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Calculation of the Graviton Self-Energy Using Dimensional Regularization
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One-loop contributions to the graviton self-energy are calculated, in the context of covariant

quantization, by employing a modified technique of dimensional regularization and by extending

Goldberg's version of the Einstein Lagrangian to n dimensions. It is shown that the sum of the

graviton and fictitious-particle contributions to the graviton propagator satisfies Slavnov-Ward identities

and that th'e finite part of this sum can be extracted in a manner consistent with these identities. There
are no infrared problems in off-mass-shell Green's functions, and tadpole contributions can consistently be
set equal to zero.

I. INTRODUCTION

The beauty and apparent simplicity of Einstein's
theory of general relativity give little indication
of the difficult problems which one encounters in
the quantization of the gravitational field, for in-
stance in the derivation of Feynman rules. To de-
rive these rules, one may pursue one of several
approaches to quantization, such as the technique
of canonical quantization or covariant quantiza-
tion. The general program of covariant quantiza-
tion for the gravitational field has previously been
studied by Feynman, Mandelstam, DeWitt,
Faddeev and Popov, ' and Fradkin and Tyutin. ' In
particular, these authors emphasized the neces-
sity of introducing fictitious particles in order to
construct a unitary and gauge-invariant 8 matrix.
Despite all this theoretical work, there is a
marked absence of explicit calculations in quantum
gravity.

It is the purpose of this article to suggest a
regularization technique and to apply it to the
graviton self energy work-ing to lowest order in
the gravitational coupling constant K (K' = 32ma ).
Following the technique of 't Hooft, we derive ap-
propriate Slavnov-Ward identities ' for the two-
point graviton Green's function.

In view of the somewhat technical nature of the
present paper a few comments are in order on its
physical background. In the classical theory of
gravitation one is led fairly naturally (although
not uniquely) to the Einstein Lagrangian which is
in general a nonlinear function of a single field,
namely the metric tensor, and which involves two
derivatives. From the relativist's point of view
there is little motivation, either theoretical or
experimental, for trying to quantize this Lagran-
gian except as a possible way of escaping gravi-
tationa1. collapse. However, for the quantum-field
theorist it is natural to think of the curved space
of general relativity as being due to the propaga-

tion of "gravitons" in a flat background metric.
While such a picture appears to be consistent for
tree graphs, higher-order contributions lead to
divergent Feynman diagrams containing graviton
loops and this necessitates renormalization. The
Einstein Lagrangian is also interesting to the
quantum-field theorist as an example of a non-
Abelian gauge theory possessing a high degree of
symmetry.

The Einstein Lagrangian contains two deriva-
tives in the interaction part making the resulting
Feynman diagrams highly divergent; for this rea-
son the problem of renormalizing the Lagrangian
to all orders is still unresolved. However, by
analogy with quantum electrodynamics, we might
expect that the use of a gauge-invariant regulari-
zing technique would remove at least some of the
leading divergences. In this way a field theory—
which on power-counting arguments alone might
be expected to be nonremormalizable —can in fact
be shown to be renormalizable through the extra
restrictions imposed by gauge invariance. In this
paper we demonstrate that dimensional regulari-
zation successfully solves the first problem in the
renormalization program: It provides a regulari-
zing technique which is gauge-invariant in the
sense of preserving the Slavnov-tVaxd identities.
Although the completion of this program, i.e., the
program of providing a completely renormalizable
quantized theory of gravity, is far from being
realized, such a program could have interesting
consequences. For instance it would be possible
to test the conjecture~ that gravity —by smearing
the light-cone singularities —provides a universal
regulator for other quantum-field theories as well.
Quantum effects might also play a crucial role in
gravitational collapse.

The outline of the paper is as follows. In Sec.
II we use a particular form of the n-dimensional
Einstein Lagrangian (developed in Appendix A) to
derive the graviton and fictitious-particle Feyn-
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man rules. The remodeled Lagrangian, written
in terms of the tensor density g s =v-g g "8, leads
to a set of Feynman rules which is considerably
less complicated than the corresponding set in
terms of the metric tensor g 8 (see Sec. VC). In
Sec. III we derive the crucial Slavnov-Ward iden-
tity [Eq. (3.2)], which hoMs to each order in the
gravitational coupling constant K.

, The explicit calculation of the graviton self-
energy and our suggested technique for regulari-
zing it are outlined in Secs. IV and V. In the first
part of Sec. IV we compute in considerable detail
the contribution from the fictitious-particle loop.
The analogous derivation for the graviton loop is
given in Sec. IV B. We emphasize that, due to the
particular regularizing technique employed, there
are no infrared-divergence problems arising in
the off-mass-shell Green's functions.

To evaluate the various momentum-space inte-
grals, we employ a modified version of the method
of dimensional regularization' ' which is, p3rtic-
ularly well suited for gauge theories and whose
principal features may be summarized as follows.
First we define each integral over a 2~-dimen-
sional Euclidean space (&o in general complex) and
evaluate each integral for general ~. We then ex-
pand the resulting expressions in a Laurent series
about the pole ~ =2 (four-dimensional space-time).
Pole terms in the Laurent expansion may be can-
celed by inserting appropriate counterterms in the
interaction Lagrangian. The value of each integral
is given by the remaining part of the expansion,
continued to Minkowski space.

We begin Sec. V by showing that the total ampli-
tude T 8 &j(p) for the graviton self-energy satis-
fies the Slavnov-Ward identities [Eqs. (5.11) and

(5.12)]. In Sec. VB we construct with this self-
energy T 8 8&, the connected Green's function

Q„~&z. The latter satisfies the Slavnov-Ward iden-
tity (5.10), which is independent of &u. Hence, ex-
panding Q„„z about u) = 2 and continuing analytically
to Minkowski space, we find that Q„,„~ decomposes
into a pole term and the finite (physical) part of
the connected Green's function.

We shall work almost entirely in Euclidean
space; only in Sec. VB do we change from Euclide-
an to Minkowski space. We employ natural units,
5=c =1, throughout this paper, in which case the
gravitational constant R' =32vo = 4x10 44(m, )

'
= 4X10 "QeV ', where G is the Newtonian con-
stant and m, the mass of the electron.

II. FEYNMAN RULES

In this section we summarize the relevant Feyn-
man rules (see, for instance, Ref. 6). The La-
grangian density is given by

2~ =+~~ ~-gg" RPI (2.1)

where g]" is the metric tensor. R„,is defined by

R~„=I'~p „—I ~„p —I'p„l p+I'P„l ~p,

where

p 1
[]v

=
& & (&]]o, jj + &o v, [j k']]u, a}

It is convenient to define

(2.2)

(2.3)

(2.4}

which enables us to write 2 in the form (see Ap-
pendix A)

2K' g g~&g~' n —2 g g~~g~ 2~x

(2.5)

where n is the dimension of the space. Next, con-
sider the generating functional (see Appendix B)

z[j& ] = Jd[g"']z[g" ]

x exp j d~ g+—gP"~ 8 gP»

(2.6}

where &[g" ] is the fictitious-particle contribution
and -(&'a) '(s„g"")' the gauge-breaking term.
&[j„„]leads to an S matrix which is unitary as
well as independent of the gauge, specified by the
parameter a.

If we define the graviton field Q"' by

g]]v 5][jj+Ay]jjj (2.7)

(2.9)

we find that

q

FIG. 1. The three-graviton vertex.

where 5~" is the n-dimensional Kronecker 5, then

g„,=5„.-&4'„.+&'4'„4u, -&'4„4a84 g. +oK') .
(2.8)

Due to definition (2.7), there is now no need to
distinguish between upper and lower indices on

Writing the Lagrangian 2 as
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&[2] (&) =k~g.gent, g (&) —
2 („2)s„]t]„s„APP(&)

(2.10)

We fix the gauge by choosing u =-1, which results
in the considerably simplified free propagator

D„B ~p(x) =-,' (5 „~58„+5„p58~ —5„85„„)D(x), (2.11a)

where D(x) = (47]x') ' is the massless scalar prop-
agator, or, in momentum space,

I
D s ]p(»=2 ~ (5 ~58p'5~5[]], 5-P~, ).

(2.11b)
The inverse of the fictitious-particle factor 6[gP"]
is shown in Appendix B to be

(k[g""]) ' fd[[ ]d[n„]a px] fidel' [II„ „iilC(p„, „—Q il, 8„8 —g „ii, ii +g„„ ii )]$ I, ,

where q„nad $„are the fictitious particles whose Feynman propagator is

(2.12)

(2.13)

[We also observe that (T($„$,)) =0 =(T(q„q,)).] The graviton-q-$ vertex, in momentum space, is given by
[see Fig. 2(c)]

V«], p(k» k2, ks) -K[ 5U„kxs]k»+5&pk, «k38)]
with the notation

A((„B8)—= p (A~Be +ASB„).
From Eqs. (2.5), (2.7), and (2.8) we find for 2&»

1 I
[3) 2 ~OP ~PE P~PE, a n 2 ~]]]]~ Pei/v, a ~P1 APa, T~]T, 0 ePK, P ~TK P n 2 ~PT, P~!l!I,P

With the labeling shown in Fig. 1, Eq. (2.16) implies the momentum vertex

(2.14)

(2.15)

(2.16)

p((q q q ) = — q q

+1 2
q

+ ' ' 25 5 — 5 5 +2 5 5
2

q(a3q83) 1{ 2 82)81 n-2 181 282 q( 2 82)(al 81)( 3qe3)

+2 1 g |) 3 +2 2
q(u3 83)(a2 e2)(ulq81) q(al 81)(u3 B3)(u2qe2)

+ 2 ~ 3 5 5 5 + 5 5 5 -252 2
n —2 ~1 2 e2'el "3e3 n-

+1~ 3 5 5 5 + 5 5 5 —25
2 2

n —2 2 1 el e2 3e3 n 2 2 3 e3 e2 lel 2 1 e1 3 e3 e2

+' ~ ' e ~ s +
2 2

3( 1 el)83 28' n 2 3( 2 82)83 lel 3( 1 el )( 2 82)
J

(2.17)
III. SLAVNOV-WARD IDENTITY

In this section we derive the Slavnov-Ward identity' following the technique of 't Hooft. " We first note
that the functional Z[j„,] of Eq. (85) with j '=0 is, in fact, independent of B"(x). Hence, instead of using
p(B) [see Eq. (810) of Appendix 8] as a weight function, we can use p(B"-J"), where J'(x) is some arbi-
trary function of x. Hence,

&[i,.=0]= J~dR"']~[i[ ']~W if & — .(ii g "-z")*de[ (3.1)

is independent of J"(x).
Expanding (3.1) as a power series in J'(x), all coefficients of J" (except the zeroth order) must therefore
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vanish. Setting the coefficient of 4"(z)J~(y} to ze-
ro, we obtain the Slavnov-Ward identity

2
n(T&p .Il(s)&Ra, x 5)) = -~ s~ 4' -S),

(3 2)
Equation (3.2) must be true for each order. in K
and for any gauge specified by the parameter n.
We note that Eq. (3.2) does not depend on the di-
mensionality. From Eqs. (2.6) and (2.10) we ob-
tain for the graviton propagator

(a) (c)
k

FIG. 2. (a) Three-graviton vertex. (b) Four-graviton
vertex. (c) Graviton-fictitious-particle vertex. The
two different fictitious particles ( and g have momentum
labels k 3 and@ 2 and polarization labels p, and A, , respec-
tively.

aves

ev'n&

~V8 (3.3)

If we substitute Eq. (3.3) into the left-hand side of Eq. (3.2), we find that the latter identity is indeed valid
to lowest order in K. Furthermore, Eq. (3.2) implies, for the lowest-order self-energy contribution
~nsu'8' ~

P„P.D g 8(P}T 8 ~ 8 (P}D 8,.(p)=o. (3.4)

IV. LOWEST-ORDER GRAVITON SELF-ENERGY INSERTIONS

The vertices relevant to our discussion are shown in Fig. 2, while all possible self-energy corrections
to order K are depicted in Fig. 3. In this paper we calculate explicitly only the contributions from. dia-
grams 3(a) and 3(b). The massless tadpole diagram 3(c) leads to an integral of the form J d'"q(q') ',
which can be treated by a suitable redefinition of the 2u-dimensional Gaussian integral over momentum
space (2&v denotes the total number of dimensions}. For further details we refer the reader to some previ-
ous work. ""It turns out that such tadpole diagrams may consistently (within the framework of dimen-
sional regularization) be equated to zero. A similar conclusion applies to diagram 3 (f), which corresponds
to a 54(0) term. These 64(0) terms are due to the presence of more than one derivative in the nonlinear
interaction Lagrangian, and can likewise be shown to vanish in the context of dimensional regulariza-
tion.""Diagrams 3(d) and 3(e), containing zero-momentum propagators of mass zero, are more dif-
ficult to evaluate than 3(c) and 3(f). However, both 3(d) and 3(e) satisfy the Slavnov-Ward identities to be
discussed in Sec. V, so we shall ignore these diagrams here.

A. The Fictitious-Particle Self-Energy Loop

The evaluation of the fictitious-particle contribution to the graviton self-energy diagram (Fig. 4) is less
complicated algebraically than the corresponding calculation of the graviton loop (Fig. 5). Hence, we ex-
plain the derivation of the fictitious contribution in some detail to demonstrate the general technique.

From the Feynman rules developed in Sec. II and Appendix 8, the contribution from the fictitious loop
is given by

8 (p) =-&'Jtd"q I' s .(p, -q, q-P)D (-q)~;8; (-P, P-q, q}D.. (q -P) (4.la)

d' q q'q-p' '
&&, q-p ~ qa~-&&(Bp ~q, && q& ~ q-ps') ~ (spa') p q g' ~gg'~aa'&

(4.1b)

(C) (cl)

FIG. 3. Lowest-order contribution to the graviton self-energy.
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a'P

P

FIG. 4. Fictitious-particle loop. FIG. 5. Graviton loop.

where, following the dimensional-regularization technique of 't Hooft and Veltman, and Ashmore, ' the
momentum-space integration is defined over a 2&-dimensional Euclidean space. The y ggglating parameter
2~ (in general complex) now replaces the integer n of Sec. II. Before integrating the right-hand side of Eq.
(4.1b), we shall simplify the integrand by noting that 5„„=2+, and obtain

I".8;s (P)=-&']Id' q[q'(q-I)'] '[P.IBP q8+q Ps& P8-q qsP P8

+ (1 —2&v)q q 8q, p 8, —(1 + 2 ~)p q Bq„,q 8,

+ (2(al —1 )p~qs p~iq~ 2Mqaqs+~iq Bi)

Let us now consider the various integrals in Eq. (4.2). The basic integral I, ,

(4.2)

d2&q q2 q P
2 1 (4.3)

can be evaluated by using the following parametrization of the momentum-space propagators

(0')-' = J exp(-™q')da, q'& 0,
0

together with the formula

m b'd'~q exp(-aq'+ 2f) q) = — exp —,a & 0 .
Q a

(4.4)

(4.5)

The result reads
1

I, =m I'(2 —~) d&[P'$(I —&)]" '
0

=m [I'(2(o —2)j 'I'(2 —ro)I'(&u -1)1'(u —1)(P')

where we have used the following definition of the I' function:

I'. (z) = I dtt' 'e ', Re(z)&0.
dp

(4.6)

(4 7)

(4.8)

Before the various I' functions in (4.7) can be expanded about u& =2, it is imperative to continue them anal-
ytically to other values of ~ by means of the partial-fraction expansion, "

))

I'(I —&o)=g, + dtt e ' .„,n!(n+1 —u&)
(4.9)

The concept of "analytic continuation in the number of dimensions" is the most important single feature in
the technique of dimensional regularization.

The remaining integrals in Eq. (4.2) can readily be obtained by differentiating Eq. (4.5) partially with re-
spect to b„(thi vsector is also defined over a space of 2e dimensions). Thus

d' qq'q-P' 'q =p I„ (4.10)

' d' q[q'(q -p)'] 'q qs = 5 8 I, +p„psI„ (4.11)

d' q[q'(q-p)'j 'q q8q =p~sp I, +E 8 I„ (4.12)
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d'"q[q'(q -p)'] 'q q&q q, =p„p8p p I, +G
& I, +H

& I„2 ~ 2 ~ 2 II
~ r a

~~a
y a 7 a ra 8 a y a 9 t (4.13)

where

&asy =-&aspy + &Sy Pn+ &y&6,

~as yo a8 PyPa + ~8 y Papa +~ QapaPy + ~aypspa + ~nap SP y
+ ~yaPaPe &

H ey. =5 85yo+5 .58y+58.5 y

(4.14a)

(4.14b)

(4.14c)

Substitution of Eqs. (4.10)-(4.14c) into Eq. (4.2) yields

E&8+g ei (P) = K [P+P 8P+gP si I2 + (2(d —1)(PNP&ib sst I&+PNPsP~eP piI4) (2~ + l)(P&PsPi Ps ~ Is+P~Es ~~i se18)

—(2w —1){p„p8p,ps, I, +p&„.EB,&„sI)-p,p 8(6 BI, +p~sI,
+2+(p„p8p, petI, +G~B~ s.IS+H q~. s, IQ)+p~8p„ip8tI2] (4.15)

Each of the integrals I„.. . ,I, has the following
simple structure in terms of I, [Eq. (4.V)]:

I, = (2)-'I„

I, = -[4(2~ —1)] 'p'I„

I, =(v[2(2~ —1)] 'I, ,

I, =(u)+1)[ 4( 2~ —1)] 'I, ,

I,=-[ (8(2o —1)j 'p'I, ,

I, = ((v+1)((v+2)[4(4(u' —1)] 'I, ,

I, =-(u&+1)[8(4~' —1)] 'p'I, ,

I,=[16(4~' —1)] '(p')'I, .

(4.16)

(4.1V)

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

The following comment is now in order. If the in-
tegrals I„.. . , I, are evaluated "naively, " then
they are only valid in nonoverlapping regions of
the ~ plane. For instance, the original integrals
for I, , I„and I, [cf. Eqs. (4.21)-(4.23)] hold in
the nonoverlapping ranges 1&Rely&2, 0&Re&v&1,
respectively. If regularization is therefore per-
formed in this "naive" way, there is no unique
analytic continuation to the neighborhood & =2 and
it is then impossible to evaluate the physical am-
plitude unambiguously. It was shown in Ref. 10
that an analytic continuation is indeed possible, ,

provided we replace Eq. (4.5) by the definition

Jd q exp( —aq +2b q) —= — exp —-af (ru)
2~ I

b'
a

a& 0, (4.5')

&na =2~y (4.24)

we obtain the following useful identities from Eqs.
(4.14a)—(4.14c):

P( a+8 )n~ 8~ +P( n~ @8~)as ~asa~s e (4.25)

=2(~+1)p *

P)@)„ns 2paPS+P ~as y

(4.26)

(4.2V)

G~q~s =beep'+2((v+2}p„ps, (4.28)

Hx~ a=2(~+1)5 e. (4.29)

Let us continue with Eq. (4.15). Substituting the
various integrals (4.16}-(4.23) into the right-hand
side of (4.15) and simplifying the resulting expres-
sion by means of Eqs. (4.14a)-(4.14c) and Eqs.
(4.25)-(4.29), we obtain the following results for
the fictitious-particle contribution:

where f ((o) is a nonzero analytic function. It was
furthermore shown that the final integrals expanded
about 2~=3, 4, 5, . . . can be made independent of
the exact form of f (&u) by placing reasonable con-
ditions 'on f (a&) [e.g., f (to) and its derivative must
vanish for 2~ equal to an integer]. Since the final
results turn out to be indePendent of f (&u) anyway,
we do not consider this question any further here,
but instead refer the reader to Ref. 10.

Remembering that

E~8~I sl (p) +K [p~p 8p~t p SIEg (p ) + 5~$5~I 8 tE (p ) + (6~~tb Set+ 5 g(yt5~8 l)Eg (p ) + (5~8p~l p 8t+ 5~I e tp~p 8)Eg(p )

where
+(5a psps +~8 pcs +~as psp +~ssPW )E5(p')j (4.30)

E, = -[2(4~' —1)] '(uP+3~' —2u& -2)I„
E, =E, =-[8(4&v' —1)j '&u(p')'I, ,

(4.31)

(4.32)
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F4= -[8(4uP —1)] '(2uP +2(u+1)p'I, ,

E, = -[16(4sP -1)] 'p'I, .

The explicit form of these E's will be required in Sec. V. to verify the Slavnov-Ward identities.

(4.33)

(4.34)

B. The Graviton Self-Energy Loop

The procedure outlined in Sec. IV A for the fictitious loop may now be applied to the graviton particle
loop shown in Fig. 5. Using the Feynman rules of Sec. II [Eqs. (2.17) and (2.11b)], we have for the graviton
self-energy amplitude

R.q ., (q)=-*'K'Jq' qU(q, -q, q -q)„. q „,D(q) , „(,.D(q -q), „, „()(q,q -q, -q)„q(„~„,„.
(4.35)

The factor —, appears due to the way in which we have defined the vertex for three identical particles. The
reduction of the above integrand is straightforward though rather tedious and will not be repeated here.
We merely state the final result of this vast algebraic manipulation:

K
It s s (P)=32 d q 16{4pasp Ps -2[P PsP( qs&+q&. Ps&P;Ps ]

+ (2&u+3)(pn Psqaq qs ~ +qaqspa Ps ) —(u(»+1)[p&aqs&qa qs'+qnqsq&aP so]

+ (2(u2 -3(u —2)P( qs)P(~qqs ) + (2(u+ 1)(uq

+16{p'[ (2(u+4)p& J')s&&~qps»-2(up«5s&«qqsq&-2(uq«5s&&„~psq&+4&uq«5s)&(xqs )]

+ 4((u + 1)P '
qP& cP s & &

q('P s') 4 (~ + 1)q P& q)& s ) (0('p s ') ]

+ 5„&,5 s, »[(q')'(4&u' —4(u —2) + q'P ~ q (-8&u' + 8(u + 4) +q'P'(8&u' + 4&u —22)
(d —I

+p'p 'q (-8aP +12(u —8) + (P q)'(4&u' —20(u + 28) + (P')'(4(u' —5)]

5 s5, s, [(q')'(4&u —2) -q'p ~ q(8&u —4) -p'q'(6(u —6)

+p'p ~ q (10(u —12) + 4(p q)'+ (p')'(-2&u' —4&u + 9)]+,{p'5„s[4((u —1)p~qP sq + (2(u' —3&u' —2(u+2)p(„,qs, &
+ (-2(u'+(u'+ 5(u —3'q„.qsq].

(u - 1

+p q5„s[-(2&u —2)p„,ps + (-4&u'+6(u)((u —1)p&„,qs, & + (4&u+2)((& —1)'q„,qs, ]

+q'5„s[-(2&u —3) ((u —1)p,p s.+ (4(u+ 2)(&u —1)'p&,q s, &

+(-qtq —q)(tq —1)q,,qq, }+(q- q'; ()-()')}) (4.36)

It s s (P) =&'[PnPsp Ps It&(p')+5 s5 s I~, (p')+(5 ~5ss +5s 5 s )It, (p')+(esp Ps +5 s P Ps)I~4(p')

Our next task is to integrate the right-hand side of Eq. (4.36) with the aid of Eqs. (4.7) and (4.10)-(4.13)
and then to simplify the various terms, as before, using Eqs. (4.14a)-(4.29). The final form of the gravi-
ton loop contribution to the self-energy (4.35) reads [cf. Eq. (4.30)]:

+(5 PsPs+5s P Ps+5 sPsP +5ssP P )It5(p')] (4.37)

where

R, = [8(2(u —1)] '((u' —(u'+ 24&u —8)I„

R, = [32 ((u —I)'(2(u —1)] '(-7(u'+ 2(u'+ 13(u)(p')'I

83 = [32 (2(u —1)] '(8uP + 5(u —8)(p')'I, ,

(4.38)

(4.39)

(4.40)
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R4 = [32 (2(u —1)((a) —1)] '(2(u' —2(cP +20(u + 4)p'I, ,

R, = [32 (2(u —1)] '(-8&v' —5&@ +10)p'I, .

Equations (4.38)-(4.42) for the R's are essential for verifying the Slavnov-Ward identities (Sec. V).

(4.41)

(4.42)

V. THE PHYSICAL AMPLITUDE

A. Total Loop Contribution

Adding Eqs. (4.30) and (4.37) we obtain the total contribution from the graviton and fictitious particle
loops (Figs. 5 and 4, respectively)

T~s~r Si(p) =Z'[p„p, p&PB.T&(p )+5„q5~isiT, (p')+ (5«~58si+5s~i5„&i)T3(p )

+ (5„8p„,ps. +5 .8 p„ps)T4(p')+ (5„„.ps ps. +58„,P p8, +5 8 PBP,+588.P p„.)T,(p')], (5.1)

where

T, = [8(4uP —1)] '(+ 2&v' —5&v'+35~'+16&v)l, ,

T, = [32 ((u -1)'(4(u' -1)] '(-14(o4 —7(u'+36(u'+ 9(u)(p')'I, ,

T, = [32(4+' —1)] '(+16+'+18&@'—15+ -8)(p')'I, ,

T, =[32((o -1)(4(u' —1)] '(+4(u4 —10(u'+38(cP+32(@+8)P2I, ,

T, = [32 (4(u' —1)] '(-16(u' —18&v'+ 15&v + 8)p'I, .
In order to verify the Slavnov-Ward identities from Eq. (3.4), we must first construct the connected
Green's function

Q...„~(p) =D... 8(p)T 8 8 (P)D S,„g(p),
where D„, 8 and T„8„& are given by Eqs. (2.11b) and (5.1), respectively. The result is

Q„„„(p)= [4(p')'] '(a, „~„~T,+ (&u -1)'a,„„&T,+ [a,„,„z + (&u —2)a,„,~]T, + (&u —1)a~„,„~T~+a,„,„~TJ,

with

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

1vopg

2vapX

3vopX

. 4vapX

5vapX

=4P.P.P„» -2P'5» p.p. -2P'5,.P.»+(P')'5..5»,
4~ vo~pXP

=4(5„„5 q +5„q5 „)(p')',
= 4(p'5;5~x —5„gp.p. —5-pppx)p'

=4(5p p pk+5 pp px+5 xpopp+5o~p pg-25 opppx 5fkp po+p 5px5

(5.9a)

(5.9b)

(5.9c)

(5.9d)

(5.9e)

The Slavnov-Ward identity (3.4) can be written as

pppv@uapx(p) =0

or equivalently,

T3+P T, =0,

(p')2T, +4((u -1)'T, +4((u —1)(T, p'T4) =0.

(5.10)

(5.11)

(5.12)

Equations (5.11) and (5.12) are valid for all values of the regulating parameter ~ (in particular for &o =2)
as may be verified directly from Eqs. (5.2)-(5.6).

B. The Connected Green's Function

Our principal aim in this section is to obtain the finite part of the connected Green's function Q„,&~ by
expanding the entire right-hand side of Eq. (5.8) about ur = 2 and then separating the various pole terms
from the real and imaginary parts. To accomplish this we express the amplitudes Tz first in the form

T~=I'(2 —~)(p') 'f~(&u), j =1, . . . , 5, (5.13)



4328 D. M. CAPP ER, G. LE IBBRANDT, AND M. RAMON MEDRANO

expand each T& about ~ =2 giving

T, = . +[/(1)f,.(2) -f~(2)1np' -f~'(2)]+O(((u -2)'), (5.14)

and then continue Inp' analytically from Euclidean to Minkowski space (p' =p,'-p'). Consequently,

T& —— +[)(1)f,.(2) -f, (2) In.
~ p J -f, '(2)]+iaaf&(2) +O((tu —2) ), j =1, . . . , 5 (5.15)

where the prime denotes differentiation with respect to v and P(&u) = (d/d&u)[lnl (~)]. Before proceeding,
we note that Eq. (5.10), in terms of the connected Green's function Q, does not explicitly depend on ~. On
the other hand, if the Slavnov-Ward identities are written in terms of the self-energy amplitudes T&, then
there is an explicit dependence on ~. Therefore, in order to extract an invariant result, it is essential to
expand Q „,„~ and not the self-energy T„s 8, . With this in mind we write the total amplitude for the gravi-
ton self-energy conveniently as

(5.16)

where
7T2

Qt&&z 120 2 2 2
(+ 328a», v~

—59a»ou~ + 81a,„,&~
+ 104a,„,„~ —81a», &x ) (5.17)

Q „"'z——vr'[120 (p')'] '
([@(1 ) —In/ p'/] (+ 328a„,„~ —59a„,„~+ 81a„,„z + 104a~„„z—81a„,„~)

+ (30) '(896a„,„~ +1517a,„,„~ —1143a,„,„~+598a„,„~ +1143a,„,„~)},

q &m = +v'[120(p')'] '(+ 328a„,„z —59a„,„z + 81a„,&z
+ 104a,„,~z

—81a»,&z) .

(5.18)

(5.19)

We have therefore reached the major goal of this
calculation, namely the extraction from Q„„~of
the finite part Q"'e +i@' in a manner consistent
with the Slavnov-Ward identities (5.11) and (5.12).
Furthermore, each of the terms Q '", Q"'", and
Q'm satisfies the identities (5.11) and (5.12) sePa-
rately. The proof j.s straightforward and will not
be given here.

C. Lagrangian Density in Two Dimensions

A few remarks are in order concerning the Ein-
stein Lagrangian (A14) in two dimensions (i.e.,
n=2 or ~ = 1). Equation (A14) exhibits a simple
pole at n = 2 which arises from the fact that the
original Einstein Lagrangian (2.1) is meaningless
in two dimensions, reducing to a surface integral.
We note that the Lagrangian (A14) leads to a sim-
ple pole (n —2) ' in the vertex (2.17) but not in the
propagator (2.11a). On the other hand, if instead
of g 8 we use the metric tensor g 8 as our basic
field, we find that the simple pole (n —2) ' now
occurs in the graviton propagator' [cf. Eq.
(2.11a)]

(5.20)

rather than in the graviton vertex. Pole terms ap-
pear, therefore, regardless of the choice of field.
Another way of seeing this is to note that the field

transformation defined by Eqs. (A5) and (A8) is
singular in two dimensions. Our reason for work-
ing with g 8, rather than g 8, is simply the fact
that the corresponding expressions for the graviton
vertices are much simpler. Moreover, if we then
consider connected Green's functions (i.e., dia-
grams with propagators attached to the graviton
vertices), all terms proportional to (n —2) ' dis-
appear. This does not mean, of course, that the
use of g 8 would enable us to renormalize such a
two-dimensional theory.

VI. CONCLUSION

We have succeeded in regulaxizing the lowest-
order contributions to the graviton Green's func-
tion —consisting of the single graviton and fictiti-
ous-particle loops —by employing the method of
dimensional regularization, suitably modified to
cope with tadpole. terms. In order to obtain sim-
ple vertex functions, the n-dimensional Einstein
Lagrangian (2.1) is rewritten in terms of the ten-
sor density g s (see Appendix A). Since the regu-
larized Green's function (5.8) satisfies the Slavnov-
Ward identity (5.10) the Laurent expansion about
~ =2 (physical space) gives pole terms and a fi-
nite part [see Eqs. (5.18) and (5.19)] consistent
with this identity. The pole terms in the connected
Green's function may be canceled by appropriate
counterterms in the Lagrangian.

It is not clear at this stage whether or not higher
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order contributions can be treated in a similar
fashion. Also the question of the renormalizability
of the gravitational Lagrangian remains open.

We finally note that the invariant amplitudes
T, , . . . , T, given in Eqs. (5.2) to (5.6) also satisfy
Ward identities. The latter relate the two-point
graviton-fictitious particle Green's function to the
graviton fictitious particle vertex. The results of
this calculation are contained in a separate paper. "

g =detg„„,

g„„being defined via g„„g"~=5&~, and where

+pe I
pp v I pv p

I pvtop+1 avt pp y

with

+ nor

I sy
=

2
(8's2, y

+ I (uy, 8 -Zsy, ru) .

(A2)

(As)

(A4)
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APPENDIX A

In this appendix we derive a useful form of the
Einstein Lagrangian (2.1) in ann-dimensional
space (n a positive integer). In the classical the-
ory of general relativity one introduces a metric
tensor g"' and a Lagrangian density 8 given by'

so that

det g2v = det(v'-g g2") = (-g)"/2 detg""

(A6)

{A6)

detgqvdetgns = I

Hence,

g ( detg2v)2/ (2 2)

From the properties of determinants,

8 (detg"") =g 8g
"8 detg~"

and therefore

(Av)

(A8)

(Ae)

Bpg =
2

g'g' Bg', p- (A10)

Employing Eqs. (A4) and (A10), together with

The above equations are all equally valid in n di-
mensions.

We can derive a more useful form of the Lagran-
gian (2.1) by defining the tensor density g "8

(weight +1)

g ( g )I/2g g2V
2

where

(Al )
ns

gc ~8~, p
= -g 88 4'nag, p y

we obtain

(A11)

ay X6
~ay ' &Svg x &tv~ 8 ~ ~~~~&"~ ~ n —2 8 ~~ ~ & n —2 ~ ~~ 8 n —2

I

(A12)

Using Eqs. (A1), (A3), and (A12), together with integration by parts, we finally obtain the Lagrangian

(A13)

d x g' 8'yng'KTg, pg, a —n —2 g gnKg')I, gg, pg, g
—2g'nag', pg', K (A14)

which clearly exhibits the dependence on n In four d.imensions the Lagrangian (A14) reduces to the form
previously obtained by Goldberg. "

APPENDIX B

The gravitational fictitious -particle contribution
in a general gauge has previously been derived by
Fradkin and Tyutin. ' Here we give a simpler der-

ivation, valid in n dimensions, which mainly fol-
lows the approach outlined by Faddeev and Popov. '
Consider the generating functional

Z[j2„]= X[g" ]d[g""]exp i (2+gv"j„„)d», (81)
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where )([g""]d[g["] is the local gauge-invariant
measure. " X comes from having a nonlinear in-
teraction Lagrangian (containing more than one
derivative) and gives rise to 5'(0) terms. Since
such terms can consistently be set equal to zero
within the context of the regularizing technique
used here, 'o we do not consider the ]t[g"'] factor
further.

We are concerned here with a non-Abelian gauge
theory which gives rise to two problems in con-
structing a well-defined perturbation theory.
Firstly, the functional in (Bl) contains an infinite
volume which arises from integrating over points
in the function space of g~', some of which are
related by the gauge group G (0). For quantum
gravity —a non-Abelian gauge theory —it is essen-
tial to explicitly remove this volume integral over
the gauge group. Secondly, there is the usual
problem of inverting the free part of a gauge-
invariant Lagrangian.

To solve the first problem we reduce the inte-
gration over the entire g"' space to an integral
over a hypersurface defined by S„g""(x)=B'(x)
(B' arbitrary) and the integral over the group
G (0). To this end we define a functional A[g"']
via

a[d"']fd[ce]e[e„dr-p]=--) c. (82)

xexp i (2 +g""j„„)dx

Making the inverse transformation,

we obtain

(84)

where/(" is the result of operating ong)'" with Q,
and then insert this constant into (Bl), viz. ,

d lie.l
= fd[d"']d]()I a[d""Ie[e„d]l' p"I-

&[ie.l= f d[()] f d[[(e"]a[de"I()[e„[(""-p']exp i f (d +de ie.)«
\

r
d[g"']b[g""]5[&&g"' -B"]exp i (2+g "'j&„)dx (85)

where we have used the fact that the integration over 0 now leads to an irrelevant constant. Because of
the 6 functional in Eq. (85), we only need to evaluate the integral in (82) over the hypersurface defined by
&[&„g""—B"]. We thus obtain

(a[d""I)-'=f d[(,le[()(e„d"')I

X ~ Ol/ XP ~ 111 ~v X+ + '

P v t P PP~VX~P~P PPP~vk~P + PII @~X, X,

where we have used the exponential representation of the 6 functional,

a[a] = fd[c] exp i f a(x)c(x)dx

The functional (86) can be interpreted as representing fictitious particles $„and q& with only an $-q propa-
gator. The fact that we have evaluated 6 rather than the required A, simply necessitates the introduction
of a factor —1 for each closed loop of fictitious particles. If we make a change of variable in Eq. (82) and
use the functional determinant representation

det A. = exp (Tr InA)

instead of Eq. (86), we obtain

(b,[g "]) ' =exp(-i Trln[5„& -K((t)„„z„—$„85„&s8„-(t)„„5„&s+@„,„s&)p ']] . (89

Equation (89) agrees with (4.63) of Fradkin and 'Tyutin. '
We now consider the second problem, that of inverting the free part of the Lagrangian. The 5 functional

in (85) fixes the gauge but, except for the case B'=0, it is not in a very convenient form. However, we
observe that (85) is in fact independent of B', so that we may introduce a suitable weight function p(B)
(cf. Ref. 11)and integrate over B'. The effect of such a p(B) is to add a gauge-breaking term to the free
Lagrangian. In the main text of the paper [see Eq. (2.6)] we choose

a[P] =exp (-,f [P(a)]*dx) . (810)
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