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The relevance of the Gell-Mann —Low eigenvalue condition to the description of the critical behavior in

statistical mechanics is discussed in detail, using the natural framework of the Callan-Symanzik

equations, in 4-& dimensions. Wilson's method relying on the existence of a bare coupling constant
adjusted to yield scaling laws in perturbation theory is justified and Wilson's results for critical
exponents are rederived using renormalized perturbation theory.

I. INTRODUCTION

Wilson's theory of critical phenomena allows one
to calculate the critical exponents as power series
in e =4 —d, where d is the dimension of the sys-
tem. ' ' These exponents are easily related to the
field-theoretic anomalous dimensions introduced
by Wilson, ' either for the field itself or for com-
posite operators made of powers of the field. The
calculations which have been made using Wilson's
Feynman-diagram method' consist in constructing
an asymptotically scale-invariant' theory in 4 —c
dimensions. The existence of such a theory is a
priori somewhat surprising, since when d is not
equal to four, the coupling constant has a dimen-
sion, and therefore one expects below four dimen-
sions the Green's functions to behave, for large
momenta, like their Born terms. We have studied
here why such a theory may exist by examining
the Gell-Mann-Low eigenvalue condition' using
the more rigorous framework of Callan-Symanzik
equations. '

It is found that there is a solution for the cou-
pling constant to this eigenvalue condition, but
this solution is not "attractive, " i.e. , it is only for
that particular value of the coupling constant that
one obtains the asymptotic scale invariance. One
has then to understand why critical phenomena
are described by this particular value of the cou-
pling constant. It is shown that this value corre-
sponds to a limit in which the bare coupling con-
stant goes to infinity (although the renormaliza-
tions are finite in 4 —e dimensions). In fact, in
statistical mechanics there is a natural momen-
tum cutoff A much larger than the physical "mass"
and momenta, ' which is provided by something like
the inverse of the lattice spacing, and the bare
coupling constant is measured in units of A'. '

Therefore the universality of critical phenomena,
that is to say, the independence of the critical ex-
ponents with respect to the interaction, comes
from the fact that one has a large bare coupling

constant for which the renormalized coupling con-
stant is automatically fixed at the solution of the
eigenvalue condition. Finally, since the solution
for the coupling constant to the eigenvalue problem
is small when e is small, the calculation of the
corresponding values of the anomalous dimensions
may be done using the renormalized perturbation
theory in 4 —z dimensions. "

The explanation proposed here differs somewhat
from the one given previously by Mack and
Schroer. " These authors considered the mass-
less theory (the critical point) in the long-distance
limit for which the solution to the eigenvalue con-
dition becomes attractive. In our work, scaling
laws are shown to hold in the vicinity of the criti-
cal point, for momenta much larger than the mass.
In physical terms, this means that the power be-
havior of the correlation functions at the critical
temperature T, holds in the vicinity of T, for dis-
tances much larger than the lattice spacing, but
small compared to the correlation length. In a
subsequent work the same ideas will be applied to
obtain the equation of state and corrections to
scaling laws. "

The setup of this article is the following: in Sec.
II we briefly summarize the results of the Callan-
Symanzik theory in four dimensions and give the
modifications which appear in 4 —e dimensions. In
Sec. III we show how to calculate explicitly by this
method the expansion in powers of e of the critical
exponents. Section IV is a discussion of the possi-
bility of having an asymptotic scaling behavior in
4- e dimensions; the connection with statistical
mechanics is examined.

In Sec. V we illustrate our previous consider-
ations by the model in which the number of com-
ponents of the field y (x) becomes infinite, and
for which the exact solution is known.

The last section contains some speculations in
an attempt to show that it is unlikely that the ei-
genvalue condition may be satisfied in four dimen-
sions for an attractive value of the coupling con-
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stant if the function P(g) is analytic. A short ap-
pendix gives the values of the relevant Feynman
diagram in 4- e dimensions.

If, in addition one assumes that P(g) has a single
zero g„with P'(g„)& 0, then g(A) has a finite limit
g„and, for a continuous range of values of g, one
has

II. CALLAN-SYMANZIK EQUATIONS
IN 4- e DIMENSIONS I""(XP,;m, g) A4 ' '~ «-&~' (6)

We shall study the asymptotic behavior of the
Green's functions in d =4- & dimensions for the
field theory, whose Lagrangian density is

Z n

&(x) =-—' Z Z (s;q ")'+m'(q")'
2 a=1 - f=l

i [ p2( )]2 8
6 motto( )

If P(g) vanishes at a point g„where P'(g„) is posi-
tive, then one obtains an asymptotically scale-in-
variant theory only when the coupling constant has
exactly the particular value g„; for that special
theory, one has

I'' (AP, ;m, g„) X' ' '&s~~"~~'
g-+ oo

where qr (x) is a field with n components and

n

y'(x) = Q y„'(x).
a=1

Since we shall limit ourselves to Euclidean values
of the external momenta, we have chosen the con-
ventions of statistical mechanics, where the time
is purely imaginary and the metric is Euclidean.
Let us note that in 4- ~ dimensions Z, and Z, are
finite quantities. Infinities only appear in the mass
counterterm which is of no interest here.

The natural framework to study the asymptotic
behavior of the theory is given by the Callan-
Symanzik equations. ' Let us first briefly summa-
rize the results in four dimensions. The one-par-
ticle irreducible Green's functions (or vertex
functions) satisfy the equation

g=m'u,

with which one recovers the analog of Eq. (2):

I' ' (Xp. 'm, u) =8 '" ' "I' ' (p m/z u)

(6)

Then the Callan-Symanzik equations have their
usual form [Eq. (3)] if g is replaced by u, where
now P and y are functions of u (and of d).

We choose to renormalize the theory at zero
momentum" by imposing

F~'~(p, -p; m, M) ~~o o
= m', (9a)

Let us now discuss how things are modified in
d =4- e dimensions. Since the coupling constant

g is no longer dimensionless —g has the dimension
m' —Eq. (2) does not hold any more. It is thus
convenient to introduce the dimensionless parame-
ter uas

I""(ZP, XP„m, g)
=~'-'I "(P "P.; /~, ), (2)

', I ~ ~(p, -p;m, ~)
p2 —p

I' ~ (0, 0, 0, 0; m, u) =g.

(9b)

(9c)
as can be seen by a simple dimensional analysis.

Therefore the asymptotic behavior in X may be
obtained by studying the zero-mass limit of the
theory. The functions I" ' satisfy the Callan-
Symanzik equations

m +P(g) ———,'sy, (g) I"~ =ai"',
~m Bg

where the hI' ' can be asymptotically neglected
(at least order by order in perturbation theory).
For the asymptotic part I',', of l ', this equation
yields

P(u) =m
p

s 1nZ, (u)
y, u =m

Bm

(10)

where the bare coupling constant gp is defined by

Zi(1i)
g'o=g Zs( )

~ (12)

Standard arguments give for p and y the following
expressions:

I',", (P&,'m/A. , g) = exp ——,'s dg'

~ r",,'(p, ;m, g(~)),
I

where g(A. ) is defined by.~(~) d+
P(g')

(4)

In terms of u these formulas become

d uZ, (u)
P(u) = -e —ln

( )
dlnZ, (u)

du

(13)

(14)
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III. EXPANSION IN POWERS OF e; CRITICAL
EXPONENTS

As stated previously, this function has a zero of
order E'.

The functions P and y are then calculated as
power series in u. An important difference with
four dimensions, where LL(g) is proportional to g'
for small g, is that P(u) has a term linear in u

(with a coefficient of order e). This fact will ex-
plain that the function P(u) has a zero u„of order
e and justifies the use of perturbation theory for
u close to u„and for small values of e. The cal-
culations will be performed in order to obtain
Wilson's anomalous dimensions" of the fields y
and y' (which determine the two critical exponents
q and y) up to order e' and e ', respectively.

The conditions (9b) and (9c) determine the coef-
ficients of the expansion of Z, and Z, in powers of
u. Some details about the calculations of the rele-
vant diagrams may be found in the Appendix. The
results are expressed in terms of the values of
the four diagrams a, b, c, and d, given in the
Appendix and of the geometrical coefficient

3(3n+ 14)Su„= e 1+@ —,
' +n+8 ' (n+8 ' +O(e') .

(19)

+O(R ),
and if we insert in that formula the value (19) of
u„ then

n+2, 6(3n+14)
2(n+8)' (n+8)'

+O(E ). (20)

Anomaious Dimensions of (L)

We are now in position to obtain y, (u„) up to or-
der e'. First we have from Zq. (14),

y, (u) = — (u S)' b + (u S) (2ab &d)-
e(n+2) n+8

r(d/2) (2v)' '

One finds

n+81+SR g
6

n~ + 26n+ 108 2 (5n+ 22)c

(15)

(16)

Wilson's anomalous dimension d~ of the field y,
is simply related to ys(u„) as shown by Eq. (7)
since in terms of d~, the vertex function I '
should behave as

gSLf - (S -1)u
(s) (~P() ~ S[2)2 —S)

yd S4

This means that the relation is

Z, = 1 + (S u)'b

(n+2)(n+8)(S )3( b ld)+O(u4)
54

In these expressions the coefficients of up are of
order (1/e), and these divergences when e goes
to zero are not surprising since Z, and Z, are in-
finite in four dimensions. However those singu-
larities should cancel when one calculates )8(u)
tEq. (13)j since P is finite in four dimensions. In-
deed the result is

(17)

P(u) =-u
6

(1 —e/2)(u S)

3n+14
+ (u S)' +O(u') . (18)

n+8
5( )=-

I
( — 5( S)

6

+ —', ( S)'[( +2)b ~ (5 ~ 22)(c —-', ')[I
+O(u'),

and when we replace the diagrams by their explicit
values,

2d~ =d —2+y, (u„). (21)

r) =y, (u„) . (22)

AnomaLous Dimension of (L)

One needs to know only two critical exponents to
determine the others by scaling laws. The diver-
gence of the magnetic susceptibility at the critical
temperature is characterized by an exponent y
which is related to the anomalous dimension of y'
according to

= 2-n
y= d-d 3

(23)

To calculate d 2 we shall consider the one-particle
irreducible Green's function, where one operator
is the composite operator (LS'(x). An additional re-
norma). ization is needed for the y' vertex, and we
shall call Z, (u) the corresponding renormalization

In statistical mechanics the two-point correlation
function at the critical temperature is character-
ized by a critical exponent q which is given in
terms of d~ (Ref. 4) by 2d~ =d —2+)L. Therefore
one has simply
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constant determined by

e'"""'(q '(x)q (y)q (o) ) (24)

y, (u„) = — e 1+, +O(ee),
n+2 6e(n+3)
n+8 n+8

and using (23) and (29), we end up with

(32)

where the last renormalization associated to the
vertex (It)' is given by

(n+2)
y = 1+-',e n+8

((p'(x)(p(y)(p (0})=- Z, (u) ((p'(x)(p (y)(p (0))b„. .

This implies immediately that the function

r""'(q, p, " p„m, u)

(&x+py "i+ ' ' + ps xs)

(25)
+ —,'c'

2 (n'+22n+52) +O(e'),n+8 '

in agreement, as expected, with Wilson's result. '

IV. DISCUSSION OF THE EXISTENCE OF ASYMPTOTIC
SCALE INVARIANCE IN 4 —e DIMENSIONS—
CONNECTION WITH STATISTICAL MECHANICS

X ( Cp (X}(p(Xr ) ' ' rp(Xe ))cee perticle irredecilrle

(26)

satisfies the Callan-Symanzik equation

m—+p(u) ——(-,'s —1)y,(u) —y, (u) r'"")=~r""
r

8pl
(27)

where

a d lnZ~
ye = m —lnZe =—P(u)

BPl g dQ

For u=u„, the asymptotic behavior of I'""is
given by

r (l,e)()„q, y* ) )„-(e-2)(lf-2) /2-(e/2-1) )'2(e~) -)'e(ere)

(28)

and since in terms of d and d~~ it reads

r"")(zq; xp ) -~-"~"~2,

we obtain

d 2 =2d —y, (u„). (29)

Z, '=1 — a(Su) + (c —a')(Su)'+O(u'),

(30)

Therefore, we just have to calculate the expansion
of Ze(u) up to order u' to obtain y up to order e'.

In terms of the same integrals (given in Appen-
dix), the result is

Though the function P has a nontrivial zero in
4 —e dimensions, it is important to note that P(u)
is negative for small u's, and ther'efore vanishes
at u =u„near the origin, but with a positive deriv-
ative. Therefore this point u„ is not attractive,
that is to say, the ultraviolet asymptotic behavior
of the theory with u small but not equal to u„ is
not governed by the dimension y, (u„).

In fact, since the coupling constant has a dimen-
sion, one does not expect this theory to exhibit
scale-invariance; its asymptotic behavior is in
general simply given by the Born term. It is only
for that particular value u of u that the singular
behavior of the renormalization constants gener-
ates the asymptotic scale invariance as will be
discussed more precisely below.

It is therefore necessary to understand why sta-
tistical mechanics for which the scaling behavior
in the vicinity of the critical point is independent
of the interactions, leads to a renormalized theory
with this prescribed value u„of the renormalimed
coupling constant.

In order to understand this point, let us study
the behavior of the various relevant functions in
the vicinity of u„; P(u) has a single zero with a
positive slope: if

P(u) = (u (u —u„), u)
-=p'(u„) & 0

then

Z (
)(ye(rr ))/cr

and

for which we obtain

ye(u) = e (S u) [-a +(Su)(2C —a2)] +0(ue) .
6

(31)

Again, here the coefficients of Z, ' diverge when

goes to zero, but the same cancelation occurs
so that y, (u) has a finite limit. This gives

,' —(u —u„) "".
3

Therefore gc = m'uZr/Z2' becomes infinite when
u=u„. But it is to be recalled that in statistical
mechanics there is a natural cutoff given by the
inverse of the lattice spacing which, in the vicinity
of the critical point, is much bigger than all the
relevant mass and momenta.

Therefore we shall reintroduce a cutoff A in the
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Feynman diagrams although they are convergent,
in order to study the divergence of g, when u- u„.
The first correction to the finite part of a diagram
is at least of order (m/A)'. Therefore, with the
cutoff A, one has

, uZ, (u, m/A)
Z,'(u, m/A)

which, for u in the vicinity of u„, behaves like

1g'™(u —u„)"~+ B(m/A)' '

(36)

(37)

where B is some constant.
Thus, we see that g, (u ) is proportional to A'.

Conversely, in statistical mechanics g„which is
measured in terms of a parameter which is much
larger than all the physical quantities which de-
scribe the critical point, is of the form:

go uOA

Equation (36) shows that this behavior is only pos-
sible for u near u„. More exactly, solving Eq.
(37), we get

g,(e) = — e 1+elnA+1 6 3(3n+ 14)
S n+8 n+8'

+O(6 ) (4o)

in complete agreement with the value which has
been used in the previous calculations. '4

V. LIMIT OF INFINITE n

We consider now the situation in which the num-
ber n of components of the field cp„(x) becomes
large, and the coupling constant goes to zero as
1/n. It has been shown" that, in this limit, the
geometrical series of the "bubble" graphs gives
the dominant contribution to the 4-point function
I' ' and therefore Z, and Z4, and that Z, equals
unity.

Summing up the series, one obtains:

&&ga&(pg) =~~g6ai&[(pi+p2)']+~;~~gr&((p&+ps)']

+ ~xi ~pa&~(pi +p4}'] ~

Ak' =p
1

v 1/g, + p n m ' I (k/m )
u-u~- (38)

' 1/u+-,' n[l(k/m) —I(0)] '

So when (m/A) goes to zero, which corresponds
to the critical point, u goes to u„ independently of
the value of u, .

Now, if one wants to perform a calculation in
perturbation theory, one has to take u strictly
equal to u„. By Eq. (37) we see that this corre-
sponds to choosing a particular value for g,: g,
=A'/B Therefor. e we understand that, in order
to calculate in perturbation theory with the bare
coupling constant g, as is done in Wilson's method,
a cutoff has to be introduced.

In order to achieve the comparison with Wilson's
method, let us calculate the value g, (e) which gen-
erates scaling in perturbation theory, by expand-
ing all quantities in powers of e. Using Z, /Z, ' up
to first order in e:

go = m Zgup

Z] Zg

1
1 —v nu I(0}

(41}

d'p
(2v) p +1 (p+k) +1

For large k, I(k) behaves like k ' and in terms of
our previous notations, I(0) =Sa.

Hence one obtains P(u):

p(u) =-au[1 —p nuI(0)].

Therefore

Z,
1 c ~+lnm

we obtain

m m=u„1+a ln — 1-c —,+ln-
A A

+O(e')

(39) 6
nI(0) '

Qn this example we see that I' ' behaves asymp-
totically as a constant, except for the special value
u„of u, for which

A(k )-k', k-~
and go is infinite. We shall introduce a cutoff in
order to compute g, . Using

= u„(1 ——,
' c) +O(c') .

This yields for g, (e) the result

1 m
I(0, A) =I(0)——

A

we obtain

(44)
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go =A'u„(l —c/2)

u =u~.

(45) The relevant Feynman diagrams a, b, c, and d,
extracting the geometrical factor S defined previ-
ously in Sec. III E{I.(15), have the following ex-
pressions:

Conversely, if one takes g, =A uo one sees that
A(k', A) is independent of u, for A»k» m and then
has a scaling behavior. But if one expands A(k', A)
in powers of g„one shall only be able to exhibit
the scaling behavior for the special value g,(u„) of
8'0.

VI ~ SPECULATIONS ABOUT THE NONEXISTENCE
OF SOLUTIONS TO THE EIGENVALUE CONDITION

IN FOUR DIMENSIONS

We shall try now to argue that if the function
P(g) is nonsingular for some domain of g around
g= 0 in four dimensions, then P(g) cannot vanish
for g positive with a negative derivative. The ar-
gument goes as follows: In 4-e dimensions it
seems impossible for P(u, e) to vanish with a neg-
ative derivative for a value u * of u in a domain
where P would be nonsingular; indeed if such a u *
would exist then' one would have asymptotic scale
invariance for some continuous range of values of
u around u*. But, a,s argued before, in 4 —e di-
mensions scale invariance may only occur for dis-
crete values of u, which are values for which Z, (u)
is singular. Thus it is hard to imagine how such a
u* could exist. Now we let e go to zero and as-
sume that P(u, e) is continuous, as is indeed the
case order by order in powers of u. Then if there
is no attractive zero in 4 —& dimensions, it will
be also true in four dimensions.

Of course, this argument relies on the hypothet-
ical assumption that first P(g) has some nonvan-
ishing domain of analyticity, and second that one
can still use perturbative arguments to describe
the theory beyond the first nonvanishing zero of
p(u, e) given in E{I. (19). If these speculations have
some relevance, these "arguments" which are only
based on the nonexistence of a universal asymptot-
ic behavior in less than four dimensions, should
apply to other renormalizable field theories as
well.

1 d q
(2w)' (q'+1)' '

1
(2w)2~ F2

d" qA q
(q +1)(q +I)[(P+q +q, )'+1]

(2w)" . (q,'+1)'(q, '+1)[(q, +q, )'+1]

1 d
(2w)" dp' ~2,

qc

(f +q.)'+I (q,'+ l)[(q, +q, )'+I]

Expanded in powers of e, their values are:

1
a = —(1 ——,'c) +O(e),

b =-—(1-—,'e) —{{I+0(e),
8e

c=,[1—~ze+O(e )]26

1 x, 1
d = —,[1-—,'e +O(e')] ——I,6e' 4e

where

The integral I, which is renormalization-depen-
dent, disappears from the results for the critical
exponents. For example, if one decides to calcu-
late in the zero-mass theory, with the s-point ver-
tex functions renormalized at the point

APPENDIX

One calculates the following diagrams, using the
Feynman parametrization, and expanding in powers
of c.

u
p& pq

= (s5;q —1),s —1

the results for d~ and d~2 are the same, but a, b,
c, and d are modified and I does not appear.
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The dynamics of a relativistic string made of spinning material is discussed in two dif-
ferent formulations. The first is a manifestly covariant formulation under a gauge trans-
formation. The second is a Hamiltonian formalism which enables us to make the transition
from the classical to the quantum description in a coherent way. The Lagrangian is also
constructed. The results of our investigations are as follows: (1) The mass spectra here
coincide with those of the Neveu-Schwarz model. (2) The model is ghost-free. (3) The
Poincare generators Nt;"' and 6'" are constructed. The quantization is shown to be consis-
tent with Lorentz covariance if the dimension of space-time is 10 and the Regge intercept
~ ]ls 2.

I. INTRODUCTION

The string picture" of dual models has two im-
portant aspects. The first is the substantiality of
the picture, which helps us to figure out intuitive
images and gain an insight into a dynamical mech-
anism. The second is the mathematical refine-
ment of the formulation. In particular, in the
treatment of gauge invariance, which is the funda-
mental clue in understanding dual models, one ean
take advantage of techniques deve1oped in gravita-
tion and Yang-Mills theories. "4 In a recent work
Goddard, Goldstone, Rebbi, and Thorn' have
greatly improved our understanding of the Vene-
ziano model. One improvement is the simplifica-
tion of the ghost-eliminating mechanism by Brower,
and Goddard and Thorn, ' which is now understood
as given by the existence of a certain gauge where
no ghost appears. ' Another is the relation be-
tween Lorentz covariance and the dimensionality

of space-time, d. In their string model they have
shown that the quantization is consistent with
Lo rentz covarianee if d = 26.

In view of these aspects, it is a challenging
problem to extend the string picture to the Neveu-
Schwarz models (NSM). In a previous paper'we
showed a manifestly gauge-invariant formalism
of the string model, which reduces to the NSM in
a special gauge. In the present article, we further
develop the argument and give the Hamiltonian and
the Lagrangian formulations, which are useful for
various purposes, i.e, , the quantization of the
string motion, the incorporation of the interaction
with external sources, ete.

The model we consider is the one based on a
string on which Lorentz vector quantities (spine)
are continuously distributed. ' The system is in-
variant under a gauge group. The generalized
Hamiltonian formalism developed by Dirac, ' then,
enables us to provide a quantization procedure.


