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This paper presents the results and methods of computing the high-frequency radiation
emitted by freely falling particles moving in circular geodesic orbits in a spherically sym-
metric gravitational field. The high-frequency radiation, to which the methods of this paper
apply, is the principal part of radiated energy only in the case of a particle moving in a
highly relativistic, and therefore unstable, circular geodesic. The geodesic synchrotron
radiation emitted in this case shows as main features excitation of high-frequency harmonics
and a narrow angular distribution. A Green's-function solution of the scalar wave equation
is obtained using WEB methods. For application to relativistic circular orbits a parabolic
WKB approximation is required and yields solutions in terms of parabolic cylinder functions.
Although only scalar radiation is treated explicitly in this paper, the Green's functions con-
structed here for the solution of the scalar wave equation also suffice for the vector and
tensor calculations.

I. INTRODUCTION

This paper presents the results and methods of
computing the high-frequency radiation emitted by
freely falling particles moving in circular geodesic
orbits in a spherically symmetric gravitational
field. Some of the results have been reported pre-
viously, ' and further results have been quoted
from drafts of this paper in other work which has
already appeared. ' ' Although only scalar radi-
ation is treated explicitly in this paper, the
Green's functions constructed here for the solution
of the scalar wave equation also suffice for the
vector and tensor calculations just cited.

The high-frequency radiation, to which the meth-
ods of this paper apply, is the principal part of the
radiated energy only in the case of a particle mov-
ing in a highly relativistic, and therefore unstable,
circular geodesic. For particles moving in stable
circular orbits, the main radiation is the low-
frequency (fundamental) mode, for which numer-
ical computations are required, ' and the compu-
tations in Sec. IV of this paper give the asymptotic
form of this spectrum at high frequencies in which
only a negligible fraction of the radiated energy is
to be found.

There are very few examples known in the theory
of general relativity where the radiation emitted
by a well-defined source is computed. The only
widely known such calculation is the computation'
of the gravitational radiation emitted by a non-
relativistically oscillating quadrupole in the lin-
earized theory of gravity. Other computations in-
clude the radiation from a vibrating neutron star, '
gravitational brehmsstrahlung, ' the radiation
emitted by a small mass falling radially into a

Schwarzschild black hole, ' and an unpublished
computation by Zee" of electromagnetic radiation
emitted by a charge in a Schwarzschild circular
orbit. As an. introduction to the concept of radi-
ation emitted from a freely falling particle, "and
thus as a counterexample to uncritical attempts to
apply the principle of equivalence outside its do-
main of validity, the present example is much
preferable to those cited previously. The previous
computations of radiation from relativistic sources
require a much more complicated formalism (vec-
tor and tensor fields) and, because they deal with
low or fundamental frequencies, also lead to a re-
quirement for numerical solution of the differen-
tial equations. In the present example many com-
plications are avoided by focusing on a scalar
field, and the high-frequency approximation allows
the differential equations to be solved analytically
in a WKB approximation. The result is a "text-
book" example of radiation emitted by a freely
falling particle in a strong gravitational field.

The specific problem we consider is that of a
particle moving in a circular geodesic orbit about
a black hole described by the Schwarzschild solu-
tion of Einstein's equations of general relativity.
The standard coordinates, and the metric signature
shown, will be used:

ds'= (I 2Mr ')dt'-+(I-2Mr ') 'drm+-r'dQ2,

d0' -=d8' si+n'gd y' . (l.1)

We furthermore set 6 = I=c. Let Ibe the mass of
the black hole, p, the mass of the moving particle,
and pf the coupling (scalar charge) of the small
moving particle to the scalar field. The equations
are solved in the approximation
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p, /M« 1, p f/M«1, (1.2)
(2.1a)

which makes the geodesic motion appropriate for
the small particle, and which allows the neglect,
in Einstein's equations, of the stress-energy ten-
sor of the scalar field. The geodesic motion would
also give rise. to gravitational radiation as well as
scalar radiation in this problem, but the computa-
tions of these two forms of radiation are not cou-
pled to each other, and only the scalar radiation
is calculated in this paper. The high-frequency
parts of the gravitational radiation have been cal-
culated by Breuer, Ruffini, Tiomno, and Vish-
veshwara' using methods based in part on those of
this paper.

A most intriguing radiation spectrum arises in
' the case where the particle motion corresponds
to a highly relativistic (but unstable) circular or-
bit approximating the r = 3M null circular orbit jn
the Schwarzschild solution. In this case one ob-
tains an analog of familiar electromagnetic syn-
chrotron radiation that arises from relativistic
motion of charges in circular orbits in flat space.
As in that familiar example, the radiation from a
highly relativistic circular geodesic is emitted at
very high multiples of the fundamental orbit fre-
quency, and the radiation is beamed very strongly
in the plane of the orbit. (A subsequent calculation
by Hughes" shows that this radiation is also
strongly beamed in the azimuthal direction so that
it comes out in the form of a rotating lighthouse
beacon, as is also well known to be the case for
a single charged particle in a relativistic circular
orbit in flat space. ) The investigations reported
here of geodesic synchrotron radiation (GSR) were
initiated in the hope that extensions of this phe-
nomenon to cases involving rotating Kerr black
holes and noncircular "dive-in" orbits could, in
the case of gravitational radiation, shed some
light on Weber's observations. ' This hope was
not borne out and there do not appear to be any
reasonable prospects for interpreting Weber's
observations along these lines, as was described
in reviews by Misner. " The analysis of related
phenomena for Kerr black holes is given in papers
by Bardeen, Press, and Teukolsky, "Chrzanowski
and Misner, "and Chrzanowski is

II. CIRCULAR ORBITS

We are interested in calculating the power ra-
diated by a test particle executing circular geo-
desic motion in the Schwarzschild geometry.
Therefore, we begin with a review of the key for-
mulas that describe circular geodesics.

The geodesic equations for a particle moving in
the 0=m/2 plane in a Schwarzschild background are

V(r)= (1- ) (—,+1)-y', (2.1b)

d7 r2 ' (2.2)

dt 2~
(2.3)

Here & is the proper time and both y and hare
conserved quantities;

(2.4)

is the energy per unit rest mass of the test parti-
cle as measured at infinity. When y& 1 (y& 1), the
particle is in a bound (unbound) orbit. The con-
sta, nt

da7
A=P@=r

dt (2.5)

Equation (2.1) can be simplified for circular par-
ticle motion, for then

-)'(~,) = 0 =1'-((- )(—,+ 1) (2.7)

dy 1
—(r, ) = 0 = , (2h'r, —-2.Mr,' 6Mh'), - (2.8)

where rp is the radius of the orbit. These last two
equations may be solved simultaneously for y and
kin terms of rp. We find

(2 9)

(2.10)

The quantity b is the angular momentum per unit
energy at infinity; it is defined for all orbits. A
closely r elated quantity,

4m
(

2 1)1/2 + r0
0

(2.11)

is more convenient for unbound (y & 1) orbits,

is the conserved angular momentum per unit rest
mass of the particle. The angular frequency of the
particle motion is given by

d y h(l —2M/r)
COp—
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where b is the impact parameter for the scatter-
ing orbits into which the unstable circular orbits
with 3M&ro& 4M are converted by small pertur-
bations. No circular orbits exist with x,& 3M, but
~~= 3M, where y becomes infinite, is the radius of
an unstable circular photon orbit.

By using (2.9) and (2.10), we may simplify many
formulas of interest, eliminating y and h and re-
expressing the relations as functions of xo only.
In particular, the angular frequency becomes

(2.12)

(y &((y&(& . & g((((y y &7()
4w t

»&( ((( '-"f &(&(1&f&()(&'(e e)e&e-" (((.e)

and the field equation for (t(

=4~fp,
d 6'(x-z(t)).

(3.3)

For a particle moving in a circular orbit with
radius ro and angular velocity +0, we may write

while u = dt /d 7' reduces to 6'(x-z(t)) = 5(r-r )5(8-r/2)5(rp-(d t). (3.4)

3m

1
35 (2.14)

(2.15)

Although circular particle orbits exist for all
radii xo) 3M, not all of these orbits are stable.
Stability occurs only when V" (ro) )0. From Eq.
(2.lb) we see that the last stable orbit is at ro = 6M.
All orbits with 3M&ro& 6M are unstable.

%'e are particularly interested in unbound orbits
with y» 1. These orbits correspond to high-en-
ergy particles with impact parameters 5= 3&8 M
scattered by the black hole through angles d y»2m.
Letting ro=(3+5)M with 5«l, we find

Exploiting the spherical symmetry of the
Schwarzschild metric, we write the scalar field
in separated form:

r 'u, „(r}Y; (8, y)e '" o',

tft=- i=1m I

with the reality conditions

(3.5)

u, „=(-1)"u,„,
le, »I

( 1)»( 1& m

(3 6)

d'u, „' 2 4M t (1+1)
d„g2+(, 1 s l o+ 2 m(do uimkr

= C,„t(r*-rg), (3.7)

insertion of p into the scalar wave equation (3.3}
leads to a radial equation

III. THE SCALAR EQUATION

In order to develop the simplest possible model
of GSR, we consider the emission of scalar waves
by a test particle in a relativistic circular orbit.
The interaction between a scalar field (t( and a
test particle of mass p is described by the action C, = 4m(uoro) 'f-pF P(w/2, 0). (3.8)

in which the Regge-Wheeler coordinate ~*=r-3M
+ 2Mln(r/M —2) is used. The homogeneous part of
the wave equation was separated by Matzner" and
Price, ' who investigated the scattering of scalar
waves. The strength of the inhomogeneous term is

1 d'xO-g y8m ~P

(3.1)

Wave equations for source particles coupling to
electromagnetic" and gravitational' fields have
also been studied. The radial equations can al-
ways be brought into the form of a SchrMinger
equation

The test particle follows a world line z~(v) with
parameter v, which we may choose to be the prop-
er time. The. constant f measures the strength
of the "scalar charge" of the particle. The action
I reproduces Newtonian gravitational interactions
in the static limit when f= v G. By standard meth-
ods we obtain the energy-momentum tensor V=(l-2m/r)r 't(l+1)+ O(l ) . (3.10)

-u" +(V—E)u = 0

with E=m'uo' in each case, but with different val-
ues of V. In the limit l»1, all of the potentials
turn out to be identical:
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The odd and even tensor potentials differ by terms
of O(l '}. In the vector case, 0{l')—= 0 .

The solution of Eq. (3.7) is, apart from the fac-
tor C, , just a Green's function. It is obtained by
matching two solutions of the homogeneous equa-
tion at ro, with a discontinuity in the derivative as
specified by the 5 function. The boundary con-
ditions imposed are as follows:

(1) pure outgoing radiation at r* r-- ~,
{2}pure ing»ng»diation («wards the horizon

of the black hole) at r-2M or r*--~.
The details of the derivation are given in Ap-
pendix A.

From Eg. (A8) it follows that the asymptotic
solution of the wave equation (3.3) is

,'i r 'Im(u—,
I

'"c,„i.(r,*)rp(e, q )e' 0'"* ", r* +~-

Em

—,'ir-'Im~, I-''c „fl(reer, (e, q)e '~'" '", r*-=.

(3.11a)

(3.11 )

Here L{r*)and R(r*) are solutions of the homo-
geneous equation (3.7) in which the incident wave
travels to the left (toward r*--™)and right (to-
ward r*-+ ~), respectively, with "'unit flux"
normalization as prescribed in Eg. (A4).

The total power radiated outward to infinity (or
down the black hole) is obtained by integrating
over solid angles the outward (or inward) flux of
energy:

I' = — dQr T, = —— dQrout 1 Bp sp
4m dt

r & r, (3.12a)

the power spectrum. In the approximation of ne-
glecting all terms where lk ImI, an important re-
lationship is

I (e 0) =(-1} Iml'"(4v') '" (1+1/4m) sin'"'e,

(3.15)

which describes the distribution of the l = ImI mode
in polar angles for large Bl.

The power formulas (3.12) are based on the "en-
ergy current"

(3.16)

I' =+ dQr P)=+ — dQrQowfl 2 = 1 sp Bp
4n 8t

r &r, (3.12b)

Applying this formula to the asymptotic solution
(3.11), and using the orthogonality of spherical
harmonics, we find for the radiated power

00

g g ~,IC,.I'Ii.(r,*)I', (s.isa)
~=o &=!md

constructed from the stress-energy tensor equa-
tion {3.2) and from the Killing vector $ =(&/&t) or
$"= 6", which displays the time-translation sym-
metry characterizing the static nature of the
Schwarzschild geometry. Because J" is a vector
satisfying the conservation law J~.„=0, it gives
rise to a global (integral) conservation law, al-
though in more general situations one has only
a local conservation law from T"'.,=0. It should
be particularly noted that this conservation law
for the quantity

1 m~, I C,„I'I~(r*)I'
(3 13b)

E =- — T', ( g)'"drdedr-p (s.i7)

From Eq. (3.8), we may compute the value of the
coefficient C,„.We find that C, vanishes unless
l —ImI = 2q is even, and that

C~ ~+,, =4m fp(u'r, ) '(4v') ',"( 1) '"'-
shows that the energy radiated away as computed
from Eqs. (3.12) must result in a corresponding
decrease in the value of p. y for the particle which
is the source of. the radiation.

Let us now turn to the explicit calculation of the
power spectra.

x (ImI+2q+-') {2q!) ~

x(2'q!) '(q+ Iml) '", (3.14} IV. WK8 SOLUTIONS: OFF-PEAK INTENSITIES

with q.=0, 1, 2, . . . and ImI»q. We shall see later
that only the q=0 term contributes significantly to

Because of Eg. (3.13), the problem of calculating
the scalar power radiated by a point particle in a
circular geodesic orbit reduces to finding solutions
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of the Schrodinger-type equation

where

(4.1)

where ro is the radius of the circular orbit and
2q= l-m. Since r, ~ 3M, V(r, )&E, so that Eqs.
(3.13) and (4.3) give the high-frequency tail of the
power spectrum,

MmE=(d =m 0 3
ro

(4.2a)
( C,„P exp[-2(oe(r, )]

a (,/M-s)' ' (4.7)

2M l(l+1) 2MVr= 1- 2 + 3r r (4.2b)
( ) ~ jC t exp[-2&de(r )]

( )Sm (r,/M 3)-'~2

The solutions of interest, denoted by L(r*) and
B(r*), satisfy the boundary conditions (A4). When
l is small, numerical integration techniques must
be used to solve Eq. (4.1). Such solutions will not
be investigated here.

For large l (~ 10), WKB methods may be used to
find analytic formulas for L(r~g and R(r f), and
hence the high-frequency power spectrum. The
calculation is analogous to that for barrier pene-
tration of plane wave of energy E =~' incident upon
a wide potential barrier V(r). Using the boundary
conditions (A4) and the WKB approximation, we
find the value of L(r*) and R(r*) in the region under
the potential barrier, where V(r)»E:

e e -ur e(r g ze
~ -~~"-e(r*»

1—-'e ~' [(o«(r*)]"' 2[(uc(r*)]"'

7I( )=f (1-", )

Then

1/2

(4.9)

2(o e(r, )=2(u 8(r,)+ [1+4q+ 0(q'/m)] I,
where

(4.10)

r+/r 0 dx
[ (M/ro-) x'+x' -2~ro) x] (4.11)

in which 8(r,) and
~
C „,„~' are given by Eqs.

(4.5) and (3.4), respectively.
In order to determine how fast the sum over q

converges in (4.8), define

e e-i 7I/4 -u) e(r +)

[~(r*)]"' (4.3) I ~ O(1) except possibly when r, = 3M. As r, ~, I-
approaches a complete elliptic integral of the first
kind and takes the value

e g 7I/4 e.-~L~-e(r*) ] -~l~+ e(r*)lze
1——,'e ~' [(o«(r*)]'" 2[(u«(r*)]"'

(4.4)

These formulas are written in terms of the param-
eters

Using Eqs. (4.10) and (4.7), we find

(4.i2)

(d K(r*) = [V(r) E]-
8(r~) = K(r*')dr*',

~=8(r*)= ' «(r+)dr+,

(4.5a)

(4.5b)

(4.5c)

outI'i=-"...(&), 4.r-
P&="', (~) (4.is)

so that nearly all of the power is radiated in the
l =m mode. Thus, to very high accuracy, the to-
tal power radiated at frequency co can be shown to
be

where r,* and r* are the classical turning points
at the outer and inner edges of the potential bar-
rier.

In the high-I approximation, Eq. (4.2) takes the
form

2M
V(r) E= &u' 1--r

f'p. ' M " ~ ro-3M
M' r, ~

Mw

x (M(u)"'exp[-2(oe(r, )] . (4.i4)

4q+ I q2 r',
X $+ +0 ~2 ~r2

(4.6)

This expression follows from combining Eqs. (2.15)
and (3.14) with Eqs. (4.7). Equation (4.9) for V(ro)
must be evaluated numerically. We find that the
value
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8(r,)= 3(r,-3M) (4.15)

is an excellent fit to the results of the numerical
computations. Also, from Eqs. (4.3) and (4.4), it
follows that

V. PEAK INTENSITIES

In order to compute the most important contri-
butions to the power spectrum —the modes with
l = m and m ~m, „.t —we must use the parabolic WKB
methods described in Appendix B. In that appendix
it is shown that

= exp(-2(uI~-ae(r, )jj . (4.16)

Numerical calculations give

~ -28(r,)= 4(r, 3M-), (4.17)

e-««II@ —'-
) I2mm'" (5.1)

so that this ratio (4.16) approaches unity as
rp- 3M and dies off exponentially as xp-

From Eq. (4.15), 8(r,)-0 as r0-3M, indicating
that considerable power may be radiated at high
frequencies when r,= 3M. To investigate this case
more carefully, define

e =1+4q+— (5.2)

with 2q= l-mand m«„=4/m5=12y'/w. Using Eqs.
(5.1), (3.13), and (3.14), we find that the peak of
the power spectrum is given by

when r, = (3+ 5)M and «& 1. As defined in Sec. IV,

r, =(3+5)M,

It is straightforward to verify that

(4.18)

(4.19)

(aq)! m
278"2"(!)' m

x e "«Ir(-,'+'fe) I' (5.3)

~6(r,)= 3
4 m

vz dr= — 1+ 4q+—
4 W merit

where m„;, =4/w5. It follows that

(4.20)

Since V(r) has a maximum at r = 3M and we are
interested in the potential in only a small region
around r = 3M, we may approximate V(r) by a
parabola. Integrating (4.5) with this approxima-
tion, we have

The power radiated down the black hole, which in
this case i~ equal to the power radiated to infi, nity,
is also given by Eq. (5.3). When e» 1, the power
reduces to the form given in Eq. (4.19), which we
derived using ordinary %KB methods.

To find the total power radiated at a given
frequency, the expression (5.3) must be summed
from q =0 to infinity keeping the value of m fixed.
The series very rapidly converges because of the
factor e "'«II'( ~'i+)I'ein the power formula; in
fact, over 99.9% of the power is radiated in the
q=0 mode, so that

8n

2 2

merit

(5.4)

with

f'p, ' m e-'"
27 mV~ m„,,

(2q)!
(q!)222e

(4.21)

The power is plotted as a function of frequency in
Fig. 1.

Clearly, the power is proportional to the fre-
quency ~ up to a cutoff frequency given by

4 m
e =1+4q+-

W merit

4(d p 12(0pp
+wit ™crit+p=

770 r (5.5)

When q = 0 and m& m„,.„PP"„'(a&)becomes very large
since the barrier-penetration factor (4.20) is
small. Under these circumstances the %KB ap-
proximation is no longer valid anywhere under the
potential barrier, so that parabolic %KB methods,
developed by Ford, Hill, Wakano, and Wheeler, "
must be used to compute L(r,*) in order to analyze
the peak of the power spectrum.

P,.„i =f'(p, y/M)2(3. 9x10 '). (5.6)

Here P„« is dimensionless and should be multi-

and above the cutoff the power spectrum is ex-
ponentially damped. To calculate the total power
radiated, Eq. (5.4) must be summed over m. As
noted in the caption to Fig. 1, this summation can
be converted to an integral over frequency. Nu-
merically we find that
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plied by 1=c'/G=3. 63x10"erg/sec=2. 03x10'
+c'/sec to give the value in other units.

At a fixed frequency e =
i m~ vo the angular dis-

tribution of the radiation is easily computed since
only a single conjugate pair'. of terms in the serie8
expansion (3.5) is significant: that with am= I
= I~/&vol. The amplitude P is therefore propor
tional to i F„"((),y) i, and for the radiated power
one consequently has

frequency &uo. ] Equation (5.7) becomes correct
even for a broader-banded detector, however, if
interpreted as an average of the power over azi-
muthal angles y (or over time).

With the aid of Eqs. (5.4) and (3.15), the angular
distribution (5.7) is rewritten as

dP((u) f'p' m

dQ 54m M m„;t

=P(&) I F„"(&,0) I'. (5.7) xe " 'Il"('+ —' ie) I'm"'cos™8, (5.8)

The angular distribution would be observed only by
a detector of such a very narrow bandwidth (Q
»im() that, when excited, it rings for times»&uo. '.
For more wide-banded receivers the angular dis-
tribution must reflect interference between terms
in Eq. (3.5) corresponding to different frequencies
(different m). As has been shown by a different
method, ' the angular distribution then has a strong
y dependence which Eq. (5.7) lacks. '[Hughes"
shows that the particle actually emits a narrow
cone of radiation in the forward direction, which
is observed at infinity as a searchlight rotating at

fp
i.Qx iQ

where S —= s/2 —e. A plot of dP/dQ as a function
of both 3 and (d is shown in Fig. 2. The function
cos' 3 is sharply peaked about 3 =0, so that the
radiation is very strongly beamed into the plane
of the orbit. The beaming is characterized by a

. half-width 43 given by

(5.9)

APPENDIX A: GREEN'S FUNCTIONS

In this appendix we solve the radial equation
(3.7) by the method of Green's functions. For the
sake of greater generality, we consider an in-
homogeneous term which also contains the deriv-
ative of the source, as is indeed the case for the
inhomogeneous vector and tensor wave equations.
The equation to be solved is therefore

f)u 2
o5 io[—jM

, + (V-&u') u=C,j (r*)+ C2 ddr*2 1 2

(Al)

I

lO IO IO IO

where C, and C, are constants and V is the po-
tential given in Eq. (3.10). If we denote the
Green's function by G(r*, r*') then the solution of
Eq. (Al) is

crit

FIG. 1. Power radiated out to infinity in GSR in the
limits=(Sent) ~«1. Here P«, (m) =Q P,„,(l, m)

for scalar radiation is given as a function of v/~~;t
=47tm6 for each frequency harmonic m=u/cop» 1. The
total power emitted in all harmonics is Ptog g 0P t(m)
= fo"P „,dm Since this ca. n be written P«, f (2w/~0)P, ——„,dv,
the power emitted in a unit frequency interval is dp, „t/dv
= (2'�/p)P t ~ To obtain Pt,t in terms of the area under
a curve in a semilog plot where the abscissa is really
logy p (4p /(d~), one write s

(dcrit CO Mp = — (ln10)pout d log)0
0 0 crit crit

The integrand is plotted to show that the bulk (82%) of the
energy is emitted in the decade 10 7&~/co~;, &10+ . .
Numerical integration gives ptot f (p y/~ (3.9 x].0-').
Here P,„t and Pt„are dimensionless and should be mul-
tiplied by 1=c /6 =-3.63 x10~9 erg/sec =2.03 x105~ /sec
to obtain their values in other units.

dj(~ps)
u(r+)= dr*' C,g(r*') +C, d-„

x G(~g ~ps )

de*'j (x*') C,G(r", x~')

BG(r*, r*')
gt

The equation defining 6 is

+ (V ~')G(r~, r,*)=5(r* r,*). -d2G(r +, ~g)

(A3)

For the case considered in this paper, a pointlike
test particle located at r*=r,*, we have
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(A9)

d 2p
, + (E2 e-))=0.

Finally we define

(86)

APPENDIX B' THE %KB METHOD NEAR A

PARABOLIC POTENTIAL MAXIMUM

We wish to solve the Schrodinger equation

+ (V—E))=0d2$
(81)

z =(l-i)f,
v = ——,'(1+ ie),

so that Eq. (86) takes the well-known form2~

dz
+ (v+ —2'--,'z2))=0. (86)

for a potential V(x) which is adequately repre-
sented near its maximum at x =0 by a parabola:

Since v is never an integer, two linearly inde-
pendent solutions of (88) are

V(x) = —,
' V" (0)x', (82)

V" (0)&0. (83)

For x within the parabolic region, where Eq.
(82) holds, Eq. (81) becomes

where we have selected the energy scale so that
V(0) =0. For a barrier maximum, we have

g =D„(z),

g =D„(-z),
where D„(+z) are parabolic cylinder functions.

In order to obtain WKB connection formulas, we
must know the asymptotic behavior of D„(az). For
x&0, we have argz=-m/4, and the asymptotic for
D, for large )z( is

d
„+ + [E+-,' ~V" (O) ~0]y=o. (84) D, (z) -z' exp(--,'z'). (810)

By defining

w= I-'V" (o) I'",

]= w"'x,

E = —E/w~

we may put Eq. (84) into dimensionless form:

(85)

On the other hand, if x& 0, then argz = 3w/4, and
the asymptotic form for D„ is

D (z)-z"exp(--,'z') — e'"z " 'exp(-,'z').r(- )

(811)

These expressions may be rewritten in terms of
x as follows:

D„(qx)-(2w) ' x

'"exp(-kate

+-i2w'x--i2lzn x- ,'i&i 2n—w'+in), x»0, (812)

D„(qx)-(2w) '" (x~ '"exp(Nme+ —,'iwx'--,'ieln~x~--,'ieln2w Iim)—

+ (2w) '~ (x( '"e
x(p22-e- i 2w' x+ic2lJnx(+-,'itln2w+kiw), x«0 (813)

where q =(1 i)w"'. —
The asymptotic forms for D„(-tax) follow from

letting x--x in (812). These forms must be com-
pared with the %KB solutions in the regions far
from the potential maximum.

In the %KB region, the solutions have the form

&P e~i&

where k and y, as functions of x, are defined by

k = (E-V)'~2,

k dx.
(815)

We now specialize to the case E & 0 (i.e., e &0),
so that there are classical turning points (where
V =E) at x= a and at x = -a. We also assume that
the potential does not depart significantly from
parabolic form before x reaches the asymptotic
region, where the %KB approximation is valid.
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In other words, we assume the existence of re-
gions of overlap in which the parabolic approx-
imation (B2) and the WEB approximation (B14) are
simultaneously valid. This situation is illustrated
in Fig. 3.

For definiteness, we take

A = (&au)" exp(-8wf + 8'lÃ-~if 1nge),

I3= (-,'w)"'exp(8we+ ,'i w+--,'itin-,'c) I' -v)

C = (-,'w)' 'exp(gee--', i@-4ie ln-', e) . (B21)

k dx for x&a,

kdx for x&-a,
(B16)

u=(w'x'-)Z~)'" for ~x[&a. (B17)

By integrating we find

i y (
=-, ef(m/e)" i xi (wx'/e-I)'"

-in[(~/~)'&2~ x I+ (~x'/e- I)'&2])

so that y is positive on the right of the potential
barrier and negative on the left. Within the para-
bolic region, we have explicitly

Far to the left of the potential barrier D„(-qx)
behaves like a pure outgoing wave, whereas D, (qx)
is a combination of an ingoing and an outgoing
wave for x« —a. Thus, the WKB scattering so-
lution that represents an incident wave moving
purely toward the left, which we call g = L(x),
matches to D, (-px) only. Any admixture of D, (gx)
would force the WKB solution to include an in-
cident wave moving toward the right. By examin-
ing the x»a asymptotic forms of D, (+qx), the
same arguments may be used to conclude that the
scattering solution with an incident wave moving
right only, denoted by (=R(x), behaves like D, (qx)
near the peak of the potential.

Specifically, R(x) and L(x) may be defined with
the normalization

for (x[&a. (B18)

In the asymptotic region ~x~»a, Eqs. (B17) and
(B18) take on simpler form:

) y [
--,'wx'-2c ln

~
x I

--,'e in(4'/e),

[V'k '"e", x»g
R(x) = ~'e'~ /gal-~&2@-~~ x«g

& '"e "+8k "'e", x»aI. x)=
Kk '"e ",~

~x« —a.

(B22)

a-w Ix), Ix(»a.
By comparing Eqs. (B12) and (B19) we find that

Here 8 and W are the scattering and transmission
coefficients. Using the above arguments and Eqs.
(B20)-(B22), in the region near the peak of the
potential barrier,

(
Ak '~'e" x»a

D (nx)=
Bk '"e'"+CA "'e " x« —g

«~+ gjp / e~~ x&)g
Ak '"e "

with

(B20)

L(x) =(—'so) '"

&& exp(-k1Tf ki1T -q—iE in-,'e) D„(-qx),

R(x) =(-,'w) '" I'(- &)

v'2m

X eXp(-SWE —8 i17 @iE' lng —6) D(T)x) .

(B28)

~——————V(0)=0
I

I

I

I
I PARABOLIC REGI
I

WK8 REGION
I

WK8 REGION

FIG. 3. Parabolic %KB potential. The potential for
the Schrodinger wave equation (B1), showing the
parabolic region, the WEB region, and the regions of
overlap, in which both approximations hold simultaneously.

The normalizations adopted in Eqs. (B22) coin-
cide with those specified in Eqs. (A4). This is a
consequence of the fact that Eqs. (B22) provide
WEB solutions whenever Eq. (B15)holds. It is
therefore possible to drop the assumption that V
is parabolic once the WEB approximation becomes
valid [thus drop Eq. (B18) and continue using Eqs.
(B22) away from the potential peak and on out to
the asymptotic region envisioned in Eqs. (A4)
where V becomes constant and y-kx+ const]. See
Fig. 3.

In order to calculate the scalar power radiated
at the peak intensities, we must evaluate L(r*) and
R(r*) at r=r~= (8+5)M with 5&& 1 when, from Eq.
(8.7),
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(( 2M l()+ () 2M )((+))
y'

relations, (B23) may be simplified by noting that
x= 0 when 6«1:

2 2=m'E = m'&uo'=, (l-5) .
(B24) IL(~) I'=

I
I.(o) I'= lz(o) I'

The parameters defined by (B5), (BV), and (B13)
may be evaluated as follows:

ll(l+1)]"' m

27M 27M

V—E 4 m= 1+ 4q+ m5=1+4q+-
(B25)

v = --,'(1+ i e),

Since

we find that

3v'3m3M
arm'"

xg2 e 11'(a+ a&&)D„(o) I7m"'
(B25)

(B27)

Here 2q = l -m«m and m„,, = 4/)T5. Using the above where e is given by (B25).
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