesons Reggeize or not. For the moment,
we do not introduce fermions into this model, in
order to avoid a discussion of anomalies, "which
is delayed until Sec. IVC.

Let us consider the gauge group SU(2)~x SU(2)„,
with gauge mesons

VV VV
Vo

i

Vrr

ss )—ss
&s I~s
QP j'p

(4.7)

D„M =epM —igBpM+igMLp.

One arranges the self-interaction of the scalars so
that

(note that the only nonsense state at 8 = 1 is in the
VV channel).

Our finding is that the 11'll Born matrix de-
scribing the processes (4.7) factorizes at J =1
in accord with Eq. (A8), and is of rank one. The
results are represented as in Eqs. (B5) and (B6).
They are essentially the same as those of Tables
I and II, and need not be listed separately.

B. Broken Chiral SU{2)

This example is very similar to the one just
discussed. The major difference is that, as a
result of the spontaneous breakdown of chiral sym-
metry, multiplets of gauge mesons of opposite
parity have different mass. Our purpose in pre-
senting this example is to illustrate the fact that
mass splittings arising from spontaneous symme-

1 0(4)=(4)=~v 1

and (4.10)

0
(j&, = —(o, +v+i7 ~ rr, )

2

1 . 0= —(o + v +27 ' rr )2 ~2 2 2 1 (4.11)

Q
M = = rr2+ — —+is . rr2

The interaction Lagrangian for the theory in the
U gauge is

(M) =-2'u.

It is convenient to decompose the scalar multiplets
as follows:

Sr = —2gm~V„V„e —gA2„A„(m e vm+2„i sn)8+rrgmqV„A„—gm„~ sin8cos8A~ V„xrr+gV~ rrxs„rr

+g cos 8A„(rre „o—rre „rr) + -,'. g sin 8V„(qa „rr rr& „q)+ ', —g sin 8A ~—(@a„rr —rr& „e)

+2' g' sin'8(V„V„+A„~ A„)rr rr + —,
' g' cos'8[(V„x ~) ~ (V„x rr) +(Tr A„)(rr A„)]-g' cos8rrA„. V„x rr

+2 g'[(rl'+e')(V„V„+Aq Aq) +4V2 A2qe]+P(rr, e, rr, o), (4.12)
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1~ sing (4.13)

where

= cosgp,

cos'e =m, '/m„'.

The coupled two-body channels to be considered
are VV, AA, V~, A. m, mm, and gq for the vector
mesons and VA, Vm, Vq, Acr, and err for the axial-
vector mesons. Note that only the VV, AA, and

channels have nonsense states at J=1. We
find that the Born matrices, which are 16x 16 for
the vector mesons and 13x 13 for the axial-vector
mesons, factorize at J =1 in accord with Eq. (AS)
and are both of rank one. The results are present-
ed in Table IV according to the representation
{B6), with the conclusion that both vector and ax-
ial-vector mesons Beggeize even though chiral
symmetry is broken spontaneously. The reader
should appreciate that, as a consequence of the
broken chiral symmetry, the nonsense matrix for
the Reggeization of the vector meson is nont~ivially
of dimension 2; nevertheless, the Born matrix

TABLE IV. The Born-approximation normal-parity
helicity matrix at J =1 and I =1 for the SU(2)& && SU(2)z
model. The VV states are identical to Table I(a). (a)
AA states; (b) VA states.

b«

boi

boo

bi -1

(a) QA)

(4m+ mv ) 3k2( 2)

(4m~ —mv ) s
A 3k 2(s m V2)

[s (2m& -m v ) + Sm& ] 1
2m+ 3k 2(s —m v2)

2 (s m 2) 1/2

k

i/2

where m„=(1/~2gv and m„=(1/~2g(u'+u~)'~' are
the masses of the vector mesons and axial-vector
mesons, respectively. We have introduced the
scalar fields e =(1/~2(cr;+o, ) and o =o,. The
pseudoscalar fields are q =$1/&2)(o, —o,} and 7r

such that in the U gauge

1—~sin8m,
U gauge

is of rank one in this case. Thus although two
Regge trajectories were possible in principle, only
one was found [see Appendix A, expecially Eq.
(All)]. [Note that, aside from the obvious changes
of kinematics and coupling constants, which can
be read off from Eq. (4.12}, the entries for Ve,
Am, Vm, Vg, and Acr are the same as that of Va
in Table I, and mm, mq, cr~, and pe are the same as
that of mm in Table II. Therefore, we do not list
these results separately. ]

t . Fermions and Anomalies

In general, if fermions are present in a gauge
theory with axial-vector mesons, the question of
anomalies must be considered, "since anomalies
destroy the renormalizability of the theory, and .
the gauge mesons would not Reggeize. The prob-
lems of anomalies seem to be well understood, "
so that a full-scale investigation on our part does
not seem to be called for. Anomalies first appear
in calculations involving at least one fermion
closed loop, so that no difficulties are expected
in the Born approximation. We have examined
some simplified examples to convince ourselves
that the Born matrices factorize as expected.

We have studied the Reggeization of the fermion
in the Abelian gauge group U{1)z, where the axial-
vector gauge meson and fermion acquire a mass
by means of the Higgs-Kibble mechanism. The
Born-approximation amplitude for axial-vector-
fermion scattering in the U gauge is described by
Fig. 4. This process has already been considered
by Dicus and Teplitz, '~ who only computed the con-
tribution of Fig. 4(a) and consequently failed to
obtain factorization at Z= —', . Figure 4(b), which
occurs because of the symmetry-breaking mechan-
ism, ensures that the Born matrix (i) satisfies
unitarity bounds and (ii) factorizes at 8 = & as is
required if the fermion is to Beggeize. In addition
to the AF channel, we have the vF channel. We
find that once again the whole 4x4 normal-parity
Born matrix at J= —,

' factorizes as prescribed by
(A8) and is of .rank one. We present the results in
Table V, according to the representation (86).
Although the question of anomalies must be con-
sidered in higher orders, this problem does not

bii

boi

b io

boo

bi

1
q3sk (s -m& )

1/2

(b) (VA)

(2mv +m~ )s —(m~ —mv ) 12 2 2 22 11/2

s 3k (s —m~ )

1 1/2

mv[3s+(m& —mv )] 3 k2( 2)s s —m~

[(2m/ +mv )s —(m/ -mv )(2m/ —mv )
mg

(mA mv ) ]mv+SmA mvs 12 2 2 2 2

2s m~ 3k2(s -mA2)—

2(s -m~ )
k2

ri ~~~s

7 5

FIG. 4. The Feynman graph in the Born approximation
for axial-vector-spinor scattering in U(1)& gaugeYg
theory. (a) The fermion-pole graphs; (b) the scalar-
exchange graph.
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TABLE V. The Born-approximation normal-parity
helicity matrix at J =2 for the U(1)y5 model. (a) AF
states; (b) crE states.

(a) (EA)

(m -2~M) (E —M)
2Mm k (8'-M)

(Z-~-3M)' (Z-M)
4Mk' (8"-M)

~ (E-M)(W-M)
2M@

(b) (Eo)

(8+M)
2M(tV-M)

make its presence felt in the Born approximation.
The other model which we have studied in detail

is a version'4 of U(1)~x U(1)„with spontaneous
symmetry breakdown, which provides a mechanism
for the gauge mesons and fermion to acquire a
mass. The conclusions are identical to that found
in the U(1) model.

Note addedin Proof. We have found models,
with special choice of parameters, in which cer-
tain J= 0 amplitudes factorize.

In this appendix we wish to review and summar-
ize certain technical aspects of Reggeization rel-
evant to our work. We hope that the interested
reader will find here a useful introduction to the
subject, to be supplemented of course by a, study
of the papers of Qell-Mann et al. , ' Mandelstarn, '
and Abers and Teplitz. '

The particles of a conventional Lagrangian field
theory are said to Reggeize if the scattering ampli-
tudes of the theory exhibit Regge asymptotic be-
havior -Ps "~ ~'~ and if the elementary particles of
the theory lie on Regge trajectories, i.e., for a
particle of mass m and spin g, o, ;(m') =g for
some n, .

An alternative and essentially equivalent defini-
tion of Reggeization is the following: In a Lagran-
gian theory it may be possible to define Regge inter-
polations T(s, J) of the physical partial-wave am-
plitudes T~(s), for sufficiently large J. At small
physical values Jp of J, the analytic continuation
of T(s, J) (if it exists) need not agree with the
physical amplitudes. The latter contain, in gener-
al, contributions from polynomial functions of the
scattering angle. The former, defined by a Frois-
sart-Gribov continuation, do not contain such
polynomial contributions. The difference is a
"Kronecker 5 term" T(s, J) —T~(s)-5«. Polyno-

mial contributions are present, and Kronecker 5

terms may apped&' at Jp if there exists an elemen-
tary pa, rticle of spin Jp in the s channel under con-
sideration, or if the s channel can communicate
with states having sufficiently large total spin

(o, +o, ~ J, +1 for two-particle states). If, how-

ever, the Kronecker 5's are absent, that is, if
the Regge continuation and the physical amplitudes
agree at Jp, the theory is said to Reggeize at this
value of angular momentum. In particular, an
elementary particle of spin Jp originally present
in the Lagrangian has been turned into a Reggeon
by higher-order corrections.

In our work we consider conventional renonnal-
izable Lagrangian theories, so that our elementary
particles' spins do not exceed unity. Therefore,
we are concerned with Reggeization at Jp =0, —,',
and 1. We believe that, to any finite order of
perturbation theory, T(s, J) and Tz(s) agree for
J& 1. A necessary condition for Reggeization ac-
cording to the mechanism of Qell-Mann et al. ' is
the existence of nonsense states. One examines,
for instance, two-particle helicity states ~X,X,)
at a given J, and labels the states "nonsense" or
"sense" if the total helicity X =

~
X, —X, ~

does or
does not exceed J,. Helicity amplitudes are re-
ferred to as sense-sense, sense-nonsense, and
nonsense-nonsense, and denoted T„, T,„, and

Note that at J, only the sense-sense amplitude
is physical.

In the Born approximation the helicity amplitudes
near J, have the characteristic behavior

B„-—v„5«+analytic terms,ss JJO

B,„-v,„(J—J,) '" +analytic terms,

B„„-v„„(J—J,) '+analytic terms.

A second necessary condition for Reggeization at
J is the factorization condition v„=v,„v„„~v„,. We
shall "derive" this later on. If this condition holds,
Qell-Mann et al. ' argue that the theory will Reg-
geize if higher-order terms have good high-s
behavior. In principle an investigation, order by
order in perturbation theory, is required to verify
the high-energy behavior.

Following the work of Qell-Mann et al. , ' Mandel-
stam' devised an altenzate criterion for Reggeiza-
tion, which is simple and essentially kinematical
in chara, cter. He pointed out that at Jp the physical
amplitudes T„(physical) satisfy a set of dynamical
equations, whose solution involves a certain num-
ber of arbitrary parameters: subtraction constants
and the mass and coupling constants that describe
elementary particles in a Lagrangian. The Begge
amplitudes satisfy similar equations, and in par-
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and "elastic unitarity"

disc[T~ y]g = 2t Q pUT~+ Tp g, (A2)

ticular the solution T„contains other arbitrary
parameters brought about by the coupling of T„
to T,„and T„„. Both T„and T„(physical} satisfy
at Jo certain kinematical const raints having to do
with their behavior at thresholds and "conspiracy"
points. Because of the presence of arbitrary pa-
rameters, T„(physical) and T„need not agree,
but if the number of constraints exceeds the num-
ber of parameters T„(physical) and T„must be
equal, and the theory will Reggeize at Jp The
Mandelstam argument therefore sets up a counting
procedure mhich can be carried out to establish if
a given theory must Reggeize at a given J,. If the
counting criteria are satisfied, Reggeization mill
take place for any values of masses and coupling
constants. If the criteria are not satisfied, Reg-
geization may still take place, but only for special
values of these parameters, and one must fa11
back on detailed, dynamical calculations.

The essential ingredients for the validity of the
Mandelstam argument appear to be analyticity,
unitarity, and the existence of nonsense channels.
It is reasonable to assume that the first two hold
in any renormalizable Lagrangian theory. Indeed
in the examples studied by Teplitz and collabora-
tors, '"where Mandelstam counting suggested
Reggeization should take place, and yet the Born
approximation did not factorize, lack of renormal-
izability of the Lagrangian seems to be the only
possible culprit.

In our work we have been guided by a heuristic
N/D approach to the solution of the equations sat-
isfied by the Regge amplitudes. A direct attack
of the field theory means essentially summing
diagrams and going to the high-energy limit, or
examining the J-plane behavior of sums of dia-
grams, a task made very difficult by the intricate
complications of non-Abelian gauge theories. The
use of partial-wave dispersion relations and their
N/D solution suffers from uncertainties having to
do with subtraction constants. In principle the
Mandelstam argument states that these subtraction
constants can be determined, but in practice this
is difficult and we can only claim a certain plausi-
bility for our results, to be checked in principle
by higher-order calculations.

We consider calculating the Regge amplitudes
from the dispersion relations

T„„(s,Z) =V„„(s,Z)

+ . ,
'

disc[T&z(s, J)]„(A1)ds,
2WZ S —S

Here T is defined by means of a Froissart-Gribov
continuation. The "potential" V contains left-hand
cut and inelastic contributions (three-or-more-
particle intermediate states; we include all two-
body states in our elastic unitarity terms). The
"potential" is calculated to a given order of per-
turbation theory from the t- and u-channel absorp-
tive parts, and does not contain s-channel elemen-
tary-particle poles or other contributions from
terms analytic in t or u.

The above equations (or their solution) can be
continued to a value of J near J, where one divides
them into sense and nonsense pieces. We write in
block matrix form

SS Sll (A3)

where T„, is the transpose of T,„. The potential
in the Born approximation has the form

0 v, „(Z—Jo) "'
P ~ J J -I/2 J J 1

+ anal. ytic terms . (A4)

D =1 —yz, (A5)

where K is an appropriate integral involving the
phase-space factor p, and suitably defined so as
to cancel singular factors of V. (Essentially we
are taking the polynomial factors of V outside the
dispersion integral. ) Equation (A5) implies a par-
ticular subtraction philosophy, which in principle
can be checked by higher-order calculations or
by verifying that the solutions satisfy all the con-
straints. Our Eq. (2.5) for the trajectory n(s)
illustrates the meaning of our remarks.

We find from (A3)-(A5)

Near J, the nonsense-channel potential v„„(J—J,) '
dominates and provides the main force that
"drives" the system. The sense-nonsense poten-
tial v,„(J—J,) '" provides the principal coupling
of the nonsense to the sense channels, and the
analytic terms can be ignored.

A crude N/D calculation, with N = V, gives discD
= -2i Vp. We note that discD is bounded as s- ~.
This reflects our choice of normalization of the
amplitude, and the fact that in a renormalizabLe
theory the eLements of V do not exceed unitarity
bounds. We also note that aside from kinematical
singularities (factors of momentum in the denom-
inator) which can be removed by redefining the
amplitudes, the elements of V' are polynomials in
s (or Wsfor fermion-boson scattering}. We there-
fore choose as our solution for g the form
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/' o

X
-VesK

(J J )I/2

and in particular

-V,„Z
(J J )1/2

VnnJ-Jp

(A6)

K
~ss sn J J K ns'

p nn

(A'I)

We have dropped a fourth-order term v,nKvn, in
the denominator, since other fourth-order contri-
butions to the denominator have not been taken
into account. At J=Jp

-1
ss sn nn ns ' (A6)

On the other hand, the physical amplitude has the
form

T„(physical) = -v„+~ - ~, (A9)

where ~ ~ ~ are terms expected to agree with terms
in the Regge continuation that we have neglected,
and which are analytic near J. In our approxima-
tion the requirement that T„(physical} and T„
agree is the factorization condition

value o.„(s)—J, has a zero at s = s„but v„has no

pole at this point, the factorization condition will
ensure that the corresponding Regge residue also
has a zero at s = s„ in which case the trajectory
has chosen nonsense at J Jp.

APPENDIX B

We devote this appendix to a summary of con-
ventions and definitions used in this paper. For
convenience, we present these in schematic fash-
ion.

Conventions.
(i) Feynman rules are derived as in Ref. 19.
(ii) Helicity amplitudes are defined as in Ref. 20.
(iii) Polarization vectors are defined as in Ref.

4 and as by Qell-Mann et al. '
(iv) Partial-wave helicity amplitudes are derived

as by Gell-Mann et al. '
Definitions.

Ty y .y y (s J)
—= normal-parity, partial-wave helicity ampli-

tude for a two-body process, with Xy X4

the helicity, X =—X, —X„p= X, —X, ,

B„,„,.„z,(s, J) —= Born approximation, (a2)

B„„(s,J) =B„q(s,J)+analytic terms at J'=J0, (I)
1

Vss Vsn Vnn Vns ' (A10) with

The matrix Q=Jp+v K is symmetric, and it
will have in general as many eigenvalues n„(s) as
there are nonsense channels. We can write a spec-
tral decomposition, a =~,n, (s), and represent
T„as a sum of Regge poles passing near J, (to
lowest order) with factorized residues since the
P's are projection operators:

B„q(&, )J—= the singular part (in J) of the
Born approximation near J=J, ,

where

B„(s,J}= -v„b~ q,
B,„(s,J) = v,„(J J,)-"', -

(Ssa)

(S6 )

1T„=Q v,„t'„v„,K
( )

and

B„„(s,J) = v„„(J-J,)-'. (asc)
V V

+s Ys

J —n„(s)
' (A11)

If the amplitudes factorize near J J'p and the ma-
trix v„& is of rank one, then for J, =1 we have

For the special case of a single nonsense state, we
observe that Imn = pv„„.

We note that if there is a pole in the s channel
corresponding to an elementary particle of spin
J, so that v„-(s —m ) ', the factorization condition
wiQ require detvnn to have a simple zero at s =m'.
In general at least one of the eigenvalues o,„(s)—Jo
will have a zero at s =m', and the particle will
lie on the corresponding trajectory. If some eigen-

v, gb xy),

where g is the gauge coupling constant of the gauge
group; for J=-,' we have in general

v„g=g(t/, )b„x (g~) b

where g(p, ) is the relevant coupling constant for
the state "p"; for instance, g(p) =g for the fer-
mion-vector-meson states, g(t/) =G for the fer-
mion-scalar-meson states.
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