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An invariant regulator field method is applied to the construction of vector-current vertices in a dual
resonance model. If it is not required that the regulators be fully conformally invariant, but only that
they have the invariance required for duality, Gaussian factors can be eliminated consistently from both
the elastic form factor and the deep-inelastic structure functions. This method introduces new ghost
states which can be pushed to arbitrarily large mass by judicious choice of the regulator parameters.
However, there are still ghosts at low levels from the basic dynamical oscillator field, as in the
Veneziano model with intercept a(0) Q 1. The structure function vS'2 does not scale in the model.
The physical interpretation of this result is discussed in detail.

I. INTRODUCTION

In spite of the great progress made in recent
years in understanding the structure of dual reso-
nance models (DHM) that stem from the Veneziano
formula and its generalizations for hadron-hadron
scattering amplitudes, it has not yet proved possi-
ble to construct a, comparably consistent dual theo-
ry of current-hadron interactions. The basic enti-
ty in terms of which the theory of the DRM can be
most clearly formulated is the Nambu-Susskind
"string. "' There is no doubt that the classical
problem of the radiation of a violin string on which
charge has been distributed is well defined and can
be solved. It is much more difficult to decide
whether the analogous fully relativistic, quantum-
mechanical problem is even well defined, let alone
solvable in full generality. %e will not do this in
this paper, and the title is to be taken as a real
question, not a rhetorical one.

Our aims in this paper are much less ambitious.
Two principal strands of development" in the the-
ory of "dual" currents will be interlaced in such a
manner that at least formally the requirements of
duality' are satisfied in a model for the vector cur-
rent. The model will then be used to calculate the
elastic form factor of the ground state of the
string, and the behavior of the deep-inelastic
structure function W, in the Bjorken limit. The re-
sults of these calculations have been published
elsewhere. ' In this paper, we elaborate the argu-
ments leading to the results, and hopefully clarify
some physical points. It must be pointed out that
we accept at the outset shortcomings of a very
serious nature in the formalism, such as the oc-
currence of both tachyons and negative-metric
ghosts. Remarkably, in spite of this, the physical
interpretation of our results is not implausible.

Some of the principal problems to be faced in
constructing a dual theory of currents can be un-
derstood by first examining a single harmonic os-

jo(k) =e '"

i(k)=I. -'p, e '"').
I

In terms of a. and a one has

(1.1a) .

(1.1b)

e =e-ik '1 -ik ~ ( a+ a~)/v2

-ik ~ a~go 2 -ik ~ age 2 -k y@=e e e

(1.2a)

(1.2b)

where use has been made of a well-known identity
to pass to normal-ordered form.

One problem is that if, instead of a single mode,
there are an infinite number of modes as in the
string, there is a divergence in passing from
(1.2a) to (1.2b). This problem with going to the
continuum limit ha, s been stressed by Nielsen and
Susskind. ' They argue that it is not reasonable
for current probes to really see a continuum in
the string, hence there should exist a maximum
mode number corresponding to a minimum spacing
of constituents of the string. Not unexpectedly, a
careless implementation of this proposal leads to
a breaking of duality. When the infinities are re
moved in such a manner as to preserve the duality
properties of amplitudes involving currents, it is
found that there are still an infinite number of
modes in the problem. The details of this dual
method of removing infinities, due to Drummond
and to Rebbi, are discussed in Sec. II. It is found

cillator in three dimensions. The Hamiltonian is
(in appropriate units)

H = —,'(p'+x~)
3a a+2)

with

a = —,'(x+fp),

[a,, a,t]=O, ,
The current in this theory has components (in mo-
mentum space)
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to be much like a field-theoretic regulator method. '
A second problem facing us in constructing dual

current theories is how to generalize Eq. (1.1). It
describes the current of a single particle in a har-
monic well. The method of constructing the cur-
rent at a space-time point (x„) due to the motions
of the constituent particles on the string has been
given by Nambu. ' This formalism is also reviewed
in Sec. II. One is still left with the problem of de-
ciding how the total charge carried by the string is
to be distributed. This distribution must be spec-
ified in such a manner that duality is not violated,
yet gauge-invariance holds. A model for this dis-
tribution is given in Sec. III.

Section III also contains a discussion of a new
set of fields which have the invariance proper-
ties required for duality. We have found it conve-
nient to introduce these new fields because, even
after a model for the vector current is introduced
using the formalism of Nambu, and rendered finite
by the methods of Drummond and Rebbi, the string
is found to have an unpleasant Qaussian elastic
form factor. This is the last remnant of the sin-
gle-oscillator Gaussian evident in Eq. (1.2). The
new fields which are introduced, and are applied
as regulators, allow us to eliminate this Gaus-
sian, leaving power-law falloff for the elastic form
factor. This is demonstrated in Sec. IV. In this
manner, it is seen that the string model is indeed
capable of reproducing the qualitative behavior of
the "electromagnetic" hadronic wave functions.

A third major obstacle in generalizing the single
three-dimensional oscillator to the string model
is that, for relativistic covariance, a fourth oscil-
lator in a timelike direction is usually also intro-
duced. Much of the recent progress in the DBM
has consisted in demonstrating that, in the "mani-
festly covariant" formulation, there are enough
subsidiary conditions to completely eliminate from
the physical states all bad, negative-metric states
created by the timelike oscillators. ' Unfortunately,
these conditions are only satisfied if the (mass)'
of the particles involved in the scattering process
have the spectrum -1, 0, 1, 2, . . . , g, . . . . The
problem of ensuring positivity for processes in-
volving currents remains unsolved, although some
attempts to preserve the Virasoro ghost-eliminat-
ing gauge conditions' in the construction of the
currents have been made. " We reserve to the
conclusion discussion of these attempts.

In this paper, no attempt has been made to en-
sure positivity of the norms of the states. On the
contrary, our philosophy has been as follows.
Since regulator fields are used, which by necessi-
ty introduce infinitely many ghosts that cannot be
eliminated by Virasoro gauge conditions, it is un-
necess~ y to require the regulators to be fully

conformally invariant. It is sufficient that they
be Mobius-invariant in order that the. theory be
dual. " This freedom is what permits us to use a
set of regulator fields that eliminate the Gaussian
behavior of the elastic form factors. The proce-
dure is not as crazy as it might at first seem, be-
cause one is able to show that the net results, both
for the elastic form factor and for W„are re-
markably insensitive to the precise manner in
which the regulators are chosen. Thus the bad ef-
fects of the regulators can be pushed to appear at
arbitrarily high masses, while the good effects
are present by mere virtue of the fact that regula-
tors have been introduced. The hope is, then, that
the regulators mimic the properties that a cor-
rectly cut-off, positive-definite theory might have,
at least for certain matrix elements. ' Some of
these points are illustrated in Sec. VI.

Finally, it is appropriate in this Introduction to
discuss why the structure function W2 should be
studied in the DBM at all. One can reasonably ex-
pect that a string picture will be totally antithetical
to current explanations of the scaling of vW, ."
From a parton point of view, " it is predictable
that the string model will fail to scale because the
motions of the constituents of the string can never
be considered to be free. From the light-cone
considerations, "one might expect v W, to be non-
scaling in the string model if one believes the
"fishnet" argument that in DRM the constituent
propagators are Qaussians, and hence have no
light-cone singularity.

On the other hand, the work of Bloom and Qil-
man' clearly indicates that duality is a notion that
is relevant to deep-inelastic processes. Further-
more, several authors have constructed pure reso-
nance models which exhibit scaling behavior. "
The question is whether the DRM in its present
form realizes duality in a manner that is applicable
to a discussion of these processes, or whether it
really does fall prey to the diseases naive consid-
erations lead us to expect.

Section V contains an analysis of W2 in the model.
We find that vW, does not scale in the Bjorken lim-
it for the reasons suggested by the parton model
concepts, namely, there is never a "time" scale
so short that parton-parton forces can be neglect-
ed. Consequently, the "partons" of the string
model have structure. There is a contribution to
vW, from the string's partons which falls off; this
is related to the "convectiv'e" form factor of the
partons. But there is another contribution which
grows, due to a "magnetic" parton form factor.
Physically this is similar to a parton model in
which the partons are quarks endowed with an
anomalous magnetic moment. It is known that in
such a case, W, scales rather than vW, .
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II. CONSTRUCTION OF THE VECTOR CURRENT

In this section we briefly review the construction
for the vector current proposed by Nambu. ' We
will see how the sum over the infinite number of
modes of the string produces a divergence, and
introduce the Drummond-Rebbi procedure for
eliminating the infinity. The invariance proper-
ties required in DRM for the current to be dual
are also discussed.

First recall the amplitudes of oscillation of the
string in Minkowski space are described by the
field

2 1/2

V ' (8 &) =x +P' 7'+ P — cosn8
f1= 1

The sum in Eq. (2.2) is infinite, so the expression
e makes sense only for k' =0.

The crucial observation that allows continuation
of this line of development is that the infinity in the
sum in Eg. (2.2} can be canceled if in addition to
V~„'i one uses a second field in Eg. (2.1):

Cg2

V„=V „' +i g — (b„„e'"'+b„„e'"') sinn8.
tl=].

The new 5 set of oscillators obeys the same com-
mutation relations as the a set, and a and 5 sets
are independent. The relative factor "i"between
the sets of modes enables the infinities from the
sums (Q n ' cos'n8) and (Pn ' sin'n8) to cancel.
One then obtains

Here 0 is the length parameter along the string,
and r plays the role of a time variable. The string
sweeps out a world sheet with parameters m & 8& 0,
00 & 7 & —oo. The oscillator variables satisfy the
commutation relations [a„„,a „]= -ig„,5„„. If1

these modes of oscillation were absent, V„' (8, v)
would describe the position of a classical free par-
ticle that was at x „" at v =0, and which has veloci-
ty P&. Because of a conventional choice of units,
P„' is actually the center-of-mass momentum of
the string.

This suggests that Eq. (1.1}be generalized to

j~(x)=-,' ( I dHdv'z„(B, v), il (x-.|)I,0!

(2.1)

where

n8g 6 gg

The statement of current conservation, B„j"(x)
=0, is satisfied if the internal current is con-
served, 8 J =0; if the component of the internal
current normal to the boundary vanishes at the
boundary; if the integral in (2.1) is well defined;
and if surface terms vanish.

Unfortunately, as it stands Eq. (2.1) is not well-
defined. " We see this heuristically through the
formal expression,

5 (x —V' (8, v)) = d kexpfik[x —V ' (8, r)]}.

=:e " (2sin8) ' . (2.3)

The nontrivial factor (2sin8) which appears in
this expression is responsible for the properties
of the elastic form factor to be discussed in Sec.
IV. Although there is no purely "constant" infinite
factor left in (2.3), we see that as 8 approaches 0
or m, the expression is still divergent for k'&0.
This is not the same type of problem as was the
over-all infinity, however, for these divergences
show up as a series of poles for integer values of
O'. Thus the currents in this type of model are
particle-dominated in the timelike region.

The properly "regulated" current (2.1) can be
used to discuss photon-hadron interactions by use
of the phenomenological Lagrange density

We must now consider the requirements of duality,
which place constraints on the possible forms of
J„(8,7}, and on the candidates for regulators to be
used in V„(8, r)

In the DRM, a minimal requirement for duality
of an amplitude is the invariance of the operators
used in the construction of the amplitude under
Mobius transformations. In the operator formal-
ism, this requirement is thai

2'""= ej „(x)A"(x),

where A„(x) is a fixed external photon field. Then
the single-current vertex in momentum space is

For, passing to normal-ordered form, e' '"1„(q)e '"'"=r„(q), (2.5)
00 2

-~av~'i . -s~v«) . cos fg8
e =:e: exp -k

nn= J.

(2.2)

where L,, are generators of SL(2, R)." To focus on

the required transformation properties of the

fields, it is useful to express our conserved inter-
nal current in the form
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J„(8,T}= e„sasp(8, 7 },
~n8 68

In terms of the density p(8, r), the current vertex
Eq. (2.4) can be written

e "" apV)dr (d)= — dddv ' ', e""I
2

a(p, v„)
a(z, z} "

UHP

(2.7)

where z =e"', and UHP is the upper half complex
z plane. The condition (2.5) is satisfied if

in. L f ( p(Z)d V ()d)Z) iav(z) -in L

a(z, Z)

a( p(z'), V) (z')) i,y(,),2 8 )

where

zl az+P nP-ye=1.
hz+5 ' (2.8b)

The real parameters n, P, y, 5 are easily related to
the parameters ()(; in (2.5). The invariance is then
satisfied by virtue of the manifest invariance of
Eq. (2.4) under arbitrary coordinate transforma-
tions on 0 and ~ with nonsingular Jacobian.

We conclude this section with three observations
on the gauge-invariant, dual vector current above:

(1) Inserting Eq. (2.6) into (2.1), one has formal-
ly

r
j„(x)=-,' (dpdV„, 5'(x —V)). (2.9)

This is the form of the current due to a collec-
tion of classical particles, with charge density p.
The interaction j„A with j„(x)of the above form
gives rise to the Lorentz equation of motion (with-
out radiative reaction). Thus, the formalism pro
posed for the electromagnetic interaction of the
string parallels the formalism of the free string
in physical interpretation.

(2) However, if J() =ap/a) w0, the current j„(x)
contains a-term involving a V„/a9. This term has
no analog in a minimally coupled classical theory,
for which j„~ax„/aT. Thus, in general, our theo-
ry is not minimally coupled, and one may antici-
pate effects much like those due to an anomalous
Pauli term. We will see such effects in W, .

(3) At first sight, it appears as though Eqs. (2.8)
cannot be satisfied for any nontrivial choice of p
or V„. This stems from the conventional use of
so-called multiplier representations of SU(l, 1),
or of the isomorphic SL(2, R). We will see that if
the duality invariance group is realized in a slight-

ly different space from the one conventionally
used, Eqs. (2.8) can be satisfied in a variety of
ways. This is the subject of the next section.

III. INIODUCTION OF NEVI FIELDS

A. Invariant Equation

The Lagrange density of the free V„'(z) field is

(3.1}

It follows that V„'(z) satisfies the Laplace equation

y()
0 (3.2)

in the z domain. Equation (3.2) is well known to be
conformally invariant.

In addition, it has been established that, with
Z ', use of Nother's theorem leads to the full set
of Virasoro gauge operators, "which aj.'ise as gen-
erators of infinitesimal conformal transformations.
In particular, the Gliozzi operators L~ generate
infinitesimal Mobius transformations, and it is
known that

&i n ' L p V(a)(z )e
-i n ' L g V(a)(z i

) (3.3)

where z' is given by (2.8b).
However, the Laplace equation is not the only

equation invariant under Mobius transformations.
The equation

(g 1 8 8 A A, -1
(3.5)

The action

r= d'zg(" z, z (3 6)

is unchanged under real Mobius transformations
on the integration domain z, so quantized solutions
of (3.4) are likely candidates for operators that
transform covariantly under SL(2, R).

In part 8 of this section, normalizable solutions
of (3.4) will be displayed. Generators of the group
in the quantized theory are constructed in part C,
and special properties of the p(z) field are treated
in part D. The connection of these results to the

= -Z()L -1)
~ (z —z)'

is the most general homogeneous second-order
differential equation left invariant under the trans-
formation (2.8b)." First-order Dirac-like equa-
tions have also been given by Sakita, "and by Sus-
skind, Casher, and Kogut. ''-Equation (3.4) is the
Euler-Lagrange equation resulting from variation
of
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representation theory of SL(2, R) is discussed in
Appendix A.

B. Solutions in the Strip Domain

In the Nambu-Susskind strip, the action (3.6)
takes the following form after rotating 7- A'.

(8, w)G (8, v; O', 7') =((()(8—8')5(r —T').

(3.10)

In physical terms, ~ represents the strength of
the source. This Green's function is constructed
in Appendix 8, where the boundary condition is
also discussed. The result for A, &0 is

I=-
4m „„

(3.7)

cos(c —c')-cosccosc')
sin8 sino'

The equation of motion in the strip is =Qx- () (3.11)

8 8 (A. —1) &(y) ( ) D().) (x) 0~ ~

8 8' 9 v' sin'8

(3.8)

Normalizable solutions have a very simple form;
for 4-vector (t)'s,

7t )p()c)(8 ) g (h( ) a

+h(X.) t -mc. )P(X.) (8)

where Q~(co) is the Legendre function of second
kind, and G is normalized so as to agree with the
special cases A. = 0, 1, which are easy to evaluate
straightforwardly.

Upon reversion to the elliptic (v, 8) domain, the
argument of the Q~ function in (3.11) may be trans-
formed to the upper half-plane:

cosh�(T

—7' ) —cos 8c os 8
'W =

sin0 sin8'

P(„")(8)= (2 sin8) "I'(&)

(3.9a) 1 (u-v/'+ /u-v f'
4 (lmu)(Imv)

m(m- z)t
2)(I'(m + )),)

(3.9b)

Pp
(3.9c)

it follows that

P(„' (8) = (2/v)'" cosne.

Similarly,

P(„') (8) = (2/v)'" sinne.

Since for these values of )). (3.4) becomes the La-
place equation, any other solution of the Laplace
equation can be added onto these, provided the
boundary conditions are also satisfied.

The inverse of the differential operator D is
the Green's function G ', which satisfies

Here C & are Gegenbauer polynomials as defined
in Ref. 23. The boundary condition (b.c.)

y„(~, 0) = y„()-, v) = 0

is sufficient for normalizability if Rek&0. If the
b.c. is taken to be

(4) 84" /se)e o, =

the case A. =O can also be included.
By use of the identity

lim I ()).)C„"(cose)= (2/n) cosne, ne 0

For Lorentz vector fields, the canonical commu-
tation relation

[~(„"(8,~), y(„"(8',T)] =fg„„()(e—8 ) (3.12)

follows at once from the completeness of the func-
tions P '(8), provided the expansion coefficients
satisfy the commutation relation

(3.13)

and that all other commutators of the coefficients
vanish.

For such quantized fields P'„)(8, r), the ~-or-
dered two-point function is

(0(„'(8,~)4' '(8', ~')).=-g,.('~~ G' ', (314)

where G( ) is given in (3.11). This is easily estab-
lished using (3.13), the property of the vacuuin
b(„" ~0) =0, and examination of (B4).

where u=e"', e =e' " . This is invariant under
real Mobius transformations on u and v, as re-
quired.

An important reason for using the strip domain
is that canonical quantization of the fields P~„") may
be performed using r as the time coordinate (see
Sec. IV). From (3.7), the canonical momentum
conjugate to Q'„) is

( X.) 8 P(k)

2w 2v
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C. Generators in the Quantized Theory

From Eq. (3.7), identify

(),) 1 8 8 ~
A. g-j.

and introduce

(3.15)

(X)

~(s&f&„!~h ) 8(8 * (3.16)

where

(p )=T~8~

gpp +11

gp1-g10 —0.
Consider two independent components" of T &,

Tpp K

-=—4—,[ 0'+0"+ u(8)4'1, (3.17)

1
&ox =+ = -

~ I. 4 p
0'"] (3.18)

Lp =-2 dgX
Jp

Caution has been exercised in writing Tp1 because
of the noncommutativity of Q„with p'„.

According to an argument by Nambu, "if these
densities are smeared with test functions, an in-
teresting and nontrivial algebra ensues. It is just
the algebra of the Virasoro operators. For brevi-
ty, we indicate only the operators with direct ap-
plication to our work:

tations and the canonical commutator (3.12):

[Lo 4I"(8 &)]=-fs.d'p"(8 &)

[ L„P~„"~(8, T)] = e"(-zcos 8 8, + sin 88 8)

~e'„"(8, ),
[L, p „'(8, T)] = e "(-ico. s8 8, —sin8 8 e )

&& 0'p" (8 &)

(3.20a)

(3.20b)

(3.20c)

Thus, as indicated in Appendix A, the L& generate
infinitesimal real Mobius transformations on P~„"~

after a change of variables to the complex z -plane.
The SL(2, R) algebra

[I„L]=-2LO,

[Io, L~] =+L~
(3.21)

may also be checked, with the usual proviso that
the signs in (3.21) apply for the spacelike oscil-
lators.

Evidently L„ the generator of 7. displacements,
is the Hamiltonian operator in the theory. Note
that all fields are taken to have the same sign for
the energy, regardless of whether fields of differ-
ent ~ enter in the construction of V„with relative"i" factors between them. An alternate approach
would be to absorb the "i" into the b„,b~, giving
them a wrong-sign commutator. %e prefer to keep
the non-Hermiticity in the interaction.

D. The Quantized p Field

The constructions of the last two paragraphs may
be carried over to the case of the p field intro-
duced in (2.6) by deleting p, indices, and replacing
g„, by (-1). One further point requires explana-
tion, however.

The charge carried by the internal current
through the Nambu-Susskind strip at any "time" is
defined by

= g nbtb„,
n=X

(3.19a)
dL9 J„6),z

0

p
7F

I, = — d8(cos 8X + i sin8 6'), ,
0

= g [(n+~)(n- ~+1)]'"b„'„b„,
n=X

(3.19b)

L = — d8 cos8+ —i sin8(P, —0
0

g [(n+ X)(n —A. + 1)]"'btb„„. (3.19c}
n=X.

The action of the operators L; on the fields P~„'
may be computed using the fully integrated expres-
sions and the commutator (3.13); the same results
are obtained directly using the integral represen-

= p(&) —p(0) . (3.22)

Since the functions (3.9}vanish at the boundaries
for A. 40, they cannot contribute to the internal
charge c. On the other hand, cosine mode solu-
tions, which occur for A. =0, do not vanish at the
boundary, but give rise to an unsatisfactory v.-de-
pendent ~.

Thus, in order to describe a charged particle,
p must include a zero-mode part, in analogy to
the terms (x~„'~+P~„"r}in V~„', which are the net
center-of-mass coordinate and momentum of the
particle. The analogy is very close, for it is nec-
essary that under Mobius transformations, the
zero-mode and excited ("dynamical" ) modes get
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eo' m'+ nq„q„,
n=l

(3.24a)

L Eoqy 7t' + n n + 1 q ]q 3 24b
n=l

mixed together in such a way that the entire p is
form-invariant.

Consider as an example

f09 2
p(0, &) = ' + g — (q„e'"'+q„e '"') sinn8.

n=]

(3.23}

Aside from being the simplest p utilizing the A. =1
eigenfunctions, an added appeal of (3.23) has been
pointed out by Tze,"who derived it from the
Sakita-Gervais current" J„=:gv„g: .

This model for p transforms according to (3.20)
provided the generators I; are modified to include
e', in a manner reminiscent of the Gliozzi opera-
tors:

There is always an arbitrariness in the intercept
to start with, unless stronger gauge conditions
impose a specific choice for the external masses.
Since such a restriction is unsatisfactory for off-
shell currents, in the remainder of the paper we
always write "n„"with o,(0) arbitrary, and dis-
cuss possible effects of specific s-channel inter-
cepts wherever appropriate. For the simple
Compton amplitude we compute, the t-channel in-
tercept is completely determined by the model
from the s-channel input.

However, the situation regarding the energy of
the excitations created by q „ is not entirely satis-
factory. As already mentioned, these do not con-
tribute to the internal charge flow. They may,
therefore, be thought of as closed charged loops
within a complicated Feynman diagram.

The problem is that particles with different num-
bers of charged loops have different masses. If
these states were exotic, this behavior would be
gratifying. But any normalized excited state,

I = — eoq~ m+ n n+1 ~ q„q„~ . 3 24c
f1= I

Here

[q„, q„'] = 5„, n = 1, 2, . . . ;

all other commutators, including those with e„
are zero.

Since only a single zero mode is required to
close the algebra of the L„and it commutes with
all operators, it is not itself an operator in the
Fock space in which q„, q„act. It may, however,
be treated as an isospin component, E'p T3 which
may always be diagonalized within an SU(2) repre
sentation, regardless of its multiplicity. Analo-
gous comments apply for SU(3), in which case e,
is the operator T3+2F.

For the remainder of this paper, incoming and
outgoing particle states will tacitly be understood
to be eigenstates of the charge operator, but this
will not be written explicitly.

Note that in (3.23} p has been normalized in such
a manner that, by the above discussion,

e =(p(w) —p(0))0 ——1.
The connection between the internal and external
charges will be established in the next section;
with this normalization, "e" is what a real photon
(q' =0) measures in the elastic process y+particle-particle.

Since p is a dynamical degree of freedom, it
contributes to the total Hamiltonian of the system.
The zero-mode part can be used to shift the tra-
jectory intercept, so that, in general, it will de-
pend on the quantum numbers of the trajectory.

m m

has the same net internal quantum numbers as the
unexcited state, as measured by the current at
q2 =0.

The formalism using the field p is, therefore,
only a partial solution to the problem of incorpo-
rating charges in the dual model. Deviations in
"mean-square-charge" are allowed for, but these
cannot be summed over to produce a "physical"
particle state of a given mass. In this sense, our
particles seem "bare." However, the (Thirring)
low-energy theorem" provides an operational def-
inition of the physical (charge)'; we find in Appen-
dix C that "e"in (2.4) is indeed the physical
charge.

IV. ELASTIC FORM FACTOR

A. The Model

In this section, a specific model for the I.orentz
vector field V„(8, 7) will be constructed so that the
elastic form factor of the ground-state particle has
no Gaussian in q'. [By "the" elastic form factor
one means the convective (P„+P„')F(q'), such that
E(0) measures the total charge. ]

As discussed in the preceding section, the "par-
ticle" will be taken to be a state of unit charge,
with no internal excitation of any kind. Thus, only
the zero mode of p contributes. For the vector
field V„, write

Vq = Vq + Q Px(f&q (4.1)

where V„' is the conventional oscillator field;
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the values of P& and X are yet to be determined.
The matrix element of the vector current is E(q') = d8(0le" &e,o[ I0

0
(4 3)

M„=b'(P+q+t ') (PI T„(q) I
p')

=(e/v)5'(P+q+P')5(2p q+q')(t „+P'„)

since (Ol: e":j 0) =1, the sole q' dependence aris-
es from passing to normal-ordered form. Let us
express this step as

I

d8(ore""" "lo),
0

V =V —X()—p(~T

(4.2)
e'levee, o&: eg'v[e, o& . Iim expl q'E(8 8')]

8 8'

cosn&cosn8'
ntt= J.

(4.4)

The second equality is obtained from the first by
performing the T integration, which gives 5(2P q
+q') from the zero-mode parts, and from use of
(2.6) and (3.23) to account for J~.

The form factor is

1
+

2 &~ Q~, (w(T=0)).
X.WO

Since the argument of the Legendre function is ap-
proximately equal to unity, we obtain

)3m 2'(g, g'}= li —,
' g)3»' —1 lnsing ——,

' Pl3»'+1)in[1 —nns(g —3')]
8 6' 8 8'

)n2 +g 2» 2 (») —2 (I)g 2»' +; in2 (g l3»' —1)I
. (4.5)

Inspection of (4.5) provides the following set of
constraints for a well-defined form factor with the
desired properties:

(1) Cancellation of infinite term:

teger values of A. can be used. Indeed, there are
an infinite number of possibilities in that case.

For the elastic form factor, it makes no differ-
ence how the constraints are satisfied. Provided
they do hold, one obtains

X&0
1 ~

2

Thus, all P), cannot be real, and we will have
ghosts.

(2) Cancellation of all constants (which give rise
to Gaussian behavior):

E(q') = t d8(sin8) '
0

(-g*
) (4.6)

Q P~'P(A. ) = -g(1) —2 ln2.
X. &0

(3) Coefficient of surviving ln sin8 (responsible
for off-shell behavior):

Pz —1
X&0

by the first condition, and so is not independent.

Conditions (1) and (2) above may be satisfied si-
multaneously with a single extra field with A. = 1.7,
or for an infinite number of A. values less than
zero. For negative X, the fields (t)()[.) are not rep-
resentations, however, so they will not be consid-
ered. In any case, an unpleasant feature of having
a solution with only a single value of A. is that it is
noninteger. Thus the poles due to this field ap-
pear at positions displaced relative to the positions
of the a modes. Another possibility is to choose
more than one auxiliary field. If this is done, in-

8. Discussion

We will now discuss the properties of this form
factor, the modifications needed to produce more
acceptable behavior, and comment on the physical
interpretation of the results.

First, E(q') has a series of poles for q'
=1, 3, 5, . . . , 2n+1. These poles arise from the
end points of the integration, near which the inte-
grand behaves like d8/8' . The position of the low-
est pole can be modified if p(8), Eq. (3.23), has a
zero-mode dependence proportional to 6I ", rather
than 0. This effects the modification q'- q' —n,
so the (mass)' of the lowest pole moves higher or
lower depending on whether o. is positive or nega-
tive. However, for the charge to be finite we must
~est~ict n & -1. Susskind has argued that this may
have an intimate relation to the Feynman (x"dx)
"wee" parton distributions responsible for Regge
behavior. Indeed, for n =--,' one would have the



HOW DO STRINGS RADIATE 7 4465

lowest pole at the p-meson mass, and, identifying
the n of the dual theory with the Feynman n, the
Regge intercept would be +-,'. Unfortunately, we
can say no more about this tantalizing possibility
based on functions satisfying Eq. (2.4), since they
cannot have a zero mode of the desired form. It
will be interesting to see if the p [or equivalently
J~(8, 7)] functions in the "massive Dirac" two-di-
mensional theories ""allow this behavior with-
out violating the invariance needed for duality.

Consider next the asymptotic behavior. It is
controlled by the central region of integration, as
can be seen by the replacement

8 = tjI+ —'m.

Then

W 1l'/2

d8(sin8) ' = dg(cosg) '
dp -5/2

q2$2/2d e' ~ " for large q'.
(g()}

Angles g up to 8(l/~q~) contribute, the net result
being a power-law falloff -

~ q ~

', as can also be
seen from the beta function in Eq. (3.6).

Thus, the oscillator model can give rise to pow-
er-law behavior, provided there is a sizable con-
centration of the charge density in some "central"
region. " Note that at each value of I9, one has the
characteristic Gaussian behavior e '. lt is by
being able to add up the contributions from a
neighborhood for which f(8) =ln sin8= 0 that one
obtains the slower power-law decrease.

The precise power with which E(q') falls off as-
ymptotically can be modified if p(8) is such that

Z,(g)=P for (=0.
Then

F(q') -
Jt

d y tjt
s e' ~ "-

~ q ~

s

Not unexpectedly, E(q') falls off faster if the
charge density is depleted toward the important
central region, by having P &0. One must be care-
ful, however, because the integration region is
even in g, so odd integer P is forbidden. To obtain

)q) ', e.g. , we must choose J,(g)- (g['. The need
for such nonanalytic behavior will reappear when
we study vW, in the Bjorken limit.

qpqv 2&pv= — gpv- g Sx sy q
q

1 ~ qq+ p„— "
p, -v g, sq2 .

The differential cross section for the process is
(see Fig. 1)

do' d
dQdE' 4E' sin~( —,'8)

x[W, cos'(-,'8) +2 W, sin'(-,'8)].

Here 0 is the lab-frame scattering angle; E and E'
are, respectively, the electron initial and final en-
ergies.

The most remarked feature of the structure
functions S';, which are in principle functions of
both invariants s and q', is that, for

v=P ~ q/M =(s —q' —P')/2M-~, q'- -~

with cu =2v/-q' =constant (Bjorken limit), the de-
pendence is only on the ratio of the invariants,

W-F (&u)

vW, -E, (u&) .

The hypothesis that this should occur (Bjorken's
scaling hypothesis) is supported by experiment for
v W„even with surprisingly nonasymptotic s and
q'; it is widely believed that 8; also scales, though
all doubts have not yet been removed. "

Both structure functions can be calculated in the
present model. However, it is well known that S',
is very sensitive to the spin of the particle. From
the vertex, I'„(q), it can be argued that the photon
field couples to elementary vectors, in the sense
that every excitation created by a~~„and b~„ is in-
dependent of all the rest. (There is no coupling of
modes. ) Thus we expect W, to reflect this choice
of vector excitations, and not to scale properly.
We will not deal with it here.

On the other hand, it is possible to hope that the

W, function calculated in the model could have the
gross qualitative features of the true hadronic W, .
Parton-model calculations typically indicate that,
provided elementary coupling of the partons to the

S

V. DEEP-INELASTIC SCATTERING

A. Results of this Section

We define. the structure functions for deep-in-
elastic scattering in the standard form,

E, k

FIG. 1. Kinematics for inelastic lepton-hadron scat-
tering. "X"is the action of the current vertex I &(q).
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electromagnetic field can be enforced, qualitative
scaling of vW, will result irrespective of other de-
tails of the constitution of the hadron state.

We find that in the Bjorken limit (with Q'—=-q
&0), our model gives

~Q~
' from zero mode of p(8, T),

~ Q ~

lnQ' from p excitations.

We will indicate how these results are derived in
the second half of this section. In the remainder
of this half, we will simply state heuristic reasons
for these results, and attempt to make contact
with "parton" rhetoric.

First, the (I/v) factor in W, stems basically
from an interaction "time" of O(1/v). We stress
this is a result of the model, the dominant contri-
bution to the integral arising from this region; it
is not an ad hoc assumption. In spite of this short
life of the relevant intermediate states, we never
couple to an element of the string in pointlike
fashion. "Parton" rescatterings occur in this
model on time scales much smaller than v ',
hence only dressed partons are observed. Nielsen
and Susskind have stressed it is natural to expect
this in any theory that achieves duality by being
the limit of the *'fishnet" Feynman graphs. We
have a mathematical realization of this idea though
we do not start from fishnets; it shows that even
after eliminating the infinities due to the infinitely
rising spectrum, one does not cut off the interac-
tion. There is no "minimum wavelength" beneath
which one sees the discrete parton lines.

From the zero-mode part of p(8, v), we find the
parton form factor is simply related to that of the
hadro~ as a whole. We will say more about this

i ~ ~ ~ 0
~ ~ o~ ~

FlG. 2. Charge flow in Feynman diagram. (a) corres-
ponds to possible single carrier of net charge, although
«r fractionaBy charged constituents, more than one such
line is allowed; (b) corresponds to closed charged loops,
which contribute to the mean-square-charge.

later, at which point it will be more clear. In
brief, as for the elastic form factor, it is a region
of O(~q~ ') separation between the points where
the current acts that gives rise to the

~ q~
' falloff

of v W, . "Pointlike" coupling would correspond to
having a 5 function in this separation, rather than
a small spread.

On physical grounds, one can anticipate that the
"excitation" part of p(8, w) will enhance W, relative
to the zero-mode part. For, as discussed in Sec.
III, p,„(8,T) contributes only to the mean-square-
charge, a quantity that W, certainly measures. The
idea is to bolster the Q' dependence by increasing
the mean-square-charge the photon encounters
(Fig. 2). Alternately, one can conceive of the
zero-charge-flow excitations as being magnetic
dipoles. It is known that in a parton model with
quarks endowed with an "elementary" anomalous
moment, it is R', that scales, and not v W, . While
we do not have quite this situation, the coupling,
Eg. (2.7), is nonminimal if p,„x0. Thus the basic
mechanism causing vW, to grow can be said to be
comprehensible, although the law of growth cannot
be taken seriously from this model.

Let us now proceed to the quantitative verifica-
tion of these observations.

8, Calculation of the Structure Function 4'2

We first write the contribution from Figs. 3 and 4 to the forward brompton amplitude:

1
TIIV

CO 7 7r 7r

d7 d7' de'
t de(pi(J B„V„,e" j ~, . (J 8 V„, e " J,i-p).

~ OO 0 0
(5.1)

The structure function 8", can be picked out from this expression as the imaginary part of the coefficient
of PpPv:

5', =-Im-,'- d7. 8"8' d(9d9' J e" J e " (5.2)

(We have simplified the expression by removing the 5 function associated with energy conservation, and
using only the relative "time" variable, which we now call 7. We have made a Wick rotation, in accor-
dance wiUi the usual procedures in dual theory. )

The ordered product factorizes into two parts,

(5.3a)
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(o) FIG. 4. Exchange Compton graph. It may also be
split in the same way as the direct graph. A reference
to Fig. 4(a), e. g. , is the same as Fig. 3(a), but with
q, q

' interchanged.

(b)
q

called "statistical method. '"' For, note that in
the approximation 7 =0, 5 =0 we may write

FIG. 3. Regions into which the direct Compton graph
may be split for the angular integrations. (a) has ~~&0,
0'&0; the region ~&0, 8'&2~ corresponds to reflection
of the graph about 2n, aud gives a contribution equal to
that shown. (b) has 2m&0 &0, ~&8' & 2~. The contribution
from reflecting about 2~ is equal to that shown.

2 2

(w+1} =2 exp(-Q')q2 r +5
4 Sln 20'

Since

o.', +Q'~ v+(const. ),

(5.6)

using Eq. (3.23) for p(8, r), and

( $4Y( 8T) hqV(8, 0))

Here,

=exp -q' 2N r, 8, 8' + z' z zo

(5.3b)

we take the limit v- -~ (and in this sense average
over s-channel poles), Q'- +~, ~v~ /Q' fixed.
Since, for nonvanishing (sin —,o), we cau effectively
extend the 5 integration from (-~) to (+~), intro-
duction of the new variables ~' = —

~v~ r, 5'=v Q
5 gives us

N(r, 8, 8') = -ln
f
1 —e ' e '( ' )

f (
1 —e ' e '(

is the Green's function of the usual V „' DRM field.
It is convenient to note that x|J do

~ OO

d5 exp[ -(5"/4 sin'(-,'o))] . (5.7)

coshr —cos 8 cos 8' coshr —cosv —cos5
sin8 sin8' cos5 —cosa

(5 4)

with a = 8+ 8', 5 = 8 —8'. Thus if r —0, 5 - 0, su = 1.
[Care is required if o- 0 also; we will return to
this. ] We first study this region, verifying it
gives rise to the behavior discussed in earlier
paragraphs. Afterward we will show it is really
the dominant region.

In the range of (w, 8, 8') for which w = 1 is valid,
the functions Q~(w) may be approximated as fol-
lows:

Q~(w) ~ ——,
' ln(w —1)+[—,

' In2-(I)()(. +1)+g(1)].

There are three points to observe:

(1) As claimed, the "interaction time" of any
significance is O(v ). This just gives the v fall-
off of W, (see Fig. 5).

(2) The relative "spacelike" variable between
points where the current acts is 5. Only separa-
tions of order 6-

~ Q~
' count. The Bjorken con-

dition
~

v~ Q' =fixed is essential in order that
r « 5', and only the term linear in 7 contributes.

(3) Even after making these approximations,
there is considerable "phase space" embodied in
the remaining integrations, so the numerical co-
efficient of the leading term is of O(1). It is in-

Then, by virtue of the constraints following Eq.
(4. 5), required so the elastic form factor has no
Gaussian term, one obtains simply

TV, =Im2 dre~~s' ~' d8d8' zv+1 g gg

(5 5)
Note it is independent of the manner in which

the constraints are satisfied. Let us treat the
constant part of 6(w) first. We evaluate the as-
symptotic value of the imaginary part by the so-

FIG. 5. Feynman graph interpretation of strip domain.
If the graph is very dense, scattering of constituent lines
may be likely between interactions with the current. The
scale between interactions with the current is (3./v) in v

direction, (1/v'Q~) in the 8 direction.
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structive in this regard to note that from the region 0= 0'= —,m, one obtains a contribution to $2 that goes
like

~
v~ '. The v ' arises from the ~ integral as before, and (Q') is clearly the product of the form

factors associated with the interactions of the two photons in the Compton scattering. By integrating over
all possible regions 8= 8, we pick up an extra factor

~
Q ~

. This is clearly a phase-space effect, changing
the behavior from a 2-dimensional Gaussian in (5, c), to a single Gaussian in 5. But 'in parton terms, one
would have to say the number of partons the photons see grows at least like

~ Q~ in the model.

Next, examine the contribution of the density excitations. We have

(y) I
"

~
" f, , 8 gg + 1

W2 =2 dec"
( 'd8d8'E(ge), ln8088' zp —1 (5.8)

where E(w) is the integral in Eq. (5.5). It is clear from this expression that we must be very careful in
seeing whether we encounter a singularity as w - 1. Note that (J„(r)J8(0)), is just the propagator of the
internal current; one might well expect such a Green's function to develop its singularity. However, the
derivatives actually alter it sufficiently that there is no contribution to the Im part. (See, however, Appen-
dix C.)

To prove this, integrate by parts once:

d7 e d0 —ln I zv — d0d0' —ln

In the surface term, E(0)=E()T)=0, sincere-~ for 8'=0, v; and Q~(~)-0. Also,

9 tv+ I sing sin5—ln +
8 0 gg —1 cosh~ —coso cos5 —coshT

shows this term is 0 for 0' =0, 7t.

All of this is true except gt the points (8, 7) =(0, 0), (m, 0), which are included in the remaining integra-
tions in the surface term. In any neighborhood of these points, the surface term integrand is strictly
zero. Thus the regions where the integrand is infinite have zero measure, and do not contribute to the
value of the integral except in a 5-function sense. Since no further integrations on internal variables
remain to be done on W„ the surface term is safely zero.

Passing to the remaining integrals, note that BE/8 8' immediately brings down one power of Q'. It is
necessary to check that these integrals are convergent. After a bit of arithmetic,

4O'
W, =2c r)'f r)cs"'J(J(r)or)c(sr+() c', , coo'(-', rr)(r'+2*)+, , )m 2

+2cor (
—c)(c*so')2 *

)
(Terms linear in 5 integrate to zero. ) No piece of this expression is singular. [E.g. ,

Q2

, In(~'+5')

(5.9)

may be expressed in polar coordinates as cos Q Inr. Since the area element contains r dr, there is no
problem as r-0.] Two integrals are interesting:

~Q252 7'+ O' Q constI, =
J

re" dcd5, , 1+

~Q2

+5 )) Q' -v

(5.10a)

(5.10b)

These estimates can be established by straightforward calculations which we need not repeat here. "
Heuristically, we have again ~- -'„5-

~ Q~ '. It is also easy to check that other terms in Eq. (5.9) fall
off faster than this.

For completeness, we wish to note two distinct regions in the (T, 8, 8 ) integration space not covered in
the above discussion. If, in addition to 5=0, o is.also small, 0 and 0' must separately be small. We
must then worry about the fact o and 5 are not independent integrals in this neighborhood because of the
wedged nature of the domain. (See Fig. 6.) For convenience, introduce polar coordinates, 8 =r cos(t), 8'
=r si n(t)Neglecting v', we find w=csc2$. If 8 and 8' approach zero together, i.e., (()) =45', one finds the
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behavior is qualitatively similar to Eg. (5.7) or
(5.10), but with a very small coefficient corre-
sponding to the negligible available phase space.
lf, on the other hand, p is near 0 or ~m, w can
be quite large. The essential point then is that
the c3reful cancellation of 2 ' that was maintained
for ~ = 1 breaks down, and the contributions are
exponentially damped. This is generally true for
all the regions of the integration domain where
zo»1. The integral approaches

FIG. 6. Unshaded region is nondominant in calcula-
tion of 8'2. The corners are dealt with separately.
Hatched region has upper boundary cos6 = g(2+ cosa).

VI. POLE AND ASYMPTOTIC STRUCTURE OF TWO-CURRENT AMPLITUDE

We have seen in the previous sections that the elastic form factor and W, do not depend on the way in
which the regulator fields P„' are chosen. In this section we will briefly examine the properties of T„
whose imaginary part for forward Compton scattering is W„ in order to illustrate what effects the regula-
tors do have.

The contribution of Fig. 3 to this amplitude is
1

dxx "8 '
J

d8d8'(sin8) ' (sin8') ' exp q q' 21V(x, 8, 8')+g Pq'Q (m)
0

(6.1)

where X(x, 8, 8') is the Green function of V„', given in Sec. V, and m is defined in Eg. (3.11). The usual
variable x=e ' has been introduced. Figure 4 gives a contribution T,(s—u), where

s=(P+q)2, t=(q+q')', ~=(P+q')'

It will be useful for later reference to introduce the notation

T, = dxx "~ -'F(x)
0

t. 1

dxx " ' d8d8'F(x, 8, 8').
Dp

We will not enter into much detail to establish some of the properties of T, we list below, "since the
methods used are, fairly conventional and well known to workers in this field.

(6.2)

A. Current Line Poles
t

The amplitude T, has an infinite number of poles for q' and q" equal to positive integers, starting at
n =1. These arise from the end points in the 9 and 9' in such a way that poles appear at even as well as
odd integers. This is independent of the values of A..

B. Poles and Residues

The residues in the s (t) channels are polynomials in t (s), corresponding to a maximum spin J =o, (a, ),
and all daughters, but with no ancestors. We will prove this for the s-channel case, taking for definite-
ness

A, , =1, P,'=21n2-1,
A, , =2, P, =-21n2.

Using the generating function for Gegenbauer polynomials, we find

F(x, 8, 8')= g x '"C„"' (cos(8+8'))
n, m, &

xC "' (cos(8 —8')) — 2bq ~ q' g -'x cos g g
/=1

(6 2)

(6.4)
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The last term of this expression may be rewritten for our purposes as

~ ~= ~ A» j2x sin8 sin8'~2l+1 q

P=0

where A„~ are combinative coefficients with the property AO p 50 p.
The Nth power of x in the expansion of F(x, 8, 8') will have the form, in an obvious notation,

(6.5)

g C. .(.)~,(b),
q=0

where

(6.6) Now,

C„(cos8)=g(8)[ A."+f,(8))"('+ ~ ~ ~ +f„(8)j .

~, -=C, (5)+

Q/2, Q evell

(q-1}/2, q oddr

(1 —5„)C, „(5)PA. . . ,

"'~ (2 sin8sin8')'("~)(-2bq q')'.

Thus the leading power of (q ~ q') in C„" is (-qq')".
Similarly, the leading power of (q ~ q') in A,. »
comes from / = 0. Thus in the term q = k of the
coefficient of x in E(x, 8, 8'), we have

C„',"a, -(-aq ~ q')" " (-bq ~ q')'+ Q (-bq ~ q')" "( 2bq q-')' (6.7)

This shows the highest spin at a pole a.,=N is N.
It is followed by a complete sequence of daughters,
but there are no ancestors.

One can easily see that this result does not
crucially depend upon our choice of A.. All that is
required is that in the s-pole region, gg -g '- ~,
so one can apply the asymptotic expansion in pow-
ers of z,

R, = (ln2 ——,')(t —q' —q")B(1—q') B(1—q"),
(6.8)

where we introduce the symbol

B(v) = d8(sin8)'
0

v+1 v+1

Xw I'(n + 1)
a( )

(2 )@+1 P( q) (6 8)

X+

where F is a hypergeometric function.
The proof to show the t-channel poles have no

ancestors is equally straightforward, so we will
not present it here.

C. Ghosts in the Spectrum

Excitations created by the regulator fields appear
in the spectrum, and because of the "i"factor ap-
pearing in their coupling, they give rise to "ghosts, "
that is, states of negative norm. Now, these can
be pushed arbitrarily high in the spectrum by
allowing the values of A, we choose to be arbitrarily
large. However, we wiQ maintain the values A., =1,
A., =2 chosen for the previous example in order to
demonstrate how they explicitly appear at the first
few levels. %e will also see that even the usual
"a" modes give rise to ghosts, since the ghost-
elimination theorems only apply when the common
mass of the external lines is 1IP = -1.

Consider first +,=N =1. In this first nontrivial
case, the residue at the pole is

In B„ the factor (ln2 ——,') signals it is only the
(x=1) b set of oscillators that contribute. This
is because there is a built-in signature factor in
the amplitude when Fig. 3 and Fig. 4 are added
together that eliminates a, = odd poles from the
amplitude when ~ is even, e.g. , A, =0 and A, =2.
The origin of this factor is easy to understand
from the expression

7I /2

d8 iq V(e, T) d8 iq ' V(8,T)

0 0
%' /2

(q ' ) (q 4, T)

0

where g = w —8. Now,

cosn8 =(-1)"coen),

and, more generally,

C.'(-x) = (-1) C.'(x)

implies that

e'."'(8)=(-1)"-V.'(C).
These terms appear in the expansion of $(„)(8,w)
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as coefficients of e""'. Thus the factor (-1)"
may be absorbed by shifting T- 7 +7t in each term.
However, the factors (-1)"cannot be absorbed in
the same way. Instead, one has

v„(e, ~) -=w„(y, 7)

2 1/2
i ( +w) + t -in( +w))cos&y

n tf ]1 tt p

n

+ g (-I)"P.4(„"(~+~,().

Ri = (ln2 ——,')(t —2M')[B(1 —M')] '. (6.10)

Since the B functions are real, B' are positive.
Thus we see that the vector excitation is a "good"
state, but the scalar daughter is a ghost for M'&0.
Why is there any "good" particle at all in this
ease? The reason is that the A. =1 oscillators en-
ter V„with coefficient Pi' =21n2 —1)0 [see Eq.
(6.3)]. It is not necessary for all the new oscilla-
tors to have wrong metric in order to satisfy the
constraints following Eq. (4.5).

Next, consider the n, =2 level. The signature
effect now decouples the A. =1 oscillator, but we
still have the effect of the even-A, extra modes.
Explicitly, in the kinematics of an elastic scatter-
ing, we find

R, ~ +t'[ 1+(1—M')']

+tM'(9M' —4M' —8) +2M'(2M' —5M'+4).

Now, if in the contributions to the 2-current am-
plitude, the currents lie on opposite sides of 7(/2,

the contraction of the fields to produce a Green's
function will produce a modification of the energy
denominator relative to the case when they are on

the same side,
(I (w0' r) i-Lo(r'-r) i w )I.o )

which has the required signature effect (-1)"at a
pole. However, the (-1) factors do not have a
similar effect, and we get poles for odd N unless
A. is even. To get properly signatured poles, we

should always choose X even. For our present
purpose of illustration, this is disregarded.

To examine the positivity of R„pass to the ki-
nematics of an elastic scattering, q2 =q" =. M',
P'=p" = p, ', with c.m. scattering angle

cosQ =1+2st[s' —2s(p'+M')+(ti' —M')'] '.
The residue at the first pole should have the form

R =g,'(M')P, (t) +g,'(M')P, (t),

where g (M') are form factors, and P;(t) are Le-
gendre polynomials. Thus the constant term and

coefficient of t should be positive. Under these
kinematic conditions, we have

It is easy to verify that for M') 0, the vector par-
ticle is a ghost. However, tensor and scalar parts
have a positive sign. This illustrates two points:
(1) The "a" modes continue to produce good parti-
cles on the leading trajectory, even if the theory
is only Mobius-invariant, as in the ordinary Ve-
neziano model; (2) a more detailed analysis shows
the scalar daughter receives positive contributions
from both the "a" mode and the A, =2 "b" mode.
Thus, just as the "a" modes produce good leading
particles, but may produce bad daughters, the "b"
mode that couples with P'(0 produces a bad lead-
ing particle, but may produce good daughters.

We also note that the "a" mode itself contributes
to the negative residue of the vector particle. It
can be made positive for M'(0, but this is not sat-
isfactory for our "current" theory. The b-mode
contributes to make this part of the residue even
more negative. Thus there does not seem to be
much hope of contriving cancellations between "a"
and the ghost "b" particles so all residues are
positive.

D. Asymptotic Behavior

It is possible to show that our T, amplitude has
Regge behavior in all the proper limits. In par-
ticular, it does not grow as u-~, which was a
problem in the phenomenological dual model of
Nambu. ' However, we will only exhibit the s-
ehannel asymptotic behavior, since it displays a
fixed pole."

Consider the limit s- ~ with t held fixed. As
can be seen from (6.4), any exact evaluation of the
integral representation for T, involves pole terms.
For this reason it is necessary to keep s off the
real axis when calculating the asymptotic behavior,
and we shall take o.,—-~, a standard procedure in
dual resonance models. " Following the discussion
of Nambu, ' write

t 1

T2 =
I dxx ~ F(x) (6.11)

This may indicate the presence of a fixed pole,
provided the series does not add up to give Regge
asymptotic behavior. %e shall see that from the
second term onward it must add up this way, but
the fixed pole remains.

To study these effects in detail, write & = e ',

The usual analysis indicates the integrand will
be maximal near x =1, 8, I9' =0. However, notice
that according to (6.1) F(x=1)e0. Thus

(-~.) 'If, (t, q', q")

+ oi, 'f,(t, q', q") + ~ ] .
(6.12)
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and for v =0, 0= 0, and 6I'=0, introduce spherical
coordinates

The variable w, (3.11), becomes

& = p cosa, 1»p, &0,
8=psinn cosp, 2m&n &0,
8'=psinn sinp, —,'m&p&0.

(6.13)

=1, n =2w, p=-,'~,
w=csc'n csc'p

otherwise .

In the same approximation,

(6.14)

2 12
E(x, 8, 8')- p '(sinn cosP} ' (sinn sinP) '

x(1+sin'n sin'p) "' (1 —sin'n sin'p) " ' exp[-2bq q'Q, (so)j. (6.15)

The asymptotic behavior can be extracted straightforwardly from this expression. However, it is nec-
essary to keep a close watch on the angular integrations in order to see that the fixed pole cannot coexist
with simultaneous poles in both current lines. Except near o. = —2'7t', p =-,'w, I' can be expanded further.

E(p, n, P) = p '(sinn cosP) ' (sinn sinP) ' '

n ntk
(6.16)

r Pp

dppT2
~p

~ 7f/2

dn sine e sP"'
dp

x, dPE(p, n, P).

Then T2 is approximately

(6.17)

not affect the q' and q" singularity structure,
which is of interest. Thus

(-n. )' '
Z', = v w

' Q C, (q', q'', t)

I'( —,'(l + 1 —q')) I'( —,'(l +1 —q"))
&( l(2i+3 —q'- q"))

With a steepest-descents estimate, we have

dpe ~~ "' p' ' ~ ' (cosn)' ',(-n. )' '
3 —t

S

cosa &0
(6.18)

jt
dri sinn dPE(n, P)(coen)' '

which is Begge behavior with n, = t —3, independent
of the values of q' and q". Now examine the re-
maining angle integrals.

This combination of I' functions allows simulta-
neous poles in q' and q", for any positive integer
values of these quantities. The denominator pro-
duces dips for q'+q" =2n+3, n=0, 1, . . . ; this
will eliminate simultaneous poles if q' and q" are not
both even or both odd for sufficiently large q, q",
an interesting effect.

In the region where o. = —,'m, a different set of ap-
proximation is appropriate, and it is here that we
will pick up the fixed pole. Looking back at the
coordinates (6.13), we see that for g=——2m —n =0,

2 I2
=—

Jl dn dp(sinn)' ' ' (cosn}' '

x(sinp) ' (cosp) '

~= pg,

8 = p cosp,

8'= psinP.

(6.20)

x g C&(q', q", t)(sin'n sinpcosp)'.
1=p

C, =C, (q', q", t) is a polynomial in its arguments
and will not be singular as a function of any of
them. The P integration can be carried out at
once. Strictly, the same formula should not be
used for the n integration, since we have noted
that n = ,'vr causes —the expansion (6.16}to fail.
However, the upper end of the integration region
in n affects only the (cosn)' ' term, which is sin-
gular for t&0, an unphysical result. If we set that
term equal to unity, consistent with (6.18), we do

dpp ' d e" P""~ d I P, . 621

The integrand may be expanded,

E(P 0') =E(P o)+0' + ' '0' g'-o
(6.22)

Since only powers of P' appear in the expansion,

The characteristic feature of this domain is that v

and one of the angles L9, 8', can be second order
small, but the other angle is simultaneously only
first order small.

Ne now have
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~ I'/2

Af p. = (-a, ) (t - 3) dP E(P, 0) ~

dp

The P integral is a pole term, since

(6.25)

the second term is already contained in the alter-
nate expression (4.31), and we need only keep
E(P, O) to define Tf~

Now introduce

(6.23}

and examine

"~0 t &&0 I
dye"'p' '=(a.)

' dpp' '(e"""-1)
0 0

(6.24)

The p integration has been extended to p, -O(1).
For ($0)m~ —~a,

~

', we obtain

FIG. 7. As 8,8', 7' all go to zero, two situations are
possible. In (a), (82, v) approaches (0&, 0), and then 0&,
e, go to zero; in (b) it is possible for eg = 02 = 0, » 0.

part of the amplitude in a way discussed in Appen-
dix C.

To study how these excitations alter the Regge
behavior, recall the relevant Green's function has
the form

1 8' m+1 f(a P)
2 8680' gg-1 p

F(P, 0) =(cosP) ' (sinP} ' (1+sin2P) "'
x(1 —sin2p) "' exp[-2bq q'Q, (w(p))j,

(6.26)

cos2a —sin'a sin2P
(1+sin'a sin2P)'

cos2n +sin'a sin2P
+

(1 —sin'a sin2p}'

(6.28)

with w(P) = csc2P.
Near P =-,'v, Q, (m) cancels the apparent singular-

ity in (1 —sin2)" ' . Thus the only singularities
are near P=O, 2m, and

„dPE(P 0)=+~ (q q t)

x &( 2 (1. + l —q ), 2(1. + l —q' )) .
(6.27)

As in the ordinary Veneziano case, the B function
has singularities in q' or q", but not simulta-
neously in both.

%e find, then, that the fixed pole arises if the
triple limit 7., 8, 8'- 0 is performed in such a way
that an "equal time" configuration must exist prior
to 8 and 0' going to zero. If any small "time" dif-
ference is, allowed to persist as the vertices ap-
proach the edge, a Regge pole occurs instead of a
fixed pole, and both currents may convert to had-
ronic states. Thus, there are kvo distinct physical
uays of aPProachieg the limit. An extrapolation of
this result would be that ~is'equal-time commuta--
tor of currents determined as (see Fig. 7). An
extrapolation of this result would be that the equal-
time commutator of currents determined as the
limit of an "almost-equal-time" commutator is
not unique; however, this extrapolation can only be
made meaningful be a detailed analysis which is
beyond the scope of this paper.
the "c-number" part of p(0, 7) The density ex. ci-
tations produce contributions to the spectrum, as
mentioned in Sec. III, but these are always positive
norm scalars. They also contribute to the real

This result has been written in the polar coordi-
nates (6.13). It modifies (6.15) to read(,)

E(x, 8, 8'}f(a, P)
p

The new factor p
' effectively shifts t- t+2, which

changes the Regge behavior to a(t) = t -1. Thus we
have the asymptotic form

2 2$

S

(6.29)

It is straightforward to verify that the angular
function f(a, P) in Eg. (6.28} does not alter the ar-
guments we gave regarding the "decoupling" of the
fixed pole from the purely hadronic amplitude.

VII. SUMMARY AND DISCUSSION

The premise on which this paper was based is
that a useful approximation to the electrodynamics
of hadrons can be obtained in a semiclassical
framework. It has been shown in a number of
works that the "free" fields of DRM's result from
a special choice of coordinate gauge in which to
express the action of a classical free particle.
Nambu's hypothesis for the vector current pro-
vides a natural elects omagnetic interaction term
in this view, since it formally leads to the Lorentz
equation with V„playing the role of space-time co-
ordinate.

The first retreat from this aesthetically appeal-
ing framework occurs in making allowance for a
nontrivial q' dependence of the matrix elements of
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the current. To achieve this, a regulator field,
which allows cancellation of infinities in the oper-
ator e", and leads to the Green's function struc-
ture of the Rebbi-Drummond model, was intro-
duced. It is not the only possible way to proceed.
A "dual loop" approach possibly has an advantage
of greater internal consistency"; but the machine-
ry needed for calculations is so cumbersome as to
detract from its attractiveness as a phenomenolog-
ical theory, which is all we are claiming for the
DRM in this paper.

The extra-field method alloms for straightfor-
ward calculation at the phenomenological level,
but one must concede at the outset that ghosts will
be present in the spectrum. This is very unpleas-
ant, for the good features which the "free-parti-
cle" formulation could lead one to hope for are al-
ready sacrificed.

Kith new questions to consider, the problem of
harmonic-oscillator wave functions, Gaussian
form factors, can also be dealt with. The method
by which this has been achieved deserves further
study on its own. Physically, Eq. (3.8) may be
thought of as the equation of motion for a string
with variable density. Since the end points have
divergent "masses, " except if ~ = 0 or 1, the cen-
tral region is de-emphasized. Because of the
wrong metric, we subA act assay the rapidly falling
contribution to the form factor from that region.
[It may also be possible to consider Zq. (3.8) as
representing a, string spinning end over end. ]

Further discussion of the lack of scaling in vW,
is hardly required here. Yet, in spite of the
shortcomings of the model in providing a definite
answer to the problem posed in the opening para-
graph of the payer, limited progress can be
claimed. Some is concrete, as in the discussion
of the vector-dominance aspects of the Compton
amplitude; the elaboration of the origin of the fixed
pole in the strip domain; and the evaluation of the
effects of a quantized internal current.

Perhaps more important, however, is that de-
tailed evaluation of this model points, in different
ways, to a need for a broader internal structure
in the basic formalism of the DRM. For example,
the form-factor calculation is non-unique because
many possible A. values for the auxiliary fields are
allowed: A group which includes a spectrum of
SL(2, R) values has a better chance of solving the
problem uniquely.

Use of a group mhich requires a larger number
of internal dimensions is an even more interesting
possibility. If one concedes that the two-dimen-
sional domain of the DRM is a surface in physical
space-time, and not an abstract space, it is more
natural to attempt a new start directly with more
internal dimensions, instead of covering regions

of four-space by distorting the two-surface ("non-
planar-loops" ). To the extent that harmonic oscil-
lators are needed for quantization of the field, and
not in the solution of the field equations them-
selves, it is not necessary to think of such a model
as an "elastic solid, " anymore than one conceives
of the photon field to be such. One could, for ex-
ample, consider compressional modes along the
length of the string.

In this regard, it is interesting to note that in
the "parton" interpretation of the DRM, the string
model corresponds to the collective motion of in-
finitely many partons due to "soft" interactions be-
tween nearest neighbors in rapidity. " Frye, Kogut,
and Susskind have recently drawn attention to the
possibility that in addition to this soft interaction,
there may also be a phenomenologically important
"hard" interaction, very singular at short dis-
tances, giving forces of long-range in rapidity. "
A vector-gluon theory mould have such an effect.
It is very challenging to construct a model which
consistently incorporates both these "soft" and
"hard" features. A generalization to a hypothetical
qq sea of the degenerate electron gas problem,
with its collective density fluctuations and screened
Coulomb force, immediately comes to mind; but,
as is true for the DRM itself, incorporation of the
requirements of relativity is far from trivial.
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APPENDIX A: ALTFRNATE REALIZATION OF.

SPACE OF SL(2+) REPRESENTATIONS

In the upper half z plane, define linear differen-
tial operators

8
2i U, = -(1+a ') —+ c.c. ,

8
2iU, =(1 —z') —+c.c. ,

8
ZU, =z —+e.c.

Bz

These obey the Lie algebra of the SL(2, R) group
The Casimir invariant is
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6 = -(U,' —U, —U3 )

=(z -z) 8

8ZBZ

(f,g) = . f*(z)g(z), (A2)
/

and the adjoint of U& with respect to this scalar
product,

(f, U;g) =(U; f,g). (AS)

The operators iU; are self-adjoint: (iU, ) =iU;.
That is,

f4

d'z(z-z) 'f*(i&,g) = d'z(z-z) '(iU~f)*g.

It is shown in Ref. 20 that the eigenfunctions of 4
are vectors in a Hilbert space which is a valid re-
alization of the (abstract) space in which the action
of the group SL(2, R) is unitarily implemented,
provided A, is in the interval 1 & A. &0 (supplemen-
tary series); or if A. = —,io —1, v real (principal
series). An element of the group acts on the func-
tions P (z) according to

1'.4' '(z}=e" "0'"'(z)

&ri)(~*+I)

where

g= a SL(2,R), detg= 1
n P

(A4)

and U; are the differential operators in (Al).
The remarkable feature of (A4) is that the func-

tions Q )(z) do not acquire any multiplier function
under the action of the group, regardless of the
value of A, (provided it is in the supplementary or
principal series)

The explanation for this phenomenon is that one
is dealing with a different realization of the space
of functions that transform as representations
from the one commonly used in the discussion of
the DRM.

A very interesting feature of the new realization

Since the Casimir operates in a representation as
a multiple of the identity, the eigenfunctions of 4
transform according to representations of SL(2, R).
This eigenvalue equation is just (2.4).

Define the scalar product

is that the Casimir equation is the field equation
for the field transforming according to a represen-
tation. In the usual realization, the Casimir oper-
ator is trivially a constant, and a Lagrangian for
fields of arbitrary SL(2, R) "spin" cannot be writ-

.ten.
A difficulty, on the other hand, is that the feasi-

bility of this realization has been demonstrated in
Ref. 20 only for the principal and supplementary
series. The mapping from the familiar homoge-
neous-function space to the new function space we
are discussing has not been carried out for integer
point representations by these authors, in spite of
the fact these representations are also unitary.

Nevertheless, it is possible to continue the solu-
tions of Eq. (3.8) in A. from the supplementary se-
ries to the positive integer values of X without en-
countering any pathological behavior. In particu-
lar, it has been checked explicitly to second order
in n, P, y, that, for X =2,

e'" 'Q(z) =Q(e"z),
e' "'i'"2' y(z) = y(z/(1+ Pz)),
"'"-"'y(z) =e(z-r).

If repeated application of the operators U; onto the
functions P~")(z) were to lead one into a new class
of functions, it would show up in second order for
A, =2.

All one can honestly say is that the status of the
integer point representations in the new realization
is an open, and very interesting question which
merits further investigation.

For completeness, we note that a differential
form of the generators in the strip domain, ob-
tained directly from (Al) by change of variables,
has been given in Eq. (3.20). The operator

J = —'(L„L ) —L

which is the Casimir-invariant, reduces to

sin'8(B, ' —8 8') .
To study the action of these generators on the

eigenfunctions, the following identity is useful,
when combined with the normalization integral
(3.9c):

(m cos8+ sin88e)Q„(8)

m(m +A.)(m vA. +1)
m. l

APPENDIX B: CONSTRUCTION OF GREEN'S FUNCTION

Treating r as a time variable, we seek the Green's function satisfying the (hyperbolic) equation

G (T8; r'8'} =ah(8 —8'}5(T—T').
(

8 8 A.(A. 1)
BT Sin 8
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G =2' ' r()}.)(sin& sin&') e'~' ' )

I

k-i6

x Q e'+' ' ' C„"(cos&)C„(cos&'),;g, , )
I" n+1

I'(n + 2)}.)

(B6)
in which n=-k —A..

To perform this sum, use the addition theorem

FIG. 8. Contour for evaluation of Green'8 function.

(z is a normalization specifying the strength of the
source. )

Expanding 6" in terms of its Fourier components,

G (78;)'8')= — d&ug
" (8, 8';&a)e '1

27r

(B2)

and then expanding g' ~) (8, 8', &u) in the complete,
orthonormal eigenfunctions g~")(8), one obtains
in a well-known fashion

~-fO) (7 -7 ')
G&i) r Q(i)(6}g(M(8 }I de

(B3)
The boundary condition needed to complete the

specification of Q is imposed by prescribing how
the integral appearing in the expression above is
to be evaluated. The well-known X =0 sum

C„(cos&)C„(cos8')=,». . . I„,r(n+ 2)})
22 1 f p2 g tl

()). &0).
Further, we will need the generating function for
Gegenbauer polynomials,

P z" C„()e)=(1-2)ez+z') ~, ~z~&] . (B7)
n=p

Temporarily give (7 —r') a small imaginary part,
so that

satisfies ~z ~&1. Then using (B6) and (B7) in (B5),

G~ =(sin8sin&') z"

Pp
dP (sing)' '(1 —2z cosy+z ') ", (BS)

(B6)
I„= d}}}—}(sin}P)' 'C„(cos8cos&'+sin& sin8' cosP)

p

(Q-p) fff(7 7 ~) COS58 COS88
e

n
()- & )-') cosy=- cos& cos&'+sin&sin&' cosQ .

follows from choosing the contour as in Fig. 8,
with +is displacements as indicated, and from
choosing g =+2ni.

Thus, in general,

G(~),g, )»(. ")4» ( -)4» ( ) („,)k
(B4)

Inserting the expressions for P» (8) exhibited in
Eq. (3.9b), we have

A change of integration variable enables us to
recognize

t d}P (sin}P)'" '(1 —2z cosy+z')
~o

1+z' —2z cos& cos8'
= z sin8sin&'

2z sin8 sinL9'

(B9)
Insertion into (BS) yields Eq. (3.11), normalized
so as to agree with the known A, =0 function.

APPENDIX C: THE LOW-ENERGY THEOREM

The matrix element for Figs. 3 and 4 may be expressed in terms of

g2
M„„=—t)'(p+q+p'+q')54(p'-p")

where

x d7 d&d&'I e ' " (I»»+'"(&, 7)p„» ' (8', 0)) +e ) ~(g&+' ' (8, ))p» '(8', 0)) j,
0

(cl)

P'„'(8, ~)=-(~„&„V„,e*'")+(2p'0)+2k„-q„)Z, e"', V =V -x"'-p")r.
P

The term relevant as q, q'- 0, in a gauge such that e p = e' p =0, is

dv d8dg' J 8 V& e, J8~ gVe'p p + J ~ Ve, J~~ 6V& e'o o ~

p
(c2)
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Examine first

rw„!=)f d.f 'deeds ('';»" (z.s„v„), .)
oo

d8d8' —
Vq (J„B„V,}8~ 0

— dr d8' —
Vq ( J'„& V„}e~ 0 (c3}

From the explicit forms of the Green's functions in these expressions, such as

etc. , we find the only nonvanishing term is from the T =0 end point. By use of

( Vq(8, 0)V,(8', 0))0 =in g„„5(8—8'),

p(8', 0) = -iw —5(8 —8'),(
ep(8, 0), 8

Bg ' Bg

we obtain

J(' ded8 (( Va) (8 8 v„)s' ) =-iA„I1+w de

dgdg' ' ', ' —g g- g'
eg' Bg

(C4a)

(C4b)

(c5)

2 =$0+2

&0= 4v~4 —4 +pl +p —p }~ (C6)

& t =
2 (P '4 „P0,', & "}-

Introduce

where Q contains the Green's functions of all the
fields in V„.

The first term on the right-hand side of (C5}
gives rise to the correct low-energy limit of the
amplitude, proportional to e'. However, the terms
involving Q, and G are divergent. Seagulls are re-
quired to cancel the contributions of these pieces.

Contact terms of the required form are obtained
by a careful construction of H &. In abbreviated
form,

II = . =-—Q +-(p', A };5g 1 ~ e

5j„ 2v " 2

5g 1. e
Q p 271' 2

Then we have

@=II„/~+Ip-Z,

If, =ve[Pi y„', 4"}—p'(II„, ~"}]
+ ve'Bp')'&'+-'I. 0 „', &"}'}

(C&)

(csa}

(CSb)

The terms of order e' in (CSb} are the desired
seagulls. Note that the second part of M„„not dis-
cussed has the same structure as M~„'~„; indeed
M „„=2M„'„,since only the g„„ term is important.
It is then found that the seagulls indeed cancel the
required terms in (C5}.
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