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Part of the Elastic Scattering Amplitude
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A high-energy bound is obtained for the full bvo-particle reducible amplitude in the crossed
channel, provided that the Froissart bound is satisfied by the full off-mass-shell amplitude,
and the Gribov finite-mass hypothesis is correct for asymptotic amplitudes. Implications of
this bound are discussed.

I. INTRODUCTION

At large energies, the problems confronting par-
ticle physicists seem least formidable. Despite
this simplicity, the behavior of the high-energy
elastic scattering amplitude in even n-m scattering
is still, an open question. The most recent experi-
mental data seem to suggest a growing total cross
section consistent with saturation of the Froissart
bound. ' Some models leading to this behavior are
based on eikonal iterations of "ladderlike" struc-
tures in the direct channel. Froissart-bound sat-
uration occurs when the "ladderlike" Born term
of the eikonal series grows as a power of s greater
than unity. ' The Born term in these models is
usually two-particle reducible in the crossed chan-
nel. At first glance it seems that the Born term
cannot grow as a power of s greater than unity
without violating the Froissart bound. At second
glance, however, one finds that the eikonal itera-
tion in the direct channel eliminates the leading
behavior of the Born term and allows only satura-
tion of the Froissart bound, correcting the appar-
ent violation. We present here a third glance at
this situation.

To be specific, we show in detail that if (a) the
full two-particle reducible part of the amplitude
in the crossed channel has leading s behavior gen-
erated in a multiperipheral (ladderlike) way, (b)
a weak version of the Froissart bound holds for
off-mass-shell amplitudes, and (c) very-far-off-
mass-shell effects are not important in a particu-
lar integral we consider (a rather technical as-
sumption), then the full two-. particle reducible
piece of the amplitude can grow as a power of s
no greater than unity in the forward direction,
with a similar result for the nonforward direction
if the assumptions are still true. We then show
that condition (a) can be relaxed, provided that a
particular series in lns is polynomially bounded
in s, where s is the energy squared. In deriving
these results we use only the Bethe-Salpeter equa-

tion, which can be derived in an axiomatic frame-
work, ' and some results from the classic paper of
Amati, Stanghellini, and Fubini.

The question of whether there is a bound for off-
mass-shell amplitudes is still an open one. ' The
existence of an off-mass-shell unitarity equation
in some theories' suggests that this is at least
a possibility. Our results show that if the above-
mentioned eikonal models are correct and if the
far-off-shell region does not dominate our ex-
pressions, then there is no bound similar to the
Froissart bound for off-mass-shell amplitudes.
Alternatively, if the Froissart bound can be estab-
lished for off-mass-shell amplitudes in the weak
sense used here, then the above-mentioned
"Froissart-bound-saturating" eikonal models
must be improved, or the far-off-shell region
must dominate some of our integrals.

We consider here only neutral pseudoscalar
mesons for simplicity. We believe that the essen-
tial ingredients of our arguments apply to a much
broader class of field theories.

s = (p+ p')', t = q',

u, =(p+-'q)', u. =(p--'q)',

u, =(p'-2q)', u. =(p'+-'q)',

JL(. =pion mass,

k = c.m. momentum of one pion.

(2.2)

We define I(s, t, u„u„u„u4) =I(q, p, p') to be the
full amplitude that is two-particle irreducible in
the t channel. This means that I(q, p, p') gives no

II. THE BETHE-SALPETER EQUATION

We use here a normalization such that

im~(»t V' t
' u', V')1~=.=2lkl~s&t. ~, (2 &)

where T(s, t, u„u„u„u,) = T(q, p, p') is the scatter-
ing amplitude for two off-shell pseudoscalar me-
sons (see Fig. 1) and
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FIG. 1. Definition of variables. Here s = (p +p'),
t = q, u~ = (p + 2q), u2 = (p —2q), u3 (p 2q)
~4 = (p'+ —,'q)'.

contribution to the discontinuity of the cut along
the real t axis which begins at the normal thresh-
old branch point at I;=4@,'. Likewise we define
T,(s, t, u„u„u„u4) = T,(q, p, p') to be the full am-
plitude that is two-particle reducible in that chan-
nel (i.e., it is the sum of all contributions which
do contribute to this cut). Both T, and I are cross-
ing-symmetric in the s-u sense. T is related to
I by the Bethe-Salpeter equation'

T(q, P, P') =I(q, P, P')

~ d4

). (q p p") (q, -p", p')

x A(P" —,'q)&(P" +-,'q),

(2.3)

where A(p) is the full renormalized pion propaga-
tor. This equation is illustrated graphically in
Fig. 2. It has been derived in an axiomatic frame-
work, and therefore any proposed solution to the
field equations, for example a perturbative solu-
tion, must satisfy it. We will use (2.3), which is
a statement of t-channel unitarity, in the s-chan-
nel physical region. T, T„and I are related by

T(q, P, P') =T.(q, P, P')+f(q, P, P') (2 4)

Let us now use the Cutkosky rules to take the
absorptive part in s of Eq. (2.3). We assume that
the external particles and the vacuum are stable
and therefore neither of the exchanged pions in the

p- q/2 p+ q/2 p- q/2 p'+ q/2

p+ q/2 p'- q/2 p + q/2 p'-q/2

FIG. 3. Cutkosky rules for taking the s-channel ab-
sorptive part of a t-channel iteration of crossing-
invariant objects.

integral (2.3) can ever be put on shell. All particle
lines which are put on shell in this process must
be inside either I or T. This clearly causes the
integrand to become a product of the absorptive
parts of I and T in the subenergies. Both I and T
are invariant under crossing; therefore each has
a left-hand cut in s which contributes to the ab-
sorptive part of the integral. If we let dashed
lines through a graph represent only the right-hand
discontinuity in the subenergy which is cut by the
dashed line, then we can include the contribution
from the left-hand cut by simply reversing the
momenta of the two virtual pions. This is illus-
trated in Fig. 3. The two surviving terms are
identical since the exchanged pions are integrated
over all momenta and the two amplitudes are in-
variant under crossing. This scheme simply
yields a factor of 2 times an integral over only
the right-hand absorptive parts. This factor of
2 nicely cancels the factor of 2 outside the integral
in (2.3), yielding (see Fig. 4)

AbsT(q, p, p')

=Absf(q, p, p')

t d 4pri
+ ), Absf(q, p, p")AbsT(q, -p", p')

p- q/2 p'+ q/2
«(p" —2q)A(p" + 2q). (2.5)

+—I

2

p + q/2 pI - q/2

FIG. 2. The Bethe-Salpeter equation.

Here AbsT = 2ImT on shell in the s-channel physi-
cal region, and the integration is only over posi-
tive subenergies (P+P")' and (P' —P")'. Equation
(2.5) is the famous ABFST equation studied by
Amati, Bertocchi, Fub'ini, Stanghellini, and Tonin
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p- q/2 p+ q/2 p- q/2 p'+ q/2 p
—q/2 p'+ q/2 p —q/2 p'+ q/2

X~~ —
I

p + q/2 p' —q/2 p+ q/2 p' —q/2 p + q/2 p'-q/2 p+ q/2 p'- q/2

p'+ q/2

p+ q/2 p —q/2

FIG. 4. The s -channel absorptive part of Fig. 2, the
ABFST equation.

in the ladder approximation.
For convenience, we define the following opera-

tion x, for the various 4-point functions that we
will be working with:

FIG. 5. The bilinear equation associated with Fig. 4.

We emphasize that the above relations for absorp-
tive parts are valid only for values of the external
masses below the two-particlesbthreshold because
we have used a stability condition in deriving them.

Vfe now would like to introduce the following
generating functions, 'which prove to be very useful:

(2.14)

(2.15)

d 4pll
ax, 5=, 2, a(q, P, P")5(q, P",P')

x«(P" + 'q) &(P" —-'-q), (2.6)

AbsT(X) =g X"(AbsI)",
n= 1

AbsT, (X) =g X"(AbsI)" .
n —2

(2.16)

(2.17)

ax a=a't

a&& a" '=a" 'x a=a".t t

Then (2.3) and (2.5) become

T =I —2iIxt T,
AbsT =AbsI+ AbsIx, AbsT .

(2.7)

(2.8}

(2.9)

These equations are solved by iteration yielding

where a and b are understood to have only right-
hand support in the variables (p+p")' and (p'-p )'
respectively when they represent absorptive parts,
and also

Varying A. , as we see it, corresponds to varying
the strength of the basic t-channel force. It plays
the same role hereias the coupling constant in the
ladder approximation to the Bethe-Salpeter equa-
tion. It might seem pointless at present to intro-
duce these unphysical functions; however, they
enable us to do some rather complex manipulations
quite easily. The actual physical amplitudes are
gotten by taking X = 1 at the end of the calculation.
The functions (2.14)-(2.17) enable us to derive
and work with the following relations, which are
the cornerstone of this paper (see Fig. 5):

Abs T =g (AbsI)",
n=&

T, = 2ig(- —,'i)"I",
n=2

AbsT, =P (AbsI)" .
n=2

(2.10)

(2.11)

(2.12)

(2.13)

= --,' iT(X)x, T(X),

—1 AbsT (1)= 1——()AbsT(1)
BA, BA.

(2.18)

= AbsT(X) x, AbsT(X) . (2.19)

From (2.18) and (2.19) one can derive the following
useful Taylor expansions for T(X) and AbsT()(.):

~ 7()() =
~ T(A. = 1}+ i Q (A —1)"f[-2 iT (1= 1)]"+ [-2 i T(A, = 1)]"'~),

n=1
(2.20)

AbsT(X) =AbsT(X = 1)+g (X —1)"([AbsT(X= 1)]"+ [AbsT(X = 1)]"+')
n=l

(2.21)

See Appendix A for the derivation of (2.21); the same derivation also applies to (2.20). For completeness,
we write the integrals (2.18) and (2.19) out in full:
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(
4 /I

A. —-1 T, q, p, ';A. =--,'i ~, T q, p, ";& T q, -p",p', ~ 4 p" +2q ~ p"-2q,

(
4 ll

A. ——1 AbsT, q, p, p'; & =,AbsT q, p, p"; ~ AbsT q, -p", p', ~ 4 p" —2q 4 p" + &q .

(2.22)

(2.23)

We emphasize once more that (2.22) can be justi-
fied for all values of the external momenta, where-
as (2.23) is limited to the region where all the
external particle masses are below (2p, )'.

Integrals such as those occurring in (2.22) and
(2.23) have been studied by ABFST to leading
order in s and in the forward direction t =q'=0.
In studying these integrals they assume that the
leading behavior comes from the integration over
the subenergies (p+ p")' and (p" —p')', while the
integrations over the masses (p" + &q)~ and
(p" —2q)' are held relatively close to the mass
shell by damping coming from the various terms
in the integrand. With this assumption the lead-
ing behavior of (2.22) or (2.23) can be gotten quite

nicely. It seems reasonable that high-energy off-
'shell amplitudes should be damped in the external
masses since we like to think of hadrons as being
composite particles having form factors which
die off quickly. Moreover, this assumption (some-
times called the Gribov finite-mass hypothesis)
is the basis of a number of theoretical techniques,
and if it leads to an unusual state of affairs here
then this is perhaps not an uninteresting result.
At any rate we shall make this finite-mass hypothe-
sis in what follows. From here on we work with
the equations for the absorptive parts, although
the equations for the complex amplitudes could
equally well be used.

III. THE ABFST INTEGRAL

We wish to study the integral on the right-hand side of (2.23). To do this it is convenient to make the
following change of variables:

d 4ptl
W=,AbsT(q, p, p";A) AbsT(q, -p", p', X)6((p"——,'q)')6((p" + -'q)')

ds,ds'du, 'du,'AbsT(s„ t, u„u„-u,', -u,'; A.)AbsT(s', f, -u,', -u'„p, ', p. ', X)

x a(-u,')a(-u,')K(s, s„s', t, u,', u,', u„u,),
with (P' a 2q)' = g'. K is given by

(3.1)

K(s, s„s', t, u'„u2, u„u,) =
4 d p"5(s, —(p+p")')5(s' —(p' -p")') 5(u', +(p" ——2q)')5(u', +(p" +-',q)')

and J'is given by

1 1 8(J)
8(2m)' s ~g

—,'(u', —u', ) —,'(u, —u, )

(3.2)

—,'(u,' —u,') Q~+Q~+ 2t
1 s' —p, '+ —,'(u,'+ u,')p( —u~ —u2+ u~ + u2+ t)+so'1

—,'(u, —u, ) 2(-u~ —u3+ u~ + u2+ f) + so
1-u, —u +2t2

s' —p,
' ——,'(u, +u, )

s' —p, '+ —,'(u,'+ u', + t) s —p, +,{f—u, —u, )
1

2P, —2t
1

(3.3)

The total phase space in the integral (3.1), as a
consequence of the finite-mass hypothesis, is
growing logarithmically with s. The region where
the inequalities s,/s&e, s'/s&e, all masses

&6so &s, are true also has phase space which grows
logarithmically with s for any e. This logarithmic
growth comes from the rapidity available to the
virtual pions in the integral. The regions of the
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integral which do not satisfy the above inequalities
have phase space which is constant as s increases.
Therefore, for very large s, if we integrate only
over that region where the above inequalities are
satisfied the mistake we make will be down by a
factor lns from this leading integration region,
provided that the integrand in the other region is
not on the average lns bigger than in this leading
region. This does not happen if the leading term
grows as a power of s (modulo lns). ABFST have
considered this ease carefully, and their results
can be gotten by taking the above inequalities to
be true in the entire integration region. So long
as AbsT(s, t; X) is polynomially bounded in s and
grows faster than 1/s, this procedure will lead
to the correct leading behavior, provided the inte-
gration over the masses does not give zero. Even
if this happens, this procedure will give a bound

s +s s++ sp sp s +all masses (3.4)

to be true inside the integral of (3.1) we find after
some work

on the behavior of the integral for large s, and
this is all we need in this paper.

We are interested in amplitudes which satisfy
the finite-mass hypothesis and are polynomially
bounded in s, and so we are free to take the in-
equalities above to be true inside the integral.
Therefore we need only keep the leading term of
AbsT in the integrand. We choose e to be a small
number and therefore neglect terms of order c
in the integrand compared to unity. We emphasize
that as far as the leading behavior of the integral
(3.1) is concerned this is not an approximation.
Taking the inequalities

a -'
ds, ds' du', du+bsT(s„ t, u„u„-u,', -u,'; X)

with

xAbsT(s', t, -u'„-u,', p', p,
', X)b(- u')a(- u')

H
(3.5)

&=- l(u,'-u,')'+ ltll(u, '+u,') --.'Itl'- ltl(s. s'/s) (3 5)

We notice that, as far as the leading behavior of TV is concerned, the kernel no longer depends on the ex-
ternal masses u, and u, .

IV. IMPLICATIONS FOR THE OFF-MASS-SHELL FROISSART BOUND

Let us suppose that a weak form of the Froissart bound holds for AbsT(q, P, P') for unphysical values of
the external masses, as long as these are small compared to the total energy Ws, i.e.,

IAbsT(q, P, P') I= IAbsT(s, t, u„u„u„u,) I

& p(t, u„u„u„u,)s"', (4 1)

where e is an arbitrarily small positive number and p is an arbitrary positive function of t, u„u„u3 u4,
strongly dampled in these masses. First, we generate an inequality from Eq. (2.23):

9 d'"
&,~

—»bsT. (q, u, P';&) & 2„,l»sT(q, P, P"; &)I l»»(q, -P",P';&)
I l&((P" —2q)')

I
l&((P" + ~2q)')I.

(4 2)

Next we put the Froissart bound (4.1) into the integrand of (4.2) at A. = 1 and use the expression (3.5) of the
previous section for the leading behavior for large s. We get

8 1 OO

J
BA.(

—1 AbsT, (q, p, p'; A. ) &,~
— ds'ds, du,'du,'ls, "'p(t, p', p', -u,', -u,')I82w)~s „

x Is'" 'p(t, -u,', -u,', p', p. ') I lh(-u,')
I Ia( —u,')I

H

(4.3)

Equation (4.3) can be rewritten, after one integration, as
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X—-1 AbsT, (q, P, P';A. )
9

BA. X=1
&(Ins)s~+' ' dpp~''

4 p

(4 4)

where H(p) is given by

—1 AbsT2(s, t; X) & f(t)(lns)s~+ '
BA. X=y

(4 6)

for arbitrary e and s large.
Equation (4.6) holds only at the point X = 1 and

for any positive e. It would be useful if, for a
given e, we could establish this bound in some
neighborhood of X = 1. The following argument
shows that this is in fact possible. I.et us consider
again Eq. (2.21):

AbsT(X) =AbsT(A, = 1)

+ g (& —I)"f[AbsT(A. = 1)]"
n=1

+ [AbsT(A. = 1)]""}. (4 7)

Taking the absolute value of each side of this equa-
tion yields

IAbsT(x) I
& IAbsT(X =1)

I

(4.5)

The integral in (4.4) is essentially an arbitrary
positive function of t since p is an arbitrary func-
tion. We thus get the important relation

IAbsT(&) I &Q I& —1 I"c„'(lns)"s"' .
n=p

(4.12)

We emphasize that this result follows from our
two assumptions, the finite-mass hypothesis and
the Froissart bound off shell, and is not a general
asymptotic result for the Bethe-Salpeter equation.
We now make a rather technical assumption which
we hope will not disturb the reader too much. We
assume that the c„' can be chosen so that the right-
hand side is polynomially bounded in s for at least
one value of A, wl, and for s &si. This seems rea-
sonable since p is an arbitrary, strongly damped
function of the external masses, and it would seem
that we could choose it so that this would be true.
Moreover if the kernel I of the Bethe-Salpeter
equation is bounded by a polynomial in s, as we
strongly expect it to be, then we would expect the
solution of this equation to be polynomially bounded
even for A. 1. Therefore we feel that this is a
minimal assumption which takes the form

Q I Xo —ll "c„'(lns)" & s", s & s„Zo x1
n=p

(4.13)

for some M no matter how large, and for some A.p.
For arbitrary A. we can write

Q Iz- I I"c„'(Ins)"
n=p

c„'(lns)" & c„,(lns)" '+ c„(lns)", s & s~. (4.11)

Equation (4.10) then becomes

+ I[AbsT(X =1)]""I}. (4.8)

We now put the asymptotic bound (4.1) into the
right-hand side of (4.8). Arguments similar to
those above (see Appendix B) show that

I[AbsT(X = 1)]"I& I(s" 'p)"
I
~ c„,s "(lns) "-

(4 8)

Let us choose c„so that this inequality is satisfied
for s greater than some lower limit s~, for all n.
Then (4.8) becomes

IAbsT(A)l &cos"'+ g IA. —1 I"[c„,s"'(lns)" '
n=l

P Iy —I I" c'(lns)" &s"I&-&l ~l &o-xl

n=O

six-xl/lxo-il & (4 15)

Putting this back into (4.12) yields (choosing units
in which s~ = 1)

IAbsT(x) I

s'+'+" I'-~l i I', -
I s &1 (4.16)

Equation (4.18) shows that, for a given 5,

= g IX —1 I"ci[ln(sl" 'l~l~o ' )]~ (4 14)
n=0

and therefore

+ c„s"'(lns)"], IAbsT(z) l&s"', (4.17)

Now let us define c„' by the inequality

s & sz, . (4.10)
in some neighborhood of A. = 1, asymptotically. The
size of this neighborhood will of course depend on
6. This is precisely the condition we need to con-
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tinue the bound (4.6) to a neighborhood of A = 1.
This follows from (2.23), (4.2), (4.3), (4.4), (4.6),
and (4.17) by relaxing the condition X=1 in the
above steps and replacing it by A.&N, some
neighborhood of X = 1. Thus we obtain

in some neighborhood of X =1 for any positive c.
Relations (4.6) and (4.18) are the basis for our

results. They are bounds on an operator acting
on AbsT, (s, t;X), given the stated conditions. The
remainder of this paper will be devoted to estab-
lishing a bound on AbsT, (s, t; X) I q „all by itself.
In the next section we consider a very special and
simple case.

and satisfying (5.1)-(5.3). Equation (5.6) states
that if the Froissart bound is satisfied off the
mass shell by the full amplitude, and the finite-
mass hypothesis is correct, then AbsT, (s, t) can-
not be produced in a simple multiperipheral way
and still grow as a power of s greater than unity.
Making use of dispersion relations for T,(s, t) and

crossing symmetry, we can extend the bound to
the full amplitude

(5.7)

In the next section we consider the general case,
and present arguments why (5.7) should be true in
general under our stated conditions.

V. THE MULTIPERIPHERAL CASE
VI. THE GENERAL CASE

eo(t, X)
BX

40 (5.2)

at the particular value of t we are considering,
and also that

—AbsT, (s, t; A) = —[P(t, A)(lns) s"~' ~~ ]

+ (nonleading terms) . (5.3)

Plugging this into Eq. (4.6) and keeping only lead-
ing terms in s we find

The arguments here will apply to models which
have AbsT, (s, t; A. ) generated multiperipherally.
To state this precisely we consider the following
proposition: Suppose

AbsT, (s, t; X) = P(t, A)(lns) s" '
+ (nonleading terms), (5.1)

where m is arbitrary, but independent of s. More-
over, we assume that

We will use Eqs. (2.13) and (4.18) in this section,
and hence we restate them here:

Abs T,(s, t; A:) = p A."(Absf)",
fl —2

(6.1)

(6.2)

where we have dropped the factor lns in (6.2)
since it is irrelevant. Recall that in order to de-
rive (6.2) we had to use an unproved assumption
of polynomial-boundedness. Equation (6.2) is satis-
fied for all positive e and in some neighborhood
of X=1. We note two things about (6.1). First, it
has no term linear or constant in X, and second,
it is a polynomial in A, for fixed s. The second
result follows from unitarity and the absence of
zero-mass particles in our picture. '

Let us write AbsT, (s, t; X), with X in the above
neighborhood of unity, as a Mellin transform:

AbsT2(s, t; X) = . dP F(P, X, t)sa,
C

(6.3)

& f(t)(lns)s" ' . (5.4)
dsAbsT, (s, t, A)s (6.4)

Rea(t, I =1) &1, (5.5)

and therefore, in this case,

IAbsT, (s, t)I& f(t)s"' (5.6)

asymptotically for all e.
This case is not completely academic, since

many popular models (for example ladder models)
have AbsT, (s, t) being produced multiperipherally

This inequality must be satisfied for all e &0. Thus
we get the following condition on e: where c is parallel to the imaginary P axis and is

to the right of all singularities in tl of F(P, A. , t),
and F(P, X, t) is analytic along c. Now move the
contour to the left, picking up possible pole and
cut contributions in so doing. 'Ne consider for
simplicity the case where there are singularities
in the P plane at real P only, a leading branch
point and poles. The general case of complex
branch point and poles will be essentially no differ-
ent.
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r b+i~
AbsT, (s, t; A.) = —. dp F(p, X, t)s

2772

nc
+ . dPss Di scF(P, &, t)

27TZ

AbsT(A. ) = A. Absf + AbsT, (X) .
Putting this into (6.9) we find

AbsT2(A. ,) —~ AbsT (A.,) & s'+ ' .
2

(6.10)

(6.11)

(6.5)+gss~ResF(p;, A. , t);
i

see Fig. 6. We choose 5=1; if any-piece of
AbsT, (s, t; X) grows as a power of s greater than
unity, then this piece must be either a cut or pole
contribution above, with no contribution from the
background term.

We now define the following function, which is
the contribution to AbsT, (s, t; A) from all singular-
ities to the right of 1+ e in the P plane:

But this clearly demands

K,(s, t, A.,) ——'K,(s, t, X,) =0 .
2

(6.12)

Setting X, =1, and X, =X, we arrive again at (6.8).
Comparing (6.8) to (6.1), we see that AbsT, (s, t; A)

has no term linear in A. , and therefore its leading
term K, (s, t, X) cannot be linear in a, for (6.8)
demands

nc
K,(s, t, &) = . dPs DiscF(P, X, t)

7T2

=AÃ, (s, t)

0
ds st-8-1 Pyn(Abel)n

-n= 2

(6.13)
+ g ss~t" " ResF(P;, A. , t). (6.6)

&~Bj&1+@'

The inequality (6.2) says simply that this function
must be annihilated by the operator X(s/8 X) —1,

X—-1 K~ s, t, A. =0. (6 7)

This equation must be satisfied in some neighbor-
hood of X =1. Therefore (6.7) is simply a differen-
tial equation for the function K,(s, t, X). Its solu-
tion is

Z', (s, t, X) = XK,(s, t} . (6.8)

We can also derive this directly from (4.17) since
it gives

AbsT(A. ,) ——' AbsT(X, ) & s'+ 'A.

2
(6.9)

for arbitrary positive e and X„X2 in some neighbor-
hood of unity. We also have

XK,(s, t) =K,(s, t, X) =0 (6.14)

in this neighborhood of A, =1, and in particular at
X=1, and therefore

IAbsT, (s, t) I
& f(t)s" ' (6.15)

for any positive c. Again, it follows from cross-
ing symmetry and dispersion relations that (6.15)
is satisfied by the full amplitude which is two-par-
ticle reducible in the I; channel,

(6.16)

This then is our result. It is a consequence of the
t-channel unitarity of T2 applied to the s-channel
asymptotic behavior of T2 together with our stated
assumptions.

VII. CONCLUSION

to be true, for each positive e, in some finite
neighborhood of A. = 1 Iwith c', a contour surrounding
all singularities to the right of 1+ a yielding (6.6)].
Clearly (6.13) cannot be satisfied unless'

0

ac

Leading Branch
Point

Qx Qx

Poles

FIG. 6. The contour of integration in the Mellin trans-
form plane.

We have seen that if the Froissart bound is satis-
fied by the off-mass-shell amplitudes, the finite-
mass hypothesis is correct, and our assumption
of polynomial boundedness is correct, then the full
amplitude which is two-particle reducible in the t
channel cannot grow as fast as s"', with e an ar-
bitrary positive ng. mber. Even if the assumption
of polynomial-boundedness is not correct, this
result is still true if the two-particle-reducible
piece is produced multiperipherally. We feel
strongly that it is correct and we therefore believe
that the following propositions are inconsistent:

(1) Elastic amplitudes at high energies are
strongly damped off the mass shell.
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(2) The Froissart bound is satisfied by the full
amplitude off the mass shell.

(3) The full-two-particle-reducible, . piece of the
amplitude in the t channel grows faster, by a
power, than s', on and jor off the mass shell.

There are examples in perturbation theory, in
some cases with certain restrictions on the cou-
pling constants, of sets of Feynman graphs which
satisfy proposition (3). The simplest case is the
sum of all ladder graphs in Q' field theory. If
this proposition is to be false then new graphs,
which are two-particle reducible in the t channel,
not heretofore studied, must be found to cancel
off the leading behavior of these graphs.

If proposition (1) is false it might be interesting
to study the consequences of the hypothesis that
the Bjorken scaling region, rather than the Regge
region considered here, dominates our integrals.

If proposition (2) is false, and this is a distinct
possibility, then there may be detectable conse-
quences in photoproduction of hadrons for off-
mass-shell photons. For finite-mass photons,
we might see these cross sections violate the
Froissart bound asymptotically.

We cannot decide which of these propositions
is least desirable and we therefore ask the reader
to take his pick.

Note added in Proof

1. In (4.12) c„' can be chosen to be the maximum
value of ~(AbsT)" + (AbsT)"''~/s"'(Ins)" on the in-
terval s~ & s& ~.

2. Although we have used the results of ABFST
in this paper, we have not assumed that the high-
energy behavior of the irreducible kernel is small.
We have also been careful not to sum only leading
log terms in (4.7) and (4.8), but rather have over-
estimated each term separately and thus obtained
(4.12).

3. We wish to make a comment rega. ding mas-
sive quantum electrodynamics. We have not work-
ed this case out in detail, but we expect the follow-
ing to be true. If it is assumed that the Lorentz-
invariant amplitudes for ey, ey, and yy scattering
satisfy the Froissart bound with photons on or off
the mass shell for all spin states of the initial and
final particles, then the arguments we have used
in the present case are applicable. The only differ-
ence is that we must work with coupled integral
equations. If it is further assumed that the above
amplitudes are strongly damped off the mass shell,
and that certain series analogous to (4.12) are
polynomially bounded in s, then we think that it is
impossible for the two-photon reducible amplitudes
to grow as a power of S greater than 1 (modulo
lns).
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APPENDIX A

We wish to derive here the relation

AbsT(X) =AbsT(A = 1)

from the relation

+ IAbsT(A. = 1)]"''] (Al)

X——1 AbsT A, =AbsT X x, AbsT ~ . (A2)

Let us consider a function of one variable which
satisfies an identical equation, with &&, replaced
by usual multiplication:

(As)

or, letting y=lnx,

f(y) =f(y)+f—'(y) . (A4)

Dividing by f(y) +f '(y) and integrating we find

M 0

which can be integrated yielding

I„f (y)].I +f(0)1
f(o)[I +f(y) ]

(A6)

(A6)

and therefore

)
xf(x= 1)

I+f(x= 1)(1—x)

= x f(x = 1)Q (x —1)"f"(x = I)
n=o

(A7)

for x near unity. We can rewrite (A7) as

f(x) =f(x = 1)+ Q (x —1)"[f"(x = 1) +f""(x= 1)] .
n=l

(A8)

Although the manipulations we have gone through
in arriving at (A8) are not correct for (A2), the
final result is correct, since the nth derivative
of f(x) or AbsT(X) can be calculated from the

I am indebted to Professor L. M. Jones for con-
tinuing guidance and many helpful discussions
during the course of this work.
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(n —l)th derivative using Eq. (A2) or (A3). Using
this inductive method, one can avoid ever dividing
by the functions, and therefore we can use this
method to calculate a Taylor series for either
f(x) or AbsT(A). Since this method is guaranteed
to yield the result (A9) for f(x), it is also guar-
anteed to yield (Al) for AbsT(X). The solution can
easily be checked by substituting Eq. (Al) into
Eq. (A2).

APPENDIX B

We wish to show that

~[AbsT(s, f)]"
~

& f(t)s"'(Ins)" ' (Bl)

using the postulated finite-mass condition and the
off-shell Froissart bound. We proceed inductively.
Suppose that (Bl) is satisfied for some n; then
using the results of Sec. IV we have

~S g

)AbsTx, (AbsT)"), ' ' ' d ud u')s, "'p(t, u„u„-u,', -u,')[ )s'"'(Ins')" 'f(t, -u,', -u', p. ', p, )~8 2m)' .4„g s

&(H(s,s'/s))x
I &(-u,') I I

&(-u'.) I (~(, ,',/, )j,g.

With the change of variables s, -P = s,s'/s, (B2) becomes

1 ds
~AbsTx, (AbsT)"

~

& ~,— dps" '(Ins')" 'Z(p),
8(2&) ~ 4~2 s .4p2(s'/s)

(B2)

(B3)

where J(P) is given by

J(P) = -( „' du,'du2ip(t) u„u„-u,', -u,') i
mj "o

x
) f(t, -u,', -u'„p, ', p')

~

)AbsTx, (AbsT)"
~

& ~
s'+'

8(2m)'

ds'
X

~4hl2
S' ~0

dp(I»')" '&( p),

(B6)

H(P) = ——'(u', —u,')'+ gati-,'(u', +u', ) --,'gati' —[ti P.
(B4)

(B5)

r

~AbsTx, (AbsT)"
~

&s"' ln —,— ~ —
i dpi'(p) .

4p, ' . Jn. ',

(BV)

Keeping only the leading terms in s we find
r+' 00

~AbsT x, (AbsT)"
~

& s"'(Ins)"
S 2 4

— dpi'(p).
w n ~p

Because of the finite-mass condition, we can set
the lower limit of the p integration to zero and the
upper limit to ~ without affecting the leading be-
havior of (B3):

(BS)

We are taking as given that Eq. (Bl) is true for
n= 1. Therefore, from Eq. (BB), it follows by
induction that it is true for all n.
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