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Since the important work of Newton and Wigner on the position operator and the localized states,

several methods have been developed in the literature to deal with the problem of finding a position

operator for relativistic systems. One of the most relevant has been the method based on the use of
"canonical" transformations such as the Foldy-Wouthuysen transformation. In this paper, we strictly

consider the Foldy-Wouthuysen transformation as a procedure which allows one to write the

Bargmann-Wigner equations in a form which in the nonrelativistic limit leads to the Galilei-invariant

Schrodinger equations for arbitrary spin. As a result of this interpretation, we derive for the position
operator and the localized states of elementary systems the same expressions as Newton and Wigner;

the spin operator is also obtained. Finally, the Chakrabarti transformation is considered in the same

spirit.

I. INTRODUCTION

As is well known, the invariance requirements
imposed on a physical theory lead to the enumera-
tion' and construction' of the relativistic equations
for elementary systems, which, in turn, are de-
fined' as those whose manifold of states provide
the support space of an irreducible unitary rep-
resentation of the restricted Poincarb group.
Within this scheme, only the expression for the
dynamical quantities associated with the infinitesi-
mal generators of the group (as the momentum,
energy, and angular momentum) is provided by
the theory, whereas for other observable quantities
there is no straightforward procedure leading to
their explicit form, which has to be found by means
of other considerations. This is the case, for
instance, of the position operator in relativistic
quantum mechanics. In contrast, there is no am-
biguity in defining the position operator in nonrel-
ativistic quantum mechanics, where it is simply
given by the multiplicative operator x.4 In this
case, the physically meaningful' ' elementary
systems are classified according to nontrivial"
projective representations of the Galilei group,
the group which is obtained (by contraction" ) from
the Poincarb group by taking the limit c-~. In-
stead of the parameters (mass, spin, and sign of
the energy) which characterize the elementary
massive relativistic systems, the nonrelativistic
ones are determined by the spin and mass (which
comes through the system of factors of the projec-
tive representation), the other invariant of the
Galilei group, the "internal energy, " not having

physical significance for a free particle. In this
case, the position operator belongs to the Lie
algebra of the Qalilei group; more precisely, it
is given by N/z, where N is the generator of the
accelerations (Galilean boosts) and a is to be in-
terpreted as the mass. ' Since Galilean boosts
commute among themselves, this guarantees that
the position operator is left unaltered under the
action of accelerations.

In relativistic quantum mechanics, the problem
of finding a position operator and its localized
states has been treated in various ways. Since in
this paper we shall be concerned only with the
Newton-Wigner (NW) position operator and with
those which can be obtained by using "canonical"
transformations as the Foldy-Wouthuysen one, we
shall not review them but instead refer the reader
to the papers by IQlnay" and DeVries. "

The classical paper of Newton and Wigner' cor-
responds to what Kd,lnay" calls "the equivalent
frames of reference approach. " NW found their
position operator as well as an expression for the
localized states by imposing the following condi-
tions: (NW l, 2) the states localized at x =0 at
time t =0 form a linear manifold invariant under
rotations about the origin and under reflections of
both the spatial and time coordinates; (NW 3) two
localized states related to each other by a spatial
displacement are orthogonal; and (NW 4) (regular-
ity condition) the infinitesimal operators of the
Lorentz group have to be applicable to the localized
states. NW found these axioms sufficient to deter-
mine an operator q~ acting on the positive-energy
solutions of the corresponding wave equation,
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Hermitian within the relativistic scalar product,
and having a continuous spectrum. As noted by
NW themselves, q„~ has no simple covariant
meaning under the Lorentz group, a feature to be
expected since (NW 1, 2) imposes the physical
equivalence of only spatially rotated frames of
equivalence.

The "canonical transformations approach" to
the position operator, first used by Foldy and
Wouthuysen, "makes, the assumption that the rep-
resentation provided by the (manifestly covariant)
relativistic equation is not adequate to identify x
with the position operator, and one then looks in
this representation for the operator X which corre-
sponds to x in the new (conjugate) representation
obtained by means of the canonical transformation.
The operator X has the important property of pos-
sessing as temporal derivative the relativistic
velocity p/po and describes the mean position of
the relativistic particle, which oscillates around
it with an amplitude of the order of the Compton
wavelength (1/« in natural units, «being the mass).

The Foldy-Wouthuysen (FW) transformation
allows the definition of a position operator in the
aforementioned way as well as the definition of a
mean-spin or intrinsic-spin operator which is a
constant of the motion. On the other hand, this
transformation provides a canonical form of the
wave equation" which leads in a natural way to
the nonrelativistic wave equation by restricting it
to the subspace of positive-energy solutions and
considering ~p~««. It is then not surprising to
find in the usual representation a position operator
with adequate properties since precisely this mean
position X is the transformed one of the operator
x =is/sp, which has a precise meaning in nonrel-
ativistic quantum mechanics. However, and in
contrast to the position operator of NW, the FW
mean-position operator has the inconvenience of
not being observable, i.e. , Hermitian within the
relativistic scalar product which is defined for
the solutions of the corresponding wave equation.

In the literature the FW formalism has been
extensively developed to obtain operators for rel-
ativistic particles of various spins, and other
transformations, like the Chakrabarti transforma-
tion" have been introduced in a similar spirit (a
list of references can be found in Refs. 12, 13, and
1V). Repeatedly the differences arising between
the NW position operator and those obtained by
means of the aforementioned canonical transforma-
tions have been noticed. However, we feel that the
problem of conciliating both procedures has not
yet been fully treated. This is the object of the
present work. In this paper we show that the strict
interpretation of the FW transformation as a pro-
cedure which leads to a representation which per-

II. OBSERVABLES IN THE DIRAC AND PAULI
REPRESENTATIONS (SPIN -')

The Dirac equation

(r&p„- «)y, =o (2.1a)

can be written in the Hamiltonian form

P'g =(o' P+P«)$D= (2.1b)

For its solutions g~(p, $) ($ being the four-valued
spin variable), one usually defines the positive-
definite invariant scalar product

mits one to perform trivially the nonrelativistic
limit of the wave equation together with the as-
sumption that in this new representation the posi-
tion operator is given by is/sp is sufficient to
obtain for the localized states and the position
operator precisely the same results as Newton
and Wigner. Moreover, the localized states will
also be eigenstates of the third component of the
mean-spin operator derived at the same time as
the NW position operator and not considered by
these authors.

We shall not discuss the difficulties which arise
in the search for a Lorentz-covariant position
operator. These have been considered by many
authors from different points of view leading to
different answers according to which of the NW
axioms is abandoned. We refer to the clear anal-
ysis and references of the already mentioned re-
view by Kllnay. "

This paper is organized as follows: In Secs. II
and III, for the sake of simplicity, we treat the
simplest case of a Dirac particle giving in Sec. II
the generalities of the method, and in Sec. ID the
position and spin operators and their eigenstates.
In Sec. IV we analyze the arbitrary spin case by
means of the Foldy-Wouthuysen-Pursey {FWP)
transformation" " for the Bargmann-Wigner (BW)
equations' and derive the NW operator, the spin
operator, and the localized states for (massive)
elementary systems of any spin. " Finally, Sec. V
is devoted to the consideration of the Chakrabarti
transformation for any spin. ' " As the FWP and
Chakrabarti transformations are given by different
operators leaving invariant different scalar prod-
ucts, we obtain in Sec. V a slightly different form
for the position and spin operators and the local-
ized states corresponding to the "second" scalar
product that can be defined for the BW equations.
The connection between the operators derived in
Secs. IV and V and the "mean" operators which
are obtained by means of the FWP and Chakrabarti
transformations'7 is also explicitly shown in both
cases.
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and [o.=)"),P =r']

(2.3)

(2.4)

F = [2(D((d + K) ] ((L) + K + po ' p) ~

(2.5)

which satisfies, as mentioned,

(4D 4D} (4FW eFW ) ' (2.6)

Introducing the projectors to the positive- and neg-
ative-energy states in the FW representation

wh'ere e = sgnp', (D =+(K'+p )"'. We shall consider
here (2.2a), since it is the scalar product which is
left invariant by the FQ7 transformation.

The FW representation is obtained by applying
to (2.1b) the FW transformation with the result

The presence of the spin in (2.12) through the
variable $ [pP = (P(p, $)] is of course not at all
surprising; it is a well-known fact, particularly
stressed by Levy-Leblond, ' "that the spin is not
a relativistic effect. In fact (2.12) is what could
be called the canonical form of the Schrodinger
equation" for a particle of mass g and spin —,

' for
which the internal energy E —p'/2K has been taken
equal to zero. Thus, the transition to the nonrel-
ativistic equation and to the corresponding scalar
product has been accomplished by means of the
following steps: (a) the FW transformation, (b)
restriction to the subspace of positive-energy
states, (c) redefinition of the amplitudes (multipli-
cation by (D '), and (d) the condition ~p~«K. The
representation (2.10) is obtained by (a), (b), and

(c) and has qualitatively [except for condition (d)]
all the properties of the nonrelativistic limit: It
satisfies the Schrodinger-like equation (2.11) and
its corresponding scalar product is defined by
(2.10). Hereafter we shall call this representation
the Pauli or nonrelativisticlike representation.

W'e consider now the form of the observables in
the different representations introduced. '4 This is
done by means of the following.

Proposition: Let 0~ be a Pauli observable. and

yP be an eigenstate corresponding to the eigenvalue
A(~ = —,'(I + P),

Eq. (2.3) splits into

Po g(s) ~ (D ~(y) ~(y) A(y) ~

(2.7)

(2.6) Then, the Dirac observable OD is given by

(2.13)

The equation satisfied by the positive-energy
spinor )Fw easily provides the nonrelativistic limit.
In fact, the spinor defined by

(2.9)

with norm

O =S' '~O & 'A&')S
D P

and satisfies ((D =(dE 'gP)

OD 4D () )1)D

(4Dl OD4D) (4P& OPeP) &

(2.14)

(2.15)

(2.16)

satisfies the equation

P 4=(D4~

(2.10)

(2.11}

OD being Hermitian within (2.2a). (The demonstra-
tion is trivial. ) By construction, OD acts only on
the positive-ener gy states.

III. POSITION AND SPIN OBSERVABLES IN THE

DIRAC REPRESENTATION

which in the nonrelativistic limit ~p ~

«K reduces
to

(2.12)

or SchrMinger equation for a particle of spin —,
'

(E =P' —K).
It should be clear that step (2.9) (redefinition of

the a.mplitudes} is an essential one in our proce-
dure. It allows the definition of the nonrelativeis-
ticlike scalar product (, ) within which the operator
x is Hermitian and thus can be adopted as the posi-
tion operator in the representation defined by gP
(Sec. III).

The position operator for a massive nonrelativis-
tic particle [Eq. (2.12)] is given in momentum
space by

x =is/Bp. (3.1)

As discussed in the Introduction (3.1) behaves
adequately under Galilean transformations. We
now make the assumption that the position operator
in the relativistic case is again given by /=is/()p
in the Schrodinger-like (Pauli) representation de-
fined by (2.11) and (2.10) which, as discussed in
Sec. II, has formally all the properties of the non-
relativistic limit (except ~p~ «K). It is clear that
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in the passage from the Qalilei to the Poincare
group q will still transform as a vector under
the rotation part of the latter group, but its trans-
formation properties under Lorentz boosts will
be modified. For instance, [N„q,] 40, meaning
that a Lorentz transformation in the direction of
the first axis changes the components of g perpen-
dicular to it." Accordingly, a Lorentz-covariant
meaning cannot be attached to q, and this feature
will appear again in the Dirac representation
where, as we are going to show, we shall find the
NW operator f1~.

Let us consider now the spin operator. In the
nonrelativistic case s is given simply by the Pauli
matrices s = —,'0. In the relativistic case, the spin
operator in the nonrelativisticlike representation
is written

s = —,'~A" (3.2)

where, in terms of the Dirac y matrices, p~

=iy'y~(i, j, k cycl). Strictly speaking, the projector
A ' could be omitted since s operates on the two
nonzero components of (1)~, which is a positive-
energy function [(2.9)].

The observables q and s commute, and therefore
the solutions of E(I. (2.11), eigenstates of the two
operators, can be written in the form ((d' —p' = K')

Qv=F '(di. s&(d 'A('F

s =I' '~s(u 'A"I',
D

(3.9)

(3.10)

which, after some algebra, can be written in the
form

3/2 0 -j./2

((d + K) SP ((d + K)

(o p)p ip(o. xp)
(d 2 2(d((d +K) 2(d

(3.11)

(3.12)

~here E is the projector for positive-energy states

n P+PK H+(d
(d 2 (0

(3.13)

The operator |lv is nothing other than the NW oper-
ator q~ for spin —,', and sD is, except for the pro-
jector E, the mean-spin operator S obtained from
the FW representation. The process followed
then leads to the position and spin operators (3.11)
and (3.12) which are the physical observables in
the Dirac representation. On the contrary, the
direct application of the FW transformation to the
operator is/sp leads to the FW mean-position
operator X which is not Hermitian within (2.2a) and
which is not restricted to positive-energy states
as is (Iv=- Q„„. In fact, the FW operators X and S
are related to sD and gv by the expressions

4p,.(y t p() =(»') "'e """"v.($),
the two functions v„($) (m =+-,', --,') satisfying the
conditions

(I = (X —ip/(d')E,

sD=SE;

(3.14)

(3.15)

s,v (&) =m v„(]),
~m~m=~ y

pv =v

(3.4a)

(3.4b)

(3.4c)

the last one due to the fact that P(t)p=)t)p. In fact,
it is evident that

the term -ip/aP in (3.14) is necessary to obtain
a Hermitian operator (see Sec. IV and Ref. 26).

The eigenstates of the operators qD and sD are
given by (2.15)

(t)() „(y, t;p, ])=(2()) '"(de (P'" ') F v„($}i

(3.16}
q4, , (y, t;p, h)=y4p, (y, t;p, k),

s.0,.(y t'p, h) =mt, .(y, t; p, $).

(3.5)

(3.6)
obviously, by E(I. (2.10), two states localized at
y and y' are orthogonal:

Two localized states in different points y and y'
are orthogonal:

&0,, (y, t;p, $), 4, (y', t;p, $))=5(y —y')5

(3.7)

and, in coordinate representation, the states local-
ized at y at t =0 are written

(g,,.(y, t;p, (), g, ,.(y, t;p, L!))=5(y-y')5.." (317}

We show now the identity of the localized states
(3.16) with those obtained by Newton and Wigner.
Taking into account the relation (3.4c) and that

((d + K) P + o) ' P
Pvt))- [2 („)]+2vt))

Il(V;x()=(2 ,)..I.f d, 'P~ ' I4(T;P ()*,. 2(0
[2(d((d + K)]"' (3.18)

(3.8)

We now proceed to find the form of these observ-
ables in the Dirac representation. In accordance
with (2.14), this is given by

one finally obtains

(~y t, ~p() -(2 )-SIC -((P')) —hit)

x 2"'(d"'((d + K)-'"Ev„(]), (3.19)
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which, with

l'.(p, $) -=Ev.,($)

can be written in the form

&B (my, t; p, g) = (2F) "*e " 'v

g 21&B1Os~s(OO+ g) 1&s y (p $)

(3.20)

(3.21)

2s
As(s) ' '

[1(1~ p(r))]

we see that (4.5) split into

P ~FWP =+O)~FWF d

with the nondynamical constraints"

(4.6)

(4.7a)

which coincides at y =0, t =0 with the expression of
the NW localized states for s = —,'.

The form of the localized states in coordinate
space is now not that of a 5 function. '

(4.7b)

which are identities due to the relations P~")As~')

As{+) (r)hs(-) As(-)

Proceeding as in Sec. II we define the nonrela-
tivisticlike or Pauli spinor by

IV. THE ARBITRARY SPIN CASE
,(,s ~- (s+I/2), (,s(+)

+FWP (4.8)

(y "~"'P„—K) r/rBw
=0, r = 1, . . . , 2s

in the form

pOg (~(r). p+ p(r)~)g

(4.1a)

(4.1b)

The solutions )Bw(p, $, ~ ~ f„)are symmetric in
the 2s four-valued variables. Considering g w

as an element of the 4"-dimensional space obtained
by taking the Kronecker product of the 2s 4-dimen-
sional spaces, they~"', z ", etc. , can be written
in the form

yo ")= 18 18 ~ ~ -8 18 yF 8 1I8 ~ ~ ~ I8 18 1 (2s factors),

(4.2)

the term different from unity being placed in the
rth position. For the solutions of the BW equations
we shall consider the equivalent scalar products

)
d p

(4 BW & 4BW ass+1 PBW PBW t (4.3a)

The reasoning in Sec. III for s =-,' can be extended
without difficulties to the general case. For arbi-
trary spin, we consider the Bargmann-Wigner
(BW) equations'

This spinor satisfies the Schrodinger-like equation

P )t'P =&4P~
d (4.9)

which, for ~p~«z, reduces to the Schrodinger
equation for a particle of mass z and spin s.27 The
FWP transformation (4.4} is unitary within (4.3a),
and therefore we find again

(Sg' Pfw ~ f d'Sd' d -=(d', d'). (4.10)

The observable 0~~ associated with O~ is given
now by the expression

Os (y s &-ls+l/2Os &- (s+I/2)As(+)ps

and again the relation

(4.11)

(4BW& BW4BW) (4P& PIP) (4.12)

and the expressions corresponding to (2.15) are
seen to hold.

Let us now introduce the position and spin opera-
tors in the Pauli representation. Since in the non-
relativistic case [Eq. (4.9) for ~p «z] x is given
by is/sp for any spin, we take for the position
operator in the Pauli representation

(~BW ~BW ~BW ..., y 4BW
r=l

(4.3b)

P =is/sp (4.13)

and, in an analogous way, we take for the spin
operator

expressions which, for s = —,', reproduce (2.2a) and
(2.2b) [in (4.3b), Q„'sy " =y sy I81 ~ . ~ sy, 2s
factors. ]

Applying the FWP transformation defined by ""
(the new index s refers to the spin)

s' =-'O'A"'—pa' y

wh'ere

2

'Y "'Y' "
&yg~& cycl ~

r=

(4.14)

(4.15)

2
ps ]

y(r)
r=l

to Eqs. (4.1b), one obtains

(4 4)
The solutions of Eq. (4.9), eigenstates of the two
operators |1and ss, now adopt the form

q' (y i p &" ] )=(») '"e "F~-"-
P ~FWP P +(FWP (4 5) Vm($1 $2s) & (4.16)

Introducing the projectors"
I

where the v„(g, ~ ~ („},symmetric in the t's, are
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the 2s+1 independent functions satisfying the equa-
tions'

taking into account Eq. (4.17a), one obtains for
the (Il2~ localized states the (2s+1) functions:

p v =v, 3 =1, . . . , 2s,(r)

3Vm ~Vm &
Sl = —S& ~ ~ . ,& 0&. ~ ~ & S &

VmVm s

(4.17a)

(4.17b)

(4.17c)

43yy, (y t/P $1 . $2,)

(2(()-3/22s (dzs+1/2((d+K) se t(P Y wt)Es V ($ ' ' ' $ )

(4.29)
Obviously,

~ tl/p. m=yti/p, m t

S34p, m =m4, m t

and

(4.18)

(4.19)

which, in terms of the spin functions

~.(P, $, -h..)= F' v.(5, . $.,),
can be written as

4BW, m(yt tt Pt $1' ' ' $2s)

(4.30)

K o' (o' p)p z(pn'xp)
td 2 2(d(Cd + K) 2(d

(4.22)

where in Eqs. (4.21) and (4.22) E' is given by

Es —' E(r)
r=

[with E("~ given by (3.13) and (4.2)] and, in (4.22),

(4.23)

(PP m(yt tt Pt $1 (23)t PP m t (y', tt Pt 51 52s))

=5(y-y')5, . (4.20)

The expressions for the observables in the rep-
resentation (4.1) are now obtained as in Sec. III,
with the result

2s +23+1/2 S ~-1/2Es.—.1+ 3(r)) (d (d Es
(&d+K)' SP ((d+K)'

(4.21)

(2t()-3/223(d2s+1/2(td + K)-s

xe '" y- "V„(p;t; g„), (4.31)

which is the expression of the NW localized states.
Obviously the 2s+1 functions given by (4.30) are
solutions of Eqs. (4.1) as they should be, the
V (P, $, ~ ~ $„)being normalized through

(4.32)

Thus, we have shown that the transition to the
nonrelativisticlike equations provided by the FW
(or FWP) transformation allows us to obtain in a
naive and easy way the relativistic NW position
operator and the localized states. Moreover, the
localized states are eigenstates of the third com-
ponent of the spin operator, which is also obtained
at the same time.

2 2
0'= O'"'

C
'=

r=1 r=l
(4.24) V. A SECOND FORM FOR THE NW POSITION OPERATOR

z pn' (o'x p) z(dp+(n' p)p
2(d 2td ((d +K)

through the expression

(4.25)

q~ = X' z(s+ —,') ——, E'; (4.26)

for the spin operator the analogous equation to
(3.15) is

SBw —S E s (4.27)

Let us now turn to the localized states. These
are given by

(2V)-3/2 ~ (3+1/2 l - 1 ( P y- tstl

Again, g2& coincides with the NW position operator
t|~, ' and s2~ is, except for the energy projector
Es, the FWp mean-spin operator 5'. $112, is
Hermitian within (4.3a) and is related to the FWP
mean-position operator (which is not, Ref. 26)

We consider now the definition of a position op-
erator when the scalar product (4.3b) is used in-
stead of (4.3a). This can be accomplished following
a similar procedure to that used in Sec. IV by
means of a generalization of the Chakrabarti trans-
formation. This transformation, which is given by
the Lorentz boost that carries the vector p" to
(K, 0), diagonalizes the "mass operator" [y "P„ for
the spin--,' case] and gives rise to a realization of
the [m, s] representation which corresponds to
the canonical one introduced by Wigner'; it leaves
(4.3b) invariant and allows the definition of new
operators in a way similar to the FW case. In
this section we intend to show that theory already
developed is also applicable to this case, the es-
sential difference being the use of (4.3b) instead
of (4.3a). We consider directly the problem for
any spin.

The Chakrabarti transformation for arbitrary
spin is defined by

x(F') 'v„(g, ~ ~ ]„) (4.28)

and again, comparing (F') '(g'„'1 p(") with E' and
qs —' (r)

r=l
(5.1)
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where

q'"'=[2m(m+ p')] "'[p'+m —n" p], (5.2)

o (~ PP (5.13)

(my"'-")y; =0, (5.3}

e=sgnP', andm =a(P"P„)1/'. Under the action of
(5.1), the Eqs. (4.1a) take the form

where E" is now the covariant projector
ag pp (r)

2K
(5.14)

where

(Q q 4BW (5.4)

mg' ' =+ vP' '
Q Q (5.5)

where the + sign refers again to the energy. De-
fining

Here, as well, the introduction of the projectors
A'~" [Eq. (4.6)] allows one to obtain from (5.3) the
equations

which is Hermitian within the metric defined by
n as 0 (r) l.e.

s ~0(r) — +0(r) gf s (5.15)

(5.16)

(5.17)

The connection between the operators (5.12}and
(5.13}and the mean operators obtained by use of
the transformation (5.1) is given by

g'Bw =(X"—i p/2(o')E"

s' = S"E"
BW

,&,is -1/2 -sos(+&
yp -QP K q

and taking into account that

Jd a~ d3P qs(+)t O(r) ys(+) P, ,ts(+)', ,ts(+)
1sr=l

because

(5.6)

(5.7)

where

in' 1 (, )
i(n'p)p

2m
'

2m(m+ p') ' " '
po

(5.16)

as
0(r) As(+) As(+)

7

we find

(5.6)
Again, X" is not Hermitian within (4.3}, in con-
trast with q~~ which is Hermitian.

Finally, the eigenstates for the operators (5.16)
and (5.17) are given by

(2v)-3/2(gl/Be-t(P "-tet)(qs)-1&s& (g. . .
~ )

IS IS (5.9) (5.19)

where the prime refers to (4.3b).
As g~'~ =(v/z)'go~', 17 one verifies immediately

that also gP satisfies the SchrMinger-like equation
(4.9). Accordingly, we define the observables for
this case by means of the expression

(SBW, (y P ~1 $ } 4BW, (y i P 41 4))
= 6(y' —y)5

'

, . (5.20)

Comparing the effect of (q') ' and E" on the v„
functions, (5.19) can be written in the form

Oi (qs)-1 1/20s -1/2As(+)qs
QW P

by which definition it is verified that

(4BWt BW4BW} (PPi PIP}

(5.10}

(5.11) where

—(2V)-3/22s"1/2~2s(~+'}-s

Xe '/P''~"V'(p ]. ] ) (5.21)

Applying (5.10) to the operators q' and s' defined
by (4.13}and (4.14), one obtains

yI —gI s+ (5.22)

,ap, as 1/a g -1/a
Eis ' '(1+ 0(r)) ~ ~ i ~ Es

„'=1 (&o+~)' sp ((u+~)'

(5.12)
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