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We extend the modified WKB approximation due to Miller and Good to the h order for the
scattering case by the repulsive inverse-fourth-power potential. Instead of describing the
higher-order terms by the phase-integral formula in terms of line integrals with a specific
contour in a complex plane, we present the formula here in terms of definite integrals.

I. INTRODUCTION

In a recent note, we showed' that the modified
WKB method as given by Miller and Good' is valid
in regions where the ordinary WKB method fails
to yield dependable results. This is specifically
done in the low-energy region of the one-turning-
point problem where we have exact phase shifts to
compare with. It is in the low-energy region that
the ordinary WKB method is known to fail. ' The
exact phase shifts ' are mainly from the solution
of Mathieu's equation at the low-energy and small-
coupling-constant limit. So we see that the ordi-
nary WKB method cannot be used for comparison
with our results since it is not valid in the low-en-
ergy, small-coupling-constant limit for a highly
singular potential such as 1/r'. Of course, the
modified WKB method yields a correct approxima-
tion of the phase shifts at all energies. Now we
are going to see how and to what extent the approx-
imation is correct when compared with the regions
where the exact results are available. This modi-
fied WKB method will be reduced to the ordinary
WKB method at the high-energy limit. Therefore,
we see that we get an approximation method which
is valid at all energies. Previously we showed
that the inclusion of the A' term contributed to the
results which were summarized in a table in Ref.
1. At that time, we argued that the higher-order
terms must contribute to the results. We now in-
clude the h~ terms to demonstrate this fact.

The Schrodinger equation that we want to solve
is of the form

d'y+ p '(r)
dr a

where we let

t,(r) =p, ' = 2E —-[l(l+ 1)h'/r'] 2g'/r-4, (1b)

and from the assumption that only a one-turning-
point problem is discussed here, we take g' &0.
It is important to point out here that we are using
a different definition of g' (with respect to Ref. 5
by g /2 in their notation). The Schrodinger equa-
tion whose solutions are known is given by

d'4'+ P2'
~ 0 (2a)

where

t, (s) =p, '(s) = 2E —[f(t+ )a1'/s'] . (2b)

From a recent publication' we can see that, to or-
der h' (with corrections in the errors in signs),
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where the assumption is made that, in intervals
S, &S and r, &r, t, (S,) =0, t, (r,) =0, t2'(S) e0, and
t,'(r) o 0. What we want to show in this paper is
that we could extend Eq. (3) to include k' terms
and obtain further improvements as shown in Table
I. In Ref. 6, we obtained the phase-integral for-
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mula to order h4. However, in that paper the h4

terms of the phase integrals are given in terms of
the contour integral in a complex plane such that
the derivation is based upon a simplification,
namely, by means, of the free wave functions. In
the present problem we rewrite the phase integrals
in terms of definite integrals. It is then applied to
1/r' potential. The algebra becomes very compli-
cated as we go to higher orders. By transforming
the contour integrals into the ordinary definite in-
tegrals along the real axis only (Sec. II) we obtain
the correct improvement at the low-energy limit.

Here we think that it would be a straightforward
job to write out the higher-order terms, and al-
though it may be messy, we do not foresee any dif-
ficulty in using the same method.

II. GENERAL WKB PERTURBATION FORMULA

EXPANDED TO ORDER 5 FOR ONE- TURNING-
POINT SCATTERING CASE

The phase-integral formula as expanded to or-
der 8' for the one-turning-point scattering case is

r, +I, =Z, +Z, , (4a)
with

g2 t' t II2 y' t »
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(4c)

and with S replacing r $1 replacing r„and p, and

t, replacing p, and t, respectively in the right-
hand side for J, and J„where the Roman numerals
inside the bracket indicate the number of times
the function has been differentiated; for example

( )t'=d
Notice that the integrals involved are real and with

t, (r, ) = 0 and t, (S,) =0, and t, '(r) W 0, t, '(S) w 0 for
r ~ r, and S~S„sowe see that all integrals are
convergent. Equation (3) is expanded to includeI' terms and Eq. (4) is expanded to include k'
terms, which will give us the relationship between
phase shifts. For short-range forces we have at
large r and 8

P(r) ™sin(Ãr —2Lv+6„)

p(S) =sin(ES- 2m+6~),

with O'K'=2E. However, Eqs. (4) contain a rela-
tion between r and S. We can see, therefore, that

limK(r —S) = 6~ —6„. (6)
y~ oo

g ~ ao

Here we set 6~ =0, for we will use the three-di-
mensional free particle as the known case to be
studied in the latter part.

The derivation of Eq. (4c) starts from Eq. (23)
of Ref. 6. By using the formula gudv = —gvdu sev-
eral times, we see that
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where the integrations are around a closed contour
above and below the real axis, with r = r, and r = ~
included as previously specified. We can open the
above contour integral since there are no diver-
gences inside the integral now. So, after rearang-
ing we get Eq. (4c).

III. LOW-ENERGY AND SMALL-COUPLING-
CONSTANT PHASE SHIFTS OF THE REPULSIVE

INVERSE-FOURTH -POWER POTENTIAL

We are presenting our results in the low-energy
and small-coupling-constant limit. There is no
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difficulty in writing out the phase shifts in general
terms where the energy and the coupling constant
are not small. But we are interested in establish-
ing the validity of the high o-rder terms like Eq.
(4c), so we are concentrating our efforts in the
low-energy, sma11-coupling-constant limit. What
we are going to do here is to present the results
first in Table 1. (We list the contribution to eight
decimal places. ) This is essential, for then we

can believe that the correction is in the right di-
rection as well as of the right magnitude. The
interesting thing that we have encountered is the
fact that many terms in Et[s. (4) add up to such a
small coefficient with the correct magnitude, as
will be shown. So we believe that the A4 terms as
given are essentially correct.

Since the terms to the order of 5' have already
been reported in Ref. I, we concentrate on the
calculation of the 54 terms. To order k2, we have,
instead of Eq. (8),

limK(S —r) = [l(l+ 1)]'/'-,'s+ j,/, ~s }T
1

$~ l l+1 '""
+ (r,'+r, ')'"[ 2E(,'s,-t )+ Z-( ,'s, u)j-

8Z(-,'s, ) )

TABLE I. A list of S~, S2, S3, and S4 as defined by the
following relationships: The exact phase shifts are 5,
=27[K g S&, the phase shifts to zeroth order in I are
6 =27tK g S2, the phase shifts to first order in I are
dt}) = Z}}KgtS&, and the phase shifts to second order in St
are 6,2~ =27tK g S4. Remember that all of these values
are an approximation to first order in K2g2.
S( =1/(2l +1)(2L —1)(2l +3), S2=1/8[l(l +1)],S3
=St[1+5/8l (l +1)], and S4 —-S&(1+5/81(l +1)
+0.49{1/[1(l +1)]t})

S1

0.066 666 67
0.009 523 81
0.003 174 60
0.001 443 00
0.000 777 00
0.000 466 20

S2

0.044 194 17
0.008 505 17
0.003 007 03
0.001 397 54
0.000 760 73
0.000 459 24

0.058 004 85
0.009 391 13
0.003 163 65
0.001 441 22
0.000 776 57
0.000 466 07

0.063 418 64
0.009 50689
0.003 17388
0.001 442 93
0.000 776 99
0.000 466 20

if we keep only terms to order K'g2.
We will obtain the higher-order, or order-)f',

contribution. The trick here is to first perform
the integrations in terms of elliptic functions and
then find the corresponding expansions for the el-
liptic functions. We obtain, therefore,
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g2E ~p
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and
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Of course if g is set to zero, Eq. (7) should be an
identity except that S is replaced by x. Equation
(7) further reduces to

g2E ~p

1 1
l(l+1)a'K

1035g g g
[l(1+1)]'/'lt ' ' (9e)
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8l l
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g2IC2~0

r2dr

„, [(r' —r,')(r'+ r, '))' '(r'+ r,')

where

2E2~ 0

r'dr
„, [(r' —r2')(r'+ r, ')]' ~'(r'+ r, ')'

Substituting Eqs. (9a)-(9g) into Eq. (4), we obtain
to the order of 5' and to the order of K'g' the ex-
pression

= (K'g' —,
'

n [l(l + 1)]'~'].

8l l+1 '
l l+1 (10)

]]," 2K ~0

wK 15 g'K'
2[(((+1)]'~ 2 [l(1+1)]'2*]

J"„[(r'—r,')(r'+ r )2]'~'(r'+ r,')'

From Table I, we see that Eq. (10) yields a 5,
which is a closer approximation than was given
before by Eq. (8).
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