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A method is suggested for obtaining the local measure in the generating functional for non-
linear gauge fields within the framework of covariant S-matrix theory. The local measure
is obtained explicitly for the case of the gravitational field. The measure obtained is proved
to cancel all the divergences of the type 5 @ (0) which arise in the theory due to its nonlinear-
ity. It is proved that the value of the measure that is obtained is also required by the canoni-
cal formalism for gauge fields, and thus it secures the unitarity of the S matrix. A new
version of the canonical formalism for the gravitational field is given, which leads to the
explicit Hamiltonian in terms of independent canonical variables. The quantization proce-
dure in this approach to the canonical formalism is just the usual canonical quantization
carried out in the Lorentz-covariant gauge. The new canonical formalism directly gives
the value of the local measure in the Feynman integral. It is proved that besides securing
the unitarity of the S matrix and eliminating the strongest divergences, the local measure
obtained secures the gauge independence of the S matrix. This property results from the
fact that the Jacobian of the gauge transformation of the field differentials is not equal to
unity, contrary to the statement in previous works. The gauge transformation of the local
measure exactly compensates for this Jacobian. The consequences of the gauge invariance
of the theory are studied next. The complete set of generalized Ward identities for the
Green's functions is obtained in the transverse gauge. The set of quantum equations of mo-
tion for the gravitational field is derived, and the problems connected with these equations
are discussed. In the framework of the first-order formalism, the quantized Einstein equa-
tions are shown to take the form of the Schwinger-Dyson equations. A set of gauge rela-
tions for bare vertices is obtained. The analysis of the generalized Ward identities for the
Green's functions at the threshold is given. In this connection the gravitational and ficti-
tious-field wave-function renorrnalization constants &2 and &2 as well as the fictitious in-
teraction vertex renormalization constant Z& and the infinite number of graviton vertex re-
normalization constants Zt, ZP, ... ,g, .. . are introduced. An infinite set of Ward rela-
tions for these renormalization constants is obtained, Z&Z&

~ —-Z&Z& t, (Z~&)
~ =Z& "ZP

which leaves only bvo independent renormalization constants Z& and Z2 and secures the
gauge invariance of the renormalized theory. Further, the new invariance properties of
the quantum theory of the gravitational field are investigated, which are connected with
peculiarities of the symmetry breaking and with the existence of the dimensional Planck
length. The "scale" invariance or "homogeneity" of the theory is proved, which leads by
means of Euler's theorem to a new infinite set of relations, obeyed by the Green's func-
tions. Analysis of these relations at threshold gives a new identity for the renormaliza-
tion constants: Zl = Z2. Using the fact that the gravitational constant enters the theory
only through the dimensionless space-time coordinates, the general off-mass-shell rela-
tions for the Green's functions are obtained from the "scale" identities. Possible anoma-
lous singularities of the Green's functions are investigated. The "scale"'-invariant regular-
ization is introduced. It is also proved, using the "homogeneity" properties, that the re-
normalization constants do not depend-on the gauge. As a result, the threshold asymptot-
ic behavior of all Green's functions of the theory is made finite by means of only one re-
normalization constant —that renormalizing the gravitational constant z.

I. INTRODUCTION

Recently considerable success has been achieved
in the quantum theory of gauge-invariant fields,
the gravitational field in particular. Methods have
been developed by several authors in Refs. 1-4,
after a well-known Feynman work of 1963, which
make it possible to overcome the difficulties con-
nected with the degeneracy of the gauge-invariant

Lagrangian and to construct the unitary and gauge-
invariant S matrix for the gravitational field with-
in the framework of the functional-integration
method.

The gravitational-field Lagrangian without the
divergence-type term may be written as'

I, =v-g g&"(ra„r„r„„rs„,)-
D' ' ~ ' '""(g„„}(e,g e}(a g ) . (l.l)
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Let, us introduce the collective indices, running
from 1 to 10:

~) a(a. ((1)fa
pp

From (1.6) and (1.8) one obtains

(1 8)

and define

with arbitrary n„. When (n„) = (1, 0, 0, 0),

(1 .2)

6'X (x) = A ' &""'Ala)f (X),&&„.(x)

or for the kernel of Q,

One can check by direct computation that the La-
grangian (1.1) is degenerate because

for any s(
The modified generating functional' for the grav-

itational field may be presented in terms of Refs.
1-4 as

1Z[j"']= „. Z„[g]exp i (I.+ g„„j"")d4x

x
)JV

where V'~" is conjugated to V""' . For instance,
in terms of the variables (1.7),

&"'(i)= -(().i8') + i~5@,+ g"5'.s, -2'(). ,

(1.10)

~ "'(g') = -( i"')~" —( g"')~" -P'~"

gpogve + gpP8

A "conjugate" operator is everywhere defined by
equalities of the type

x gg 5(X )dg(g), (1.3) I'„,x V~'~' x x dx=— ' x V'&' x

colin D((),e), (Q,g)na(5 , ),(() g )(()' g )pu a Qe cf gf

The Jacobian Z„[g] is determined by the given
gauge condition as

(1.4)

where I. denotes the Lagrangian (1.1), )(" the gauge
conditions, and g~ the normalizing integral over
paths for linearized theory:

xF a(x)dx.

It is important that (7(A) is always linear in the
variables A, (which has been observed already in
Ref. 2).

Now, beginning with Sec. III we shall use the
linear and transverse gauge, which in terms of the
variables (1.7) reads

J„[g]=exp Tr in@)„'~[@'~' '] (1.5) x"(i) =s i"" (1.12)

where the operator (II)„' is determined up to a local
factor according to the following recipe.

Let us perform the gauge transformation of the
given gauge conditions X"with the aid of the gen-
eral coordinate transformation function f:

However, in Sec. II we shall need another nonlin-
ear gauge condition (2.17). Under the gauge condi-
tions (1.12) one obtains

Q)' =8 g&la
a p

x" x"=x"+ f"(x).

Confining ourselves to the first order in f, we ob-
tain

One may use any variables A„„parametrizing the
gravitational field. For instance, in Sec. II we
shall use the variables

En some cases the choice of variables

is more convenient.
The gauge transformation of the variables reads

and the conjugated operator

Qr)) g+ pve
0! 0', p

- (() g )5)'() + (s g) o)()„~g' 5)'()'„. (1.14)

The operators ()) and Qr are different from each
other, but it makes no difference which of them is
to be used in the expression (1.5). Calculation of
the operator Q under the nonlinear gauge conditions
(2.17) gives expression (2.21). It is important that
if the gauge conditions are linear, the operator (L)

is also linear in the field variables.
As is shown in Refs. 1, 2, and 7 the Lagrange-

multipliers method may be generalized, which
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makes it possible to obtain the S-matrix generat-
ing functional for the nondegenerate gauges X 0:

1
-2x=-X"y"&„„d4X djU. g .

(1 .15)

When o.'- 0, Z[j]'"] reduces to expression (1.3),
where the gauge is degenerate. n is a parameter
fixing the gauge.

It was shown in Ref. 1 that the generating func-
tional (1.15) determines the S matrix, which is
unitary, gauge-invariant, and independent of n.
The unitarity and gauge independence of the S ma-
trix needs some more discussion, as we shall see
later.

The generating functional may be also written
down in the first-order formalism, where the
components of the metric tensor and of the Chris-
toffel symbols are treated as independent:

I

Z[je ]= I Jlee[g;I']expIi)(I(g, r)+g„„je")d'xI

x II 6(x"(a I'))d v(a I').

(1.16)

To make the S-matrix theory formulation com-
plete, it is necessary to solve the problem of a
local measure d p, (g) in the integral (1.15) and
d p(g, F) in the integral (1.16). In the following ex-
pression for measure, the local factor ]][](x),

dv(r)=II%(~) II dz„.

=exp 6"' 0 In x de dg„„,
X,Jl~ P

exists due to the peculiarity of nonlinear theories.
The problem of local measure has not been

solved in Refs. 1-4. However, this measure is
important for unitarity, gauge invariance, and
cancellation of the strongest divergences of the
type exp [6'4'(0)f], which appear in the nonlinear
theories with the interaction Lagrangian quadratic
in field derivatives. Specification of the measure
for gravity is not straightforward because of the
degeneracy of the field Lagrangian. However, for
the S matrix expressed in terms of the proper in-
tegrals (1.15), (1.16) the measure may be speci-
fied. In the present paper we suggest a way of ob-
taining the local measure for nonlinear field the-
ories with nondegenerate and degenerate Lagran-

gians and obtain the local measure for gravity.
In Sec. II of this article the local measure is ob-

tained from the requirement of cancellation of the
terms of the type 6"'(0) in the functional integral. '
Next we show that the same value of the measure
is also required by the canonical formalism for
systems with constraints.

Further in Sec. II we suggest a new version of
the canonical formalism for the gravitational field
which possesses some advantages over the usual
one developed by Dirac and others. First, it
makes it possible to obtain the explicit expression
for the Hamiltonian in terms of independent canoni-
cal variables. Second, the quantization procedure
for such a Hamiltopian does not need any additional
elements except those required by the usual canon-
ical quantization. Third, quantization is carried
out directly in a Lorentz-covariant gauge, while
in the approach of Ref. 9 the use of noncovariant
gauges leads to serious difficulties when the tran-
sition to a covariant gauge is performed. " In our
approach to the ca.nonical formalism, developed
in Sec. II, the quantization is straightforward and
leads to the correct expression for the S matrix
in the degenerate harmonic gauge, directly giving
the correct value of the local measure in the Feyn-
man functional integral.

Next, we show that in spite of the presence of
the noncovariant factor g' or g~& in the local mea-
sure obtained (it would be better to say "due tn this
presence"), the local measure together with the
field differentials remains invariant under the
gauge transformations. This property results
from the fact that the Jacobian of the gauge trans-
formation of the field differentials is not equal to
unity. Here the essential peculiarities of the gauge
group of general relativity come to light. As to
the local factors, it is shown that the Jacobian
arising is exactly compensated for by the gauge
tra, nsformation of the local measure. The latter
circumstance plays an essential role in the proof
of the gauge independence of the S matrix, because
it is only when it is taken into account that the
procedure of integration over the gauge group, de-
veloped in Ref. 3, leads to the correct proof. As
a resu'~, it is shown in Sec. II that the. local mea-
sure obtained is the unique one that makes it pos-
sible to secure the unitarity and gauge indepen-
dence of the S matrix, and cancellation of the
strongest divergences of the type 6'4'(0).

%'e proceed in Sec. III with a study of the conse-
quences of gauge invariance of the theory, which
results in a set of identities for the Green's func-
tions analogous to the Nbther identities in classical
theory. These relations are known as general-
ized Ward identities. The weQ-knownWard iden-
tity in electrodynamics is a particular case of
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these relations. The complete set of generalized
Ward identities in electrodynamics was first ob-
tained by one of the present authors in Ref. 11.
The general method developed in Ref. 11 is, in
principle, applicable to any gauge theory. The
generalized Ward identities for the Yang-Mills
field were obtained and analyzed in Ref. 12(a).
The suggestion that there should be an infinity of
gravitational Ward identities was spelled out in
Ref. 2. A discussion of the connection between the
conserved currents and the source currents in the
case of gravitons may be found in Ref. 12(b). In
Sec. III we shall obtain a complete set of general-
ized Ward identities for the Green's functions of
the theory of gravity. We shall show that all these
identities may be derived in the transverse gauge
from the generating Ward identity in the presence
of sources. [See the note in Ref. 12(c).] In its
turn, the generating Nard identity is proved to be
the gauge-invariant consequence of the complete
set of equations of motion for the generating func-
tional and the Qreen's functions. The set of quan-
tum equations of motion for the gravitational field
is derived in Sec. III and the problems connected
with these equations are discussed. It is shown
that in the framework of the first-order formalism,
the quantized Einstein equations take directly the
form of equations of the Schwinger-Dyson type in
electrodynamics. Some first examples of applica-
tion of the generalized Ward identities are also
given in Sec. III.

Sections IV and V are devoted to the elements of
renormalization theory. The threshold renormal-
ization constants are introduced: the gravitational
and fictitious-field wave-function renormalization
constants Z, and Z„ the fictitious interaction ver-
tex renormalization Z, , and the infinite number
of graviton vertex renormalization constants Z»
Z',", . ~ . , Z',"', . . ., in accordance with the infinite
number of the bare graviton vertices. The com-
plete analysis of generalized Ward identities for
the Qreen's functions at the threshold is given in
Sec. IV. Such an analysis for the theory of gravity
presents some technical difficulties in comparison
with the similar treatment in Ref. 12(a) for the
Yang-Mills field. An independent investigation is
needed of the threshold asymptotics of some of the
Green's functions in coinciding points, which is
performed in Appendix B. The set of gauge rela-
tions of the bare vertices also needed for the anal-
ysis of Sec. IV is obtained in Appendix A. As a
result, we obtain in Sec. IV an infinite set of Ward
relations for the renormalization constants

ZZ '-~Z '

g(n))-1 2 -nZ n-(.
1 j. 2

which leaves only two independent renormalization
constants Z, and Z2 and secures, as we show, the
gauge invariance of the renormalized theory. Sec-
tion IV ends with the construction of the renormal-
ized Lagrangian in an arbitrary gauge and with the
discussion of some peculiarities of the gravitation-
al-field wave -function renormalization, which
seem to suggest one more relation between the
r enormal. ization constants,

Zg Z2 ~

This relation exists, but it is not the Ward iden-
tity. We obtain this new relation between the re-
normalization constants in Sec. V.

In Sec. V the new invariance properties of the
quantum theory of gravity are studied, which are
connected mainly with the peculiarities of symme-
try breaking, with conformal properties of the
Einstein Lagrangian, and with existence of the
fundamental constant (((k)'" having the dimension
of length. A proof is given of the invariance prop-
erty, called the "scale" invariance or "homoge-
neity" of the theory, which states that the generat-
ing functions and Green's functions of the theory
are the homogeneous functions of some of their
arguments. Analytically, the homogeneity is ex-
pressed by the known Euler theorem just as gauge
invariance is expressed by the Nother identities.
Application of the Euler theorem leads to a new
infinite set of relations, obeyed by the Green's
functions. Analysis of these relations at the
threshold gives the new identity between the re-
normalization constants Z, =Z, .

The "scale" identities mentioned contain the de-
rivatives of the Green's functions with respect to
the parameters of the theory. Further, using the
fact that the gravitational constant ~ enters the
theory only through the dimensionless space-time
coordinates, we exclude the derivatives with respect
to g from the "scale" identities and obtain the general
off-mass-shell relations for the Green's functions.

The influence of ultraviolet and infrared diver-
gences upon the "scale" properties is also dis-
cussed in Sec. V. The "scale"-invariant regular-
ization is introduced and the possible anoma&ous
singularities of the Green's functions are investi-
gated. It is also proved, using the "homogeneity"
properties, that the renormalization constants do
not depend on the gauge.

As a result, the divergences are eliminated '

from the threshold asymptotics of all the Green's
functions of the theory with the aid of only one es-
s entially divergent cons tant —the gravitational-
constant renormalization.

The article ends with a remark on the possible
renormalizability of the theory, at least on the
mass shell.
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II. LOCAL MEASURE AND THE CANONICAL
FORMALISM IN THE COVARIANT GAUGE

A. Appearance of the Local Measure and Cancellation
of the Divergences 5(4)(0) for the Theories

with Nondegenerate Lagrangians

crating functional:

1
Z[j] = —, d((() exp i (L, ((t)) + j(])))d4x

The 8 matrix for quantized fields coupling in the
cases when the interaction Lagrangian depends
nonlinearly on the field derivatives (or when the
interaction Hamiltonian depends nonlinearly on the
canonical momenta) cannot be presented by the
usual Feynman integral over fields of the expo-
nential of the field Lagrangian. In fact, in terms
of independent fields, the unitary 8 matrix is pre-
sented as follows ":

i 5S=:exp —
( )

p (x -X)—-( )d'xd'jI

1
exp i (L( ))+tjd)d xI

~ ~ ) 821

Bk(~)sk(~)

—X/2

(2.4)

The same result can also be obtained from the
continual representation of (2.2) in terms of inde-
pendent canonical variables:

X[j]=—,f expIi (xd (jjd)x+jd—)d xI

xexp i I.mt x d'x
$= gin

(2.1) xgd(t) dm. (2.5)

where

exp i L„-„, x )d'x

1
2i 5([(x) 5([(x)

xexp -i II t m, d'x
ff=ar, o/ a j

(2.2)

(2.3)

In the cases when the Lagrangian is not degen-
erate and the interaction Hamiltonian H~„(m, (I)) is
expressed in terms of independent canonical vari-
ables, the generating functional of the S matrix
(2.1) may be presented as the following functional

integral":

X[j]=—f [I ddp(d) expljf[L(P) dj]d xIe,

~ )eee( ~ 82L

B (B.PA) B (B,(I)j) )

- Z/2

(2.6)

in the integral (2.4) and the value 1 in the expres-
sion (2.5) provided the Lagrangian in (2.4) is non-
degenerate and the Hamiltonian in (2.5) is ex-
pressed in terms of independent canonical vari-
ables. On the other hand„ it may be proved that
the local measure cancels the divergences of the
type 5 (0) which appear in the integral (2.4) when
the integration over (t) is performed. The latter
statement is well illustrated by the stationary-
phase method. Let us consider the integral (2.4)
with the Lagrangian of the type (1.1)

I =D"'"'(jt ) (B„AA) ( A,B),

Consequently the requirement of unitarity of the S
matrix in the general case leads by means of the
canonical formalism to the modification (2.3) of the
Feynman integral. For local theories of the type
mentioned, it leads to the existence of local mea-
sure, for which we have the expression

where

p(A) = dm exp i I. , +m —I.

BI.(y, y+([)
an'

5(0)T I„~'L(4» 0+ )
5m5m

but not degenerate, and perform the series expan-
sion of the action functional near the extremal:

1 52$'
=~0+2 "'«'y5$

( )5$ ( ),4A(~)4, (y)

+ 0 ~ ~

= 8, +— d'x d'yQ" ()(, y)(]]')A(x)(]() (y) + ~ ~ ~,1

It may be easily verified that provided I.;„,does
not depend or depends linearly on the ((() expression,
(2.3) reduces to the usual Feynman type [p(P) =1].
In the case of quadratic dependence of I.;„( on (t),

(2.3) leads to the following expression for the gen- x»A x»A

~A ~A '

Replacing in (2.4)
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and confining ourselves to the quadratic deviations from the extremal, we evaluate the resulting Gaussian
integral:

[detng(x, y)]"'
Zl, ,=exttIi(e, —Bn)e-,'ee)(0) II )neet . . —,-)neet . . e'xe ~ ~ ~, ,

8QABQB jdetn (x, y)]
(2 7)

Now, one has to single out the part th5t4&(0) from
the term

—,'Tr Inn+(x, y) --,'Tr inn "B(x,y)

of (2.7). The kernel of the second variation reads

n"'(x, y) =[np&"(x)s„s„+nABB(x)a„+np (x)]

xd4)(x -y)

=v ,= 0, since it is the only case when 6(t„-t„)
appears after the 0 function is differentiated. The
same conclusion foQows from the representation
of D„, where the integration over k, is performed
first. Here again, 5(t) appears only in 82»DB

Thus in the framework of Hamiltonian technique
one obtains

f(x)=detMB(x, n) [(n) =(1,0, 0, 0)]

n"B""(x)=2D AB""(@(x)),
detD ~"(6}

det D ABoo(~ (
(2.11)

the local term here being determined only by the
matrix attached to the higher derivatives.

Indeed, one obtains the equation for the kernel
GB(x, y) of the operator under consideration, Gc
=5@[5-']„:

DAB))tt(y(x))S S Gc(x y)+. ~ . DAc)ttt(6 )S S

x94)(x -y)+ ~ ~ ~ .
(2.8)

It may be seen from (2.8) that if MBA(x, n) is chosen
in the form

M"{x,n) = D A'(6)[D-'(y (x))]

DAB(y (x))—DAB)tt)(y(x))n I

detn B„(x,y)]"'
AB( )p/2

-BTr In~a, [n ]Bc

=-.'Trln ~,"x n e'""-"'d4n+ ~ ~

=-, e"'(0)J)nf(x)e'xe ~ ~ . (2.9)

There is some ambiguity in the final expression
for f (x) here. It is the ambiguity in the value of
the local part of the coupling factors of the type

g2L —I/2

~ .„" s (a„yA)8 (e„y,}

the divergencies in (2.4) being compensated for
again.

It is essential for the present discussion that
whichever definite, but unique, way of calculating
local measure and the local term in the functional
integral is chosen, one will always obtain as a
result the cancellation of divergent terms ~6 (0) by
the local measure.

Cancellation of the terms (x:i) (0) (for the systems
concerned) by the local measure (2.6) was rigor-
ously proved in Ref. 14 for the case of a finite
number of degrees of freedom. It was shown in
Ref. 14 that after the covariant finite-multiple ap-
proximation in the integral (2.4) is performed,

(2.12)

Substituting (2.11) into (2.9}and (2.7), one makes
sure that the terms of the type 5'4)(0) are canceled
out at least on the extremal. When one chooses
some other way of calculating the integrals of the
type of (2.10) [for example by means of covariant
regularization in 0 space, in which case f (x)
= detD~»(6)/detD~»($(x)) (see also Sec. IIE)],
the local measure in the integrals (2.4) and (2.7)
must be also chosen not as (2.6), which the Hamil-
tonian method gives, but as

(x y)S
~

~

0 t) fB(tt-)t&de
p Q vxy g2 (2.10)

lim -„.-„d A~ exp i DA~""
6~0 A, A

arising in (2.9) and depending on the way of cal-
culating. In the framework of the Hamiltonian
formalism, it follows from the definition of
DB(x -y) as

1/2
x det DAB)'"(tt) ~) (2.13}

&e(f &')4 ( )A(x')+—e(t' t)e(x')O(x)}. -
that the term tt-5") (0) in (2.10) appears only when

the change of variables QA~ in the multiple integral
(2.13) is possible, which leads to the cancellation
of the terms
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— X/2

detD AB)(v(y k)
k

(2.14)
1«(~) = —

2 5„.X"(g) X"(g), (2.16)

detD" )'"g&(x))n n
detD AB)'"(6)n„n „

(2.15)

(see also Sec. IIE), the Hamilton expression (2.6)
being obtained from here by choosing the limit:
n, /n, -0, n,

B. Calculation of the Measure fox the
Theories with Degenerate Lagrangians:

The Case of the Gravitational Field

The main idea of our method is to use the gen-
eralized Lagrange-multipliers formalism, de-
veloped in Refs. 1, 2, and V, which leads to ex-
pression (1.15) for the generating functional in a
nondegenerate gauge. The advantage of the ex-
pression (1.15) over the expression (1.3) is that
the noninvariant term

and reduces the exponential in the functional inte-
gral to the usual Gaussian type while the functional
left-integrated over the usual Feynman measure
turns out to be free from the terms exp5(0). In
the functional-integration language the ambiguity
in the expressions (2.9), (2.10) discussed above
means the ambiguity in the limit e„-0 in the ex-
pressions (2.13), (2.14). It is remarhable that the
local measure (2.14) does not depend on the ap-
proximation, while the integral (2.13) does depend
on the choice of it." We shall write the expres-
sions (2.6), (2.12), and (2.14) for local factors in
the measure in a covariant form,

x~() &
=&„(p)(-g) "'(s.&-g g'"), (2.1V)

where h„(P) is a tetrad. "
The revised Lagrangian [from (1.1) and (2.16)]

is nondegenerate; consequently we can use formula
(2.15) for evaluation of the local factor Q, (x) com-
ing from the field action. The matrix

ADB(&) DAB +~AB (ot)

[from (1.2}and (2.16)] calculated for the gauge
(2.1V) reads

quadratic in field derivatives, is added in (1.15) to
the degenerate gravitational-field Lagrangian
(1.1). For this reason the gauge invariance of
(1.15) is broken before the transition to the mass
shell and the Lagrangian degeneracy is removed.
This in its turn permits us to obtain the expres-
sion for the local measure (1.1V) in the integral
(1.15) from the requirement of cancellation of the
terms ()(5(~)(0), which are to be found in (1.15) both
in the field action and in ln J„, the final expres-
sion for the S matrix being free from the diver-
gences of the above-mentioned type.

So let us write the local factor p (x) in (1.1V) as

1 1
~( }

y, (x) y, (x)'

Note that calculation of the measure by the method
suggested is to be carried out for some definite
choice of the gauge y; the result, however, is
independent of the gauge. It is convenient to carry
out the calculations in the following gauge:

(2.18)

1 1 1 ~ n~nf nenf n~n~ nen~
t)ee(tt) d g tt (e geeget (geegetegteget)e (e ) get e gee e get e gtt)

2Q 2 Q/ n n n' n'

n gf 1
1 n n @e

where the notation n"=g "nB, n'= g)"n„n„ is introduced and symmetrization of indices (p, 8), (g, f}, and

(4, B) is performed.
The direct evaluation of the determinant of the matrix (2.18) gives us

1" 1de)D~( )=(- e—t, (ge"e„ tt„)t (2.19)

(2.20)

(2.21)

It is essential that the constant e factors out and thus cancels out after normalization. Performing nor-
malization of (2.19}over detD g (n} and choosing the Hamiltonian way of transition n„- ~, one gets from
(2.15) and (2.19)

1

~,(.) =""
The local factor p, (k:) coming from InZx[g] in (1.15) is still to be found. The Jacobian Jz[g] is given by
(1.5) where the operator Q„calculated by the method of Ref. 4 under the gauge (2.1V) reads"

0„(r)=(-s„g.), »+.g»+2 g„&s,)0 g}'"(g"g"" kg-"g"")s.h„(r-)( g) '"-
+-; (-g) '"[~,'&"(r) kg""h, (r}](-s.~i g")]
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Singling out the local part of lnj„[g], which is de-
termined by (2.21), may be carried out just as in
the case of the kernel of the second variation of
action. As a result one obtains

(t&, (&&) = (-g)'"(g"); g. =detg„„. (2.22)

Now from the requirement of cancellation of both
local contributions by the local measure, we get,
finally, the measure in the integrals (1.3) and (1.15):

I

d)1(g) =II(-g) "g"IIdg„, . (2 23)

The measure in the integral (1.16) can be obtained
using the requirement that after integration over
forty variables I'8 which may be performed ex-
plicitly, the integral (1.16) returns to the form
(1.3). Thus we have

d)1 (g, I') = II (-g)"'g"II dg„„ II
x p~v a, 8~a

(2.24)

gauge is of special interest because of the possi-
bility of comparing our results with the require-
ments of the canonical formalism. ' It was men-
tioned above that in the Feynman integral over in-
dependent canonical variables, the local measure
is equal to unity. Let us show that our results
agree with the canonical formalism.

Let us consider the generating functional (1.16)
with the measure obtained (2.24) in the Dirac gauge
(this consideration follows our work3):

y'=q"&&;, , y' =se[(g"')'"e&3], i, )'2 =1, 2, 3

(2.28)

- where

1
~~I =

g goo

iA xk

g"' =detg

d~(g) =II(-g) "'g""~dg„„ (2.25)

d p. (g, I') =II(-g)"2g»II dg„„ II di'&), .
x P(V a 8 (fI

(2.26)

However, as was discussed above, in any case
provided that the calculations are uniform, the
local measure obtained compensates for the di-
vergences 5"'(0) in the functional integral, the S
matrix being free from these divergences.

The measure naturally depends on the choice of
the variables of integration. Transition to the
other variables may be carried out by calculating
the corresponding functional Jacobians. Let us
give the values of measure for some choices of
variables ":

du (g) =II(-g) """'"g"IId (g)'go
x p~v

Expressions (2.23), (2.24) correspond to the Hamil-
tonian way of calculating the integrals of the type
(2.10). In the manifestly Lorentz-covariant theory,
the invariant regularization in k space may prove
to be more convenient.

Then, the expressions for measure take the form

In Ref. 1 the operator Q03(g, I') for the gauge con-
ditions (2.28) was calculated. Let us confine our-
selves to the quasiclassical approximation, when
the classical equations of motion may be used in
the expression for Q"8(g, I') (see Ref. 1). As was
shown in Ref. 1, Q&'3(g, I') takes the form

q& ( g &3&)1/3(5 & eemS2 + 1 eeiS2 )

qo 0 qo v& g (It(3) +e&eg g )
(2.29)

and the Lagrangian transforms to the canonical
form '.

I, (&&, q, A.) =
&&, S,q'3 —A,"T„(&&,q),

where

OA'

goo
0 ~g goo

(2.30)

independent of I 8, . Using this circumstance, let
us integrate in (1.16) over 34 variables I' differ-
ent from I',~. As a result we get the additional
factor

II [( g)-11/2(goo)-5]

II( g)-ilo(2P-1)+3i/2gooII d (g)Pg&&v

=II(-g)"" "' ""g" II d(g)'I (~)
g (p, (a)) P

( gy5 &3-32&-ei/egoo II d (g)oh)&(~)
g (p, (a&)

(2.27)

The expression of the S matrix in the Dirac

Let us pass now from the operator q"3 [E(I. (2.29)]
to the operator Qt 3:

o & o
QO/. =Q/0, Qo.„= qo Q. , (2.31)

In the integral left a change of the variables of in-
tegration g„„,I"',

~ to the variables q', A.~, g,.~,
leads to the Jacobian:

(~g goo)5
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which was obtained in Ref. 9 by application of the
general canonical expression for the Q(, equal to
the Poisson bracket'.

e!'=4', T')
As a result of such a transition we get the addi-
tional local factor

II(&-gg") '

Finally the integral (1.16) with the measure (2.24)
comes to the form

fJ. exp' fI )wq, &),d'x II &())'(w, q))du(qw, x),
x, n

(2.32)

equal to the Feynman integral over independent
canonical variables. ' Taking into account the local
factors which arise, we have for the measure in
(2.32),

dv(, q, &)=II II dq*' II d „„IId&,

C. Hamiltonian Formalism in Covariant Gauge

First let us represent the Jacobian J„with the
aid of additional fieMs C, Cs, obeying Fermi
statistics:

n ))(y") =fexp )fg„-g&de II dg„.
Xp JL +X'qP

(2.34)

Now let us choose the transverse harmonic gauge

x"(g) = s.g"". (2.35)

Note that, provided that the gauge (2.35) is de-
generate, the operator (1.13) may be written in
the form

Z„= exp i C"(x)Q acs(x)dr II dC dcs.
-x, cps

(2.33}

Such a representation in the functional integral
(1.3) has been used in Refs. 2 and 3.

6 functionals of the gauge conditions may be rep-
resented with the aid of Lagrange multipliers:

with the local factor equal to
q "8 = 5"sv -g Z

where Q denotes the covariant Laplacian"

(2.36}

(2.3V)

x [~g goo]5 [Mg goo] 1 = 1

Thus the local measure obtained satisfies the re-
quirements of the canonical formalism. Note that
we have used the classical equations for Q)'8 here,
but, as we have shown above, the local measure
is preserved in quasiclassics.

We have used here the canonical quantization
procedure for systems with cons&:raints, which
resulted in expression (2.32).

Another version of the Hamiltonian formalism
may be suggested which possesses certain advan-
tages.

The idea-is to consider the initial classical the-
ory of gravity as the theory described by the fol-
lowing Lagrangian:

L(g C C q) =~gR -q 8 g&'+g&"8&C "B„C

(2.38)

Here the Lagrangian of the C field is generally
covariant and Hermitian due to the degeneracy of
the gauge.

Let us now perform the transition from the vari-
ables g~" to the variables q', A.~. Then the La-
grangian of the field g takes the form (2.30) and
we obtain

L(q", x", q„, c",c)=~„(q,z)s,q" —x"r„( (q x) q)+—(q qx')s x'-~s z'1

0

+—,(B,C "8,C + 9,C: 8,C") .
gO 0 (2.39)

Let us now find the Hazniltonian formulation of
the dynamics of the system represented by the La-
grangian (2.39), containing the complete set of
fields.

Define the canonical momenta:

q"-m, ~ =m(~(q, A.),

A. , A. -w, = ——,, )7, =—2(q, +q, A. ),
0

g', g'- P, = 0, I' = 0,

C -P =—BC+—BC"
C, gO 0 gO

C p ——~C"+—BC0 gO

Thus the momenta conjugate to the fields g are
equal to zero, while the g fields themselves serve
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as momenta conjugated to the fields A. . %hen the
latter circumstance is taken into account, the La-
grangian (2.39) may be rewritten identically in the
form

n'Skoq k+mo~oX +@&~ok'+P~ C +OC P

This is the reason why, in order to quantize the
system (2.41), we do not need the special proce-
dure of Ref. 9 but the usual canonical quantization
will do.

Thus, the functional integral has the usual form:

-H(q, n ",X, l(", C, p, C, p ) .
The Hamiltonian takes the form

(2.40) r r
exp e i [e„e.e" ee„e,e. ep„e,o"ee,c p «]«xI-

Jf = A."T„((("eq) +Vp„p„-p„A.' BC„-(B;C„)X'p„

yk
+m' A, 8 ——g. A,"& A. +A. e A, g

~ gkg g C 0!8 Ccx

Note that this Hamiltonian has no constraints.
Thus the formulas (2.40), (2.41) present the

Hamilton formulation of the theory of gravity with
a Hermitian Hamiltonian, containing eighteen
pairs of independent fields, some of these fields—
C, C and their conjugated momenta —being the ele-
ments of Grassman algebra. " The last property
is unusual from the point of view of classical the-
ory, but not contradictory, however. As to the
quantum theory, use of the Hamiltonian formalism
developed here directly leads, as we shall show,
to the covariant S-matrix theory formulation, de-
scribed in Sec. I, with the local measure coin-
ciding with the value obtained above.

The S matrix thus obtained is pseudounitary in
complete Hilbert space, that is,

p &n(S(m& &m )S [n'& = 5„„,. (2.42)

It may be shown, however, with the aid of Ward
identities which will be obtained in Sec. III, that
in the cases when n and n' are physical states,
the contribution to the unitarity condition (2.42)
from the nonphyiscal degrees of freedom among
the variables g~" and from the fictitious degrees
of freedom C, C are exactly compensated in the
sum over m in (2.42). It means that the theory,
which is pseudounitary in the complete apace, is
also effectively unitary in the physical subspace
and thus is identical to the original theory with two
independent degrees of freedom when all the equa-
tions of constraints are solved. It must be
stressed that all the matrix elements of all the
transitions generally are nonzero, but some of the
degrees of freedom being quantized writhe indefinite
metrics, the compensation mentioned above takes
place in the matrix elements squared.

It must be noted that contrary to the generalized
Hamiltonian formalism with Lagrange multipliers,
the version prese~ted here is the usual Hamilto-
nian formalism with the explicit Hamiltonian (2.41)
expressed in terms of independent canonical vari-
ables.

dj dp"d, dq' dA. d „dC dC . (2.43)

Let us perform here the integration over all the
momenta. After integration over m, k we get the
local factor

A., ')q"
~

'. (2.44)

The integration over p and p", taking into account
the statistics, gives the local factor

(2.45)

while the Lagrangian returns to the form

I = ~g R + g""B„C B„C",

which differs from (2.38) by the absence of gauge
conditions with Lagrange multipliers. However,
the integration over n', m' gives the 5 functionals

g 5(l) (y 2B go[[)5(3)[yo(B +([[ yi B +0[()]

—,ff 5"'(B„go"). (2.46)
x 0 x

Finally the functional integral (2.43) takes exactly
the form (1.3):

[. r

exp~3 [I.(g) + CQ„C]dx II5 (X)d Cd Cd i" (g )
ep X

=
[

e p 2, g(g)dr+ Trinal g5(X(g))dil(g)

with the local measure having, by»»e of (2 44)-
(2.46), the value ing„„variables

dP(R)=H( &') & ~ d&O«

coinciding with that of Ref. 8.
Thus the canonical formalism (both versions),

which( secures the unitarity of the S matrix, leads
to the same value of the local measure as the re-
quirement of canceQation of the divergences
ooB(4'(0) does.

Most fascinating is however the statement that
in spite of its noncovariant form (presence of the
term g~ or g»), this measure also secures the
gauge independence of the S matrix.
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D. The Gauge Invariance of the Measure

Let us choose for definiteness the g~' para-
metrization and denote by &f& the set of fields

y&(x) = (g~"(x), C"(x), C"(x)].

Then the functional integral (1.15) in the nondegen-
erate gauge takes the form

to the first order in f N. ote that the second term
in the exponential here vanishes because it has the
form of a surface integral and the function f tends
to zero at infinity. (We consider the gauge trans-
formations which preserve the flat asymptotics of
the gravitational field. This is assumed in all
considerations concerning S-matrix theory. )

As a result we obtain

Z = e' I~' )~M[g(x)] II dP"(x).
x, A

(2.4V) M[g(x)] =M[g(x)]n, ,[g(x), f], (2.54)

It will be sufficient to take into account only the
terms containing the higher derivatives in the ac-
tion here:

S[g(x)] =
Jl d xD"s""(P(x)) „P„(x) „P (x).

(2.48)

As we have shown, the local measure is equal to

where

&,)), (~), f) =«u(o"'( ) 0[&,f"I))

x ln[g (x)g"(x)]d'x

—2
J~ ~ &„f'(x)d'x~ g'"(x)

g~ x

(2.55)

M[g(x)] =II g'(x)g" (x)

II [detg)ABOO(y (x))]1/2 (2.49)

Let us calculate now the gauge transformation of
the field differentials in the functional integral
(2.4V). We shall provide the C, C fields with the
transformation properties of scalars:

where C (x)-C (x), C (x)- C (x). (2.56)

detD&
(detD )' (2.50)

and D, ,D, are the cells of the matrix D" "
related to the fields g and C, C, respectively. We
shall not fix the value of p, which depends on the
choice of variables (2.2V).

Let us find the gauge transformation of the local
measure. Perform the general coordinate trans-
formation: (

f
dy(x) =-IIdy(x). (2.5V)

We impose such transformation properties follow-
ing the requirement of general covariance of the
Lagrangian (2.38) in the degenerate harmonic
gauge. Nevertheless, it is no more than a matter
of convenience, because these fields do not enter
the final expression for the functional integral.

We start with the definition

x)'- x)'(x) =x"+ f)'(x),

„„( )
&X"(x) ex"(x) 8( )g x = ~ 6 g x

(2.51)

(2.52)

Considering the x to be functions of x let us calcu-
late first the transformation Jacobian from the
differentials II„dT))(X(x)) to II, d)t) (x). One has
from (2.53)

To the first order in f,
g""(x(x))=g""(x)+g" (x)e,f"(x)+g" (x)e,f"(x).

(2.53)

The transformed measure reads

M' =- ~[g(x)]

=exp ~'4' 0 ln x g" x d4x

/

=exp 5'4'0 lng'x g" x d4x+2p & x d'x

5""x
det „=1+55"'(0) 8 f)'(x)d x

II dT))(x(x)) =IIdg (x) . (2.58)

The Jacobian of the transformation

since the integral of the divergence vanishes.
This conclusion does not depend on the choice of
the variables of integration. In regard to (2.56)
one finds

+ [8„f (x)] In[g~(x) g"(x)]d4x IIde(-) =~.II de(-( )) (2.59)

g'" x—2 8 f'(z)d'x
ig (x) " still remains to be found.

It seems at first glance that, by virtue of the
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one-to-one correspondence x —x, a transforma-
tion such as (2.59}means only a change in the or-
der of placing the differentials in their product
over points. These formal arguments were the
reason for the wrong statement found in the litera-
ture (see Refs. 1 and 10) that the "permutation of
points'" Jacobian 6, is equal to unity. We shall
show that contrary to this statement, the field dif-
ferentials of Eq. (2.59) are not equal to each other;
to be more precise, the functional integrals over
them do not coincide.

This phenomenon no longer seems paradoxical
if it is taken into consideration that the gauge
group of general relativity has the fundamental
property of being the coordinate transformation
group. Except for the form of the field functions
the gauge transformation affects the space-time
argument, generally mixing up the time variable
with the space variables, the latter being just the
indices enumerating the degrees of freedom. It is
easily understood from this remark that the co-
ordinate transformation in the integrand of the
functional integral, which formally looks like the
identical permutation of points, is in fact a non-
trivial operation, for it leads to the change of T
ordering in the S matrix.

This fundamental aspect of quantum gravity has
not yet received proper accounting in the litera-
ture. (See also Sec. IIE.)

It follows already from the present discussion,
restricted to consideration of local measure, that
while the Jacobian of the form transformation
(2.58) turns out to be unity, the Jacobian of the
point transformation (2.59) does not.

In order to calculate the Jacobian 4, let us per-
form a trivial change of notation of integration
variables in the integral (2.47) to present it in the
for m

g = e sip&

&j~[g(x)]bldg(X)

functions of x to functions of x in the expression
(2.60), for the integration in (2.60) is carried out
over the functions of x. One obtains

S[e(x}]= ] d'»"'""(e(x))
8 „0 (x)8 .e, (x)

d xE"s"'(Q(x)) „P„(x),Ps(x),

where the notation

P„(x)=-P„(x(x))

(2.63)

(2.64)

is introduced. Then according to our general reci-
pe, the local measure N in the integral (2.60) is
determined by an expression analogous to (2.49):

g [de t IABOO(y (x))]1/2 (2.65)

Note that it is II„ that stands jn (2.65), because
the integration in (2.60) is carried out with respect
to the functions of x.

In parallel to (2.50},

detE,
(detE )' (2.66)

Remember now that the determinant ~D ""n„n,
~

was calculated earlier for arbitrary n„, not only
for (n) =(1, 0, 0, 0). Using the expression for this
determinant, one obtains from (2.64)

ex ~ ~xo exo[d«@"'00(0(x))]'"= —Z'(x)P" (x)~x ~x" Bx'

(2.67)

Here the value of the power K is of no importance,
for to the first order in f,

&st 4&x)lM g' x ~2 d x x
x

and use the following trick: The quantity

N =M[g (x)]~,

(2.60)

(2.61)

=exp a'4& 0

g dQ(x(x)) . (2.62)

In order to do that it is necessary to pass from

is the local measure in the last integral of (2.60).
Since the general method of obtaining the local

measure is available (found as a result of canonical
quantization), let us carry out the independent cal-
culation of the local measure N in the integral
(2.60) over

As a result one obtains from (2.65) and (2.67), to
the first order in f,

—
Op

N =II@(x(x))g (x(x)) 1 —2 „8f'(x)

(2.68)

The next task js to single out the factor M[g(x)]
from the quantity N determined by Eqs. (2.61),
(2.68). In order to do that it is necessary to pass
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tV=exp 5"'0 ln ~xx g' xx d x

g'"(x(x)) 0+2 ~( ( )
S„f'(x)d'x

Substituting here

(2.69)

from II, in (2.68) to II,—.One has, to the first or-
der in f,

(M[g])f =~,M[g],

to the first order in f.
Thus it is proved that

M[g]IIdg (x) =M[g]II dP (x) .

The local measure

M[g] II ( g)-3/2goo

(2.74)

d»x = d» x[1 —S„f~(x)], (2.VO) together with the field differentials is gauge-in-
variant.

x exp &"'(0) — In [g~ (X)goo(X)][a„f"(x)]d'x

g'" x

However,
(2.V1)

IIg~(X)g '(x) =- M[g(x)].
x

Finally from (2.71) and (2.61) one obtains the fol-
lowing expression for the "permutation of points"
Jacobian 4, :

&,[g (x),f]

=exp 5'4'0 — 8& &x 1 g~ xg' x d x

Op

To the first order in f it is evident that

&.[g(x) f]=&.[g(x),f)

(2.72)

Comparing now Eqs. (2.72) and (2.55) one verifies
that

&.[g(x), -f] =&,[g(x),f] . (2.73)

Now making use of (2.5V), (2.58), (2.59), and
(2.73) one finds that

1II dy(x) =—II dy(x)
&X

and Eq. (2.54) states that

we shall once more accomplish the transition to
the infinitesimal expansion, but contrary to (2.68),
it is the expansion II-„. As a result, we obtain

E. Dismssion of the Previous Result

The essence of the above considerations lies in
the forrnal demonstration of the fact that it is not
immaterial which coordinate system is used in the
definition of the integration variables of the func-
tional integral. This conclusion deserves to be
explained in more detail.

The problem is that the expression for the am-
plitude [for example, Eq. (2.47)] with the invariant
classical action involved is, in fact, too formal.
It implies, in reality, the noncovariant (under gen-
eral coordinate transformations) procedure of the
functional-integral (or 8-matrix) construction, in
the course of which the infinite expressions ap-
pear.

In any approach to S-matrix theory, such a pro-
cedure makes use of an ordering parameter. In
the framework of the functional-integration tech-
nique, the ordering parameter is involved through
a limiting transition from the integral defined on
a lattice of points. If the points of the lattice are
defined as intersections of the curves x' =-constant
with the hypersurfaces x'=constant, then x" is the
ordering parameter. To evaluate the infinitesimal
amplitude, the classical action S must be com-
puted between successive hypersurfaces xo =7.~ and
x'=7.~", 7."'-7~ =e. Then in the limit e-0 the
quantity S„"~+' necessarily contains a term diver-
gent as 5 (0) and this term is noncovariant. Indeed,
the action functional is homogeneous in the fieM
derivatives ~„g. Clearly if we specify g'~' and
g'~'" on 7' and T~" arbitrarily, the time deriva-
tive of the classical trajectory g(x) that connects
these boundary values will go to infinity as c - 0,
while derivatives with respect to x' will tend to
some average of those on 7' and 7."' and thus re-
main finite":

S g(x) =O(1), S.g(x) =O(ll~).

Thus the divergent term in the action

Tg+ 1
S,'s"

J
dx'Jd'xD(d)d"e, ge,d

Tj
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is noncovariant. It carries the information on the
choice of the ordering parameter. It is also clear
that such a divergent term does not appear in the
functional integral over independent canonical
variables, because the canonical formalism does
not contain derivatives with respect to the order-
ing parameter nonlinearly, these derivatives be-
ing included in the canonical momenta.

If the infinitesimal amplitude is evaluated in
some other coordinates x, then the above-men-
tioned mechanism will lead to a divergent term
containing derivatives &g/&7', and thus differ-
ent from the previous one. Here the role of the
coordinate system comes to light: Although the
action functional is covariant in the notation of the
integrand of the functional integral, it transforms
nontrivially under the general coordinate trans-
formations.

The notation II„dg in the functional integral in-
dicates which particular coordinate system has
been used to define a lattice and an ordering pa=
rameter v =x'. This notation and the noncovariant
local measure are the only reminders in the for-
mal expression (2.47) of the actual procedure of
its evaluation. According to our notations we as-
cribe the change in the action under coordinate
transformations to the change of the field differ-
entials

II dg-II dg,

which gives rise to the "permutation of points"
Jacobian 62 .

What we have proved is that transformations of
the local measure and the noncovariant divergent
term in the action agree with each other in such a
way that they compensate each other in any co-
ordinate system. According to our notations we
say that the symbol II,dg is noncovariant, but the
measure

d v(z) =Mlg(~)] II dg

is covariant as a whole.
What we have not proved is that the Jacobian 4,

possesses only a local part, i.e., that the term
oc 5'~'(0) is the only noncovariant term finally com-
ing from the action. We believe that the proof may
be given by means of the canonical formalism de-
veloped in the present paper. If so, then finally
the functional integral does not depend on the
choice of the ordering parameter, provided that
the boundaries of variation of this parameter are
+~. This statement is. essential for gauge inde-
pendence of the S matrix.

In the framework of the canonical formalism,
the ordering parameter is involved through the
definition of the canonical momenta

Choosing the ordering parameter as (Lorentz-
invariant quantization of the theory in Euclidean
variables )

=x2

we shall obtain expressions (2.12), (2.25), and
(2.26), provided that calculation of the correspond-
ing integral (2.10) is carried out in a Euclidean
domain.

F. Independence of S Matrix from the Gauge Condition

It is not difficult to show now that the property
(2.74) of the local measure secures the gauge in-
dependence of the 8 matrix (independence on the
choice of the gauge condition X). Indeed, in order
to give the proof of gauge independence, the gauge
displacement of the variables of integration g-g~
is to be accomplished in the integral

r []II(()) (), (2.75)

and the procedure of invariant integration over the
gauge group is to be applied. ' Note that the
Jacobian J„ itself is given by the group integral:

&„'4]=
J

II5(x(d'))dP(f). (2.76)

It is essential for the proof given in Ref. 3 that
after the change of variables in the integrand of
(2.75) is accomplished, the dependence on the
function f should remain only in the 5 functional
5(X (g')) .

But by virtue of the group integral invariance,

Also,

Consequently only the equality

&L' s(s~/s~)

Here again the notation II„dmdq indicates the par-
ticular choice of this definition. This notation
prescribes also the rule of singling the local term
out of expressions of the type of (2.10); the argu-
ment of the 8(v) function in the definition of
Dz(x -y) will be 7 =x' or 7' =x', subject to the
choice of the ordering parameter. Expression
(2.15) corresponds to the choice of the ordering
parameter as (quantization on a spacelike hyper-
surfac e)

v =x"n
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d~(d) =du(g)

is required, which is true, as we have shown,
provided the value of the measure is

and

r
det '„=exp 6"'(0) — & f"(x)d'x ~

5f "(y) U 0

d P (f ) = Z [f (x)]g df~ (x), (2.77)

where

Z[f (x)] = exp 6'4'(0) I 1no(f (x))d~x (2.78)

is the local measure.
Let us require left invariance of the measure

(2.77), under the infinitesimal group transforma-
tion with the function f, .

It is not difficult to show that

f, (x) -=(f,x f)

d~(g) =II(-g) "'g"II dg„.
x p (v

It is easily understood that the proof of gauge in-
dependence of the S matrix given in Ref. 3 becomes
incorrect if the property (2.74) of the measure is
not taken into account.

One may notice that the "permutation-of-points"
Jacobian will not appear if one performs the gauge
displacement of variables in the functional integral
directly, according to Eq. (1.8). However, it is a
specific feature of coordinate transformations that
the right-hand side of Eq. (1.8) contains the so-
called transport term with the time derivative of
the field functions. Because of this term such a
naive displacement in the functional integral mould
be singular as it follows from the discussion of
Sec. IIE. In order to perform a correct displace-
ment one must first make a trivial change of no-
tation in the functional integral [as in Eq. (2.60)]
and then use Eq. (2.53), where the transport term
is absent in the right-hand side. The result will
be the same as that of the naive procedure, but
the Jacobian 4, will appear.

It must yet be shown that the local factor does
not appear in the invariant measure over the group
of general coordinate transformations. Let us
present the measure in the integral (2.76) as

Hence it follows that

Z[f (x)] = Z[f, (x)] . (2.81)

dV(g)=1Ig "' ll dg„. ,
x p(v

(2.82)

differs from the value (2.23), which we obtained
in Ref. 8, by the factor

The same conclusion follows also from the right-
invar iance requirement.

To the first order in the gauge function f, , one
obta. ins from (2.81)

Z[f +f.l =Z[f ] .

Now it follows directly from the general view of
local measure (2.78) that to the first order,

Z[f +f.] =Z[f]Z[f.] .
As a result we obtain

Z[f] =1+0(f') .

Thus, in the first-order neighborhood, the local
measure in the invariant group integral, is trivial.
This is sufficient because the group integrals of
the type (2.76) are concentrated in the neighbor-
hood of the first order. '

There have been attempts to specify the measure
in the Feynman integral for gravity (see Refs. 20
and 21), and what is more, the measure (2.23) ob-
tained in the present paper coincides with the re-
sult of Ref. 20. It must be emphasized, however,
that all the early attempts to obtain the measure
cannot be considered as correct ones because they
deal with a nonunitary S matrix [additional dia-
grams in the expansion of Tr lnQ (Q"') ' were not
taken into account].

As to Refs. 22 and 10 dealing with the correct
integrals (1.3), (1.16), the value of the measure
in the harmonic gauge given in these references,

Now

= f(x)+ f,(x+ f(x)) .

Z[f (x)]II df" (x) =Z[f.(x)]II df". (x) .

(2.79)

(2.80)

g (3)
gazoo

The mistake in the arguments of Ref. 10 consists
of the following: The authors obtain expression
(2.82) using some special gauge in which

g"' = const. (2.83)
It is easily seen that contrary to the previous

case, the "permutation of points" effect does not
arise in (2.80). Provided that the function f, is
small and slowly varying, we obtain

f:(x+f(x)) =f:(x)+[a,f:(x)]f'(x)

Their next conclusion, however, that the same
value of measure holds also for the harmonic
gauge, unfortunately ignores the fact that the tran-
sition from the gauge (2.83) with the measure
(2.82) to the harmonic gauge cannot be performed
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identically. Indeed, in order to perform such a
transition in the functional integral, the procedure
of gauge displacement of variables and the subse-
quent integration over the group is needed. ' As
was already noted, such a procedure leads to the
same integral in another gauge, only provided that
the local measure together with the field differen-
tials is gauge-invariant. We have shown that the
required property is possessed by the measure
(2.23), not the measure (2.82). In order to pass
from the gauge (2.83) to the harmonic gauge, one
has to bring the factor g' ' into the expression
(2.82), which by virtue of (2.83) changes nothing,
but after the transition to the harmonic gauge is
accomplished this factor cannot be discarded.

A. The Generating Ward Identity in Presence of Sources

Let us follow the alterations in the integrand of
the functional integral under the change of the
variables

First, let us perform the identical change of nota-
tion of the integration variables in the generating
functional (1.15) with the gauge conditions (3.2),
local measure (2.23), and o]wO. One obtains

r
Z[j""]=—„.„ i

Zx[g ]exp zS[g ] —
2

X"(g )X"(g )d'

+& g~' j d4x dp. g~ . -
]jjj

'
j

III. THE GENERALIZED WARD IDENTITIES AND
DYNAMICAL EQUATIONS FOR THE

GREEN'S FUNCTIONS
The infinitesimal displacement (3.3) reads

M""(x)]' =V"'"(glx)f (x) .

(3.4)

(3.5)
The local- measure obtained in Sec. II completes

the covariant and unitary S-matrix theory formu-
lation for the gravitational field.

The next task consists of the construction of the
renormalization theory. We shall begin the strug-
gle against the infinities with the derivation of a
number of consequences of the presence of a non-
Abelian gauge group in the theory.

The gauge invariance of the classical theory is
analytically expressed by means of Nhther iden-
tities:

5S[g]vY(g)5-„,
( )

=o (3.1)

x"(i) = 8.8" (3.2)

Here, Sfg] is a gauge-invariant action functional.
The Nbther identities in the quantum domain are

known as generalized Ward identities. ""
Here we shall derive the complete set of such

relations for the Green's functions of the theory of
gravity.

From this section on, we shall use the variables
g""and the linear gauge conditions

The efficiency of such a choice of the displacement
is due first of all to

Further,

5 X"(g) X"(g)d'x

5X"ix'
X"(g(x))V', '(y)

5 „, f'(y)d'xd'y

f (y)Q'!x"(g(y))d'x

according to the definition of the operator Q by
(1.9) and (1.14).

Finally, let us use the gauge invariance of the
local measure, together with the field differentials
proved in Sec. II:

de(P) = du(g)

Then one finds that to the zeroth order in f, the
integral (3.4) has exactly the form (1.15), which
differs from (3.4) by the trivial change of notations.
Hence one obtains to the first order in f

X
eep jg[g] ——geged e ~ j ge"j „d «cled [g]I

x d'yf'(y) --O'."X"(X)+;.V~" 5-„," +V~"j„,(y) dlj(i) =O,
L

which must be true for an arbitrary function f. Let us present the functional at the point y, integrated
here, with the aid of variations with respect to external sources.

As a result, we obtain the following equation for the generating functional:

——Q,"X"(x)+—. V',"" „„,, Inr[gl+V~" j„„(x) Z[j] =O,
— @=4 ~6/5 j

(3.6)
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which is the consequence of gauge invariance of the
action and the local measure.

Let us operate from the left with
~+s

We obtain

-- }(~(x)+~',(x) +Q-", v'.""j„,(x) ~[j]=0
Q g- j I Q/$g

(3.V)

Q" (x)+'.(»y) =%5(x -y),

Q'„(y)Ef(x, y) =5&5 (x -y) .

(3.11}

(3.12)

It is important that the operators Q and Q
r defined

by Eqs. (1.13), (1.14) are not identical. The quan-
tities (3.8), (3.10) are presented as

Next we introduce the function which obeys the fol-
lowing equations:

2'„(x)= —.Q '"V'„""(x) „„, , Trlnqr~(z, y). (3.8)

Now Eq. (3.V) may be presented as

&'y(x) =-,. Q 'P', (x),1 I

&' (x) = --.Q-'»'( )

where

(3.13)

(3.14)

——}t~(x)+2' (x)+2' (x) 5-„. .(Q "(~)&'(y, ~)}.=„dy

+:Q "V'~"j (x): „Z[j]=0,
y o pv '

g j y~/6

(3.9)

where the normal-product notation:: means that
sources stand to the left of the operator Q 'V'
when the functional differentiation is meant.

(x} denotes the result of commutation of this op-
y

erator with the sources:

g' (x) =q-'"V'."'(x}j„,( ) —:q ",V~"(x)j„.(x):

(3.15)

3I' (x) = 5-„„Q '(x) V""i"( y)E", (x, y) dy.

(3.16)

Using directly Eqs. (1.10)-(1.14), one obtains for
(3.16)

&',(x) = [8„„'(x)V"""(y)&,(» y)],=.

+ [&„(x)q."(y)&",(» y)1,=.

„„„q-",(x)V'~"(x)5(x -x')dx'.

(3.10)

+ [s,(x)q."(yÃ"„(,y)],=. .
Here the last two terms have the form

(3.1V)

I.et us show no hat the quantities 2' (x) and

(x) in Eq. (3.9) exactly compensate for each
other. Such a compensation was mentioned already
in Refs. I and 2, but it was verified earlier only
up to the local factors. We shall present the com-
putation to make sure that these quantities are
compensated for exactly. Let us show first of all
that the operator V'g" in (3.9) commutes with the
sources. Really, one has directly from (1.11)

„„,V&"(x)5(x -x') =f-5[s„5(x—x')]

+55(x-x')A /5(x-x')

—= 0.

s 5 (x -y) i, „=0

according to Eq. (3.12). Performing similar cal-
culations, one obtains for (3.15}

3I' (x) =-v'""(x)([58e„(x)+5"„&s(x)]&„(y)zs(x, y)

+ s,„'(xy 8(x, y))„„. (3.18)

Here the operator V+(x) acts upon the complete de-
pendence on x of the expression in curly brackets,
that is, upon both arguments of the function F(x, x).
By means of explicit calculation of the action of
the operator V+(x) upon both arguments, Eq. (3.18)
transforms identically, after cumbersome calcu-
lations, to the form

&'&(x}=[8&'(x)v"""(y)&",(x, y)]„=.+ [88 (y)qr", (x)I"„'(x,y)]„=,+ [s, (x)qr,"(x)E (x, y)]

+[S,(x)q "(y)&'.(x, y)],=„+[s (x)0,"(y)+,'(x, y)]„=„+[&,(y)qr'„(x)E"(x, y)]„„. (3.19)

By virtue of Eqs. (3.11), (3.12), all the terms in
(3.19) except for the first one vanish.

Thus we obtain

&' (x) =[5 '(x)V""' (y)&"(x y)]—

=Z' (x), (3.20}
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and finally,

Z', (»)+Z2, (x) =O. (3.21)
+..[~1 =x"'(x,)" x""(».)ia'"'(~, )"'g 8 ""(x.)

(3.25)

Equation (3.9), with (3.21).taken into account,
takes the form

x'(»-)-+: Q ",v~"i„.(x): ~[i ] =o.9 g=$ 1$/$ j
(3.22)

The last equation is the generating Ward identity
in the presence of sources, which holds due to
gauge invariance of the theory. [See Ref. 12(c).]

B. Generalized Ward Identities for Green's Functions

into (3.24) we shall obtain an infinite set of rela-
tions for the Qreen's functions.

The generalized Ward identities thus obtained
necessarily contain information on the longitudinal
components of the Qreen's functions. However,
when m c0, they also contain information on the
transverse components. It is sufficient for the
present discussion to confine ourselves to the first
two sets of these relations, which correspond to
the values m=o and m=1 in (3.25).

The first set may be easily obtained by the
consecutive substitution of 4„o[g], n =1, 2, . . . into
(3.24}. One finds

Let us operate from the left with

15
4

z Gj

where 4)[i] is an arbitrary functional. After com-
mutation with the sources, the latter must be set
equal to zero. Then the generating Ward identity
(3.22} may be translated to Green's-function lan-
guage according to the formula'

&olTx" (x, )lo& =o,

(0!Tx 1(x,) x"2(x, )lo) = —. 5"1 26(x, -x,),

&oITx" (x, ) x""(x.) Io&

0, n odd

n/2
2(1) i (1) ~ ~ ~ 5 2 {n/2) i (n/2)

(3.26)

(3.2'7)

1

Z[i) 2 5f,. 4 —. —.&[i) =&OITc'Q]lo& .

As a result, we obtain the equation

(3.23) x 5 (x)&(1& -x«») ~ ~ ~ 5 (xn(n/2&
—x, („/,)),

n even.

(3.28)

—&o)Tx'{~)o[il)lo) =&o x'q ';o'"."{~) „. o[/x)-o&,

(3.24)

which is the generating expression for all the gen-
eralized Ward identities of the theory of gravity.

By means of substitution of a functional

Here Q denotes the sum over all the decomposi-
tions of n to n/2 pairs (k(1), i (1)), . . .,
(a( /2), z g/2)).

The second set of generalized Ward identities
is given by the generating expression (3.24) in the
form of a recurrence formula, which reduces the
order n by two:

—'&olTx"(,)x"'(.) "x""(.)P'(x}lo&=R&OITx"'(.}"x'-'(, ,)x""'( „) "x "(.}i"(y)lo&
4=2

&(5"1"/5(», -x )+&0!TX"2(x,) X" (x )8"1's&(x, , y)!0&, (3.29)

where the following notation is introduced:

Z"'» (», S) ='q-".(»)V".&'(»)5 (» -X)-=V'&' (X)q-"„(x,y) .

One obtains consecutively from (3.29) that

&OITi'~(~) x"(~)io& =-. &OITE"'~(., ~) Io&,

&oITi"(s)x"(~,)x"(~.)lo& = —.&OITE"' 8)'(2„y)x" (..)Io&+ &oIi "(x)lo&—5.""'5(~,-~.),

(3.30)

(3.31)

(3.32)
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&o I
7'i" (y) x"'(z,)x"'(z.)x"(z.) I o&

=—&olr@ x ')'(s„y)x (&,)x o(z, )lo&

Q
+ —. &olrz""»(z„y)lo&6"" 6(., s, -)

g

Q
+ —. OVZ"~» ~„y oe ~"o

~ ~ ~ (3.33)

Now, by virtue of the translation invariance,

&olg "(x)lo) =x(')e',

where the value of a constant A"' is to be deter-
mined independently. '4 Later on, we shall use the
arbitrariness in the choice of the value of this con-
stant to choose it in the initial theory in such a
way as to secure the average field in the renor-
malized theory to be equal to 5 ~.

Since we consider the quantum theory of asymp-
totically flat gravitational fields which possess
the same relativity principle as the flat space
does, '4 the translation-invariance requirement re-
mains .

Let us def ine the field operator

e"'(.)'="i"'(.) -&ol~"'( )Io&,

&oly"'( )lo& =o.

Further, we shall deal with the Qreen's functions
of the field P, the latter being the usual field op-
erator with the vacuum expectation equal to zero.

The resulting generalized Ward identities are
easily translated to the Green's functions of the
field Q language. The form of the first set of
relations (3.26)-(3.28) remains unchanged by vir-

tue of transversality of the gauge. As to the sec-
ond set, one can make sure that the terms con-
taining the average field cancel out and that the
recurrence formula

—&OITX '(x, ) X"2(x.)" X'"(x.)4'"(y)l o)

Q(olTx 2(x ) ~ ~ ~ x &-~(x )x &ox(x ) ~ ~ ~

/=2

xx" (x„)ps~(y)lo&6"~"m(x, -x&)

+&olTx"'(x,)" x""(x )h"'"r( „y)lo)

&olTe'~(y)x" (,)x"( .)Io&

= —.&olds" '»(z„y) x"(s,) lo& . (3.36)

C. Equations Defining the Dependence of the
Green's Functions on the Gauge

For the first example of application of the gen-
eralized %ard identities in"the exact theory we
shall obtain the equations for the dependence of
the Green's functions

&olTA" (y)x"'(x, ) "x "(x.)lo& (3.36)

on the parameter n fixing the gauge. The function
(3.36) is presented by the ratio of functional inte-
grals:

(3.34)

has just the form of that for the g field (3.29).
The difference in the values of these Green's
functions for n even results from the difference
in their values for n =0. In particular, Eq. (3.32)
takes the form

(expi(S[g, C, C] —I/(2n) fX"X)'ds])X"~(x,) X" (x„)((e)sr (y)d p(P, C, C)
&OIT4'"(y)X"'(xx)" X""(x.)lo&=

expi Sg, C, C —1 2u X"X"dz d p, g, C, C

Differentiating the numerator and denominator with respect to n, one obtains

(012'Ozz (y)x"(z, ) x""(z„)lo)=x, 0 yOz" (y) x"(*,)" x'"(z„)fx"(z)x"(z)dz
0&

-(olyO (y)x '(z, )z"x" (z„)io)"(orfxz(z)xz(z)oz o

»Oo(y)x" (z,)" x""(*.)fx"(*)x"(z)xz
o&

——4[6"'(o)]'&olTH" (y) x"'( x&" x "(x.)lo&
'

(3.37)

where the Ward identity (3.2V) was used. The generalized Ward identities make it possible now to carry
out the explicit subtraction of the divergence [6&4)(O)]' in the last expression. Indeed, taking the trace over
two of (n+3) points in the recurrence formula (3.34) one obtains for the function on the right-hand side of
(3 37)
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—' o x(n~(x))," (,)" x (*„) x"(*)x'( )d* 0) 4[=n"'(0)I (O'lx("(x)x (") ,"x "(*.)I»

(olT4" (x) x"'( ) "'x""( .)Io)

+OTX &x, ~ ~ ~ ~x E'la~ g ~x'g dg (3.38)

When this representation is substituted into Eq. (3.37) the divergent term cancels out and one obtains

d I. I, «ITe'~(~)x" (,) "x" ( „)Io& =—...«IT&'~(~)x" (,) "x" (.„)Io&

+OTX"zg, ~ ~ ~
X ng E'~8& g yX gdg0 (3.39)

Another way of dealing with Eq. (3.37) may prove
to be more convenient because it does not lead to
the appearance of the fictitious-particle Qreen's
functions. The method consists of singling out the
disconnected parts of the (n +3)-point function in-
tegrated in Eq. (3.37), and the subsequent use of
the Vizard identities of the first set only.

For example, for the two-point function one has

to find the mass-shell asymptotic behavior of the-
integrals of the type (3.40). As we shall show,
they may be expressed directly in terms of the
vertex Green's functions with one of the momenta
equal to zero.

The final calculation of the dependence on n be-
ing deferred until Sec. V, let us return to the gen-
eral properties of the Qreen's functions.

(ol Ty
"8 (x)y~"(x) lo& D. The Quantized Einstein Equations

«(0ITI"'(x)x (~)lo) «ITe'"(x)x'(~)lo)

+OT 8& ""X X gX gdg0
C.P.

(3.40)

Here c.p. denotes the connected part of the four-
point function.

The first term on the right-hand side of (3.40)
may be represented in momentum space as the
product of propagators. As for the second term,
the integral of the connected part of the four-point
function, its analysis is very difficult even if only
the threshold asymptotic behavior is considered.
It may be shown that this integral is proportional
to the propagator on the mass shell, but the coef-
ficient remains unknown. The gauge-invariance
properties are not sufficient to carry out com-
pletely the calculation of the derivatives with re-
spect to ~. In Sec. V we shall investigate some
other properties of the theory which will permit us

The generalized Ward identities which were ob-
tained here do not determine the Qreen's functions
completely. Relation (3.6) is the gauge-invariance
consequence of the complete set of equations of
motion for the generating functional.

The derivation of these equations may be per-
formed by the well-known general method of inte-
gration by parts in the functional integral.

Since.the integrand of the functional integral
vanishes at the boundaries of the integration re-
gion, let us write

, «V 'gi]- —(xnxn&'x»»fx'x np»2'

+)nX»[g]+ n'+ (0)j)nM(g (x))d xI

dg 8(x)=o.

Passing to variations with respect to external
sources, one obtains from here the equations of
motion for the generating functional:

J 68lgj 1 2 „1 5 „1(~) 1 sM(g(x))
-n( )

~ —8„'g'"(x)+—. . „( )
1»J[g]x—. nn'(0) „„) + j „(x)I Z[j] =0. (3.41)

When variations of these equations are performed
and the sources are put equal te zero, the infinite
set of equations of motion for the Qreen's functions
follows, which determines the dynamics completely.

The question of the boundary conditions to these
equations, as well as some of their properties,
will be taken up in Sec. V.

It must only be noted here that the equations of
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motion (3.41) necessarily contain terms of the type
5"'(0). We have seen that the corresponding term
in the functional integral exactly compensates the
divergences 5"'(0) arising in the action S[g] and in

lnJ„[g] when the exponential of these quantities is
integrated.

We have seen also that the divergences mentioned
arise due to nonlinearity of the terms with the
higher time derivatives. The local terms in the
equations of motion play the same role. Indeed,
the extremal

6S[g]
5g~"(x)

contains nonlinear terms with the second deriva-
tives and the squares of the first time derivatives
of the field functions in coinciding points. It may
be shown that functional integrals of the types

&f(g)s..'g(x))

&f (g)s.g(x)s.i'(x))

diverge as 5(0). In terms of operators these di-
vergences appear because we deal with the T
products of fields in Eqs. (3.41): Commutation of
the time derivative with the T-ordering operation

yields 5(0) when the 8 function is differentiated in
coinciding points.

The local term in Eq. (3.41) cancels these di-
vergences and the equations of motion are free of
them. It would be interesting to carry out ex-
plicitly the subtraction of these divergences.

This question as well as the application of gen-
eralized Ward identities for the proof of S-matrix
unitarity in the physical subspace, which was men-
tioned in Sec. II when the canonical formalism in
a covariant gauge was considered, will be studied
in future work.

The only thing to be noted here is that Eq. (3.6),
obtained earlier, may be also derived as a conse-
quence of the general equations of motion (3.41).
To perform the derivation, it is sufficient to op-
erate from the left with

It must be taken into account, however, that the
mentioned property

z[j] 6'"(0)
5g x f ~-~siw

causes the classical Ndther identities (3.1) in ap-
plication to the generating-functional variations to
take the form

6S[g] 1 ( ) 1 &M(g(x))
6g""(x) f M(g (x)) Sg""(x) (3.42)

Taking into account (3.42) one obtains Eq. (3.6) as
a result of application of the N5ther identities in
the quantum domain.

Equations (3.41) are the general dynamical equa-
tions of Schwinger's type in the second-order for-
malism. There is another version of the theory:
the first-order formalism, which in some respect
possesses advantages over the second-order for-
malism. The advantages are: (a) There is only
one bare vertex in the classical Lagrangian of the
first-order formalism; (b) under some conditions
the quantum equations for the Green's functions in
this formalism take directly the form of equations
of Schwinger-Dyson type in electrodynamics.

These conditions are concerned with the local
measure and consist of the obligatory use of a
regularization in which all the terms of the type
5(0) vanish; for example, the one suggested in Ref.
7. The problem is that the quantum equations in
functional derivatives in the first-order formalism
are purely quadratic in functional derivatives with
the exception of the terms coming from the local
measure. In the regularization of Ref. 7 these
terms vanish. The terms ~5(0) which come from
the action functional also vanish in the regulariza-
tion of Ref. 7, so that the compensation of these

1 5Z
Z 6i Jvv(x)

= &I pv(x)) ~

(3.43)

I

divergences is automatically guaranteed.
In the first-order formalism the expressions

(1.16) and (2.24) for the generating functional must
be used, and the source of the field I' must be in-
troduced by adding a term Jv"(x)I"„„(x)to the La-
grangian in the integrand of (1.16). We shall con-
sider the g]"parametrization, the nondegenerate
harmonic gauge (1.12), and the operator (1.14)
which corresponds to this gauge in the first-order
formalism as well as in the second-order one.
The Jacobian of this operator in Eq. (1.16) must
be represented with the aid of additional Fermi
fields C, C as in Eq. (2.33), and the sources of
these fields must be introduced by adding a term
q C +C g to the Lagrangian. Then the generating
functional takes the form

z = z[j„„J,S, q„, qa] .
In order to write down the Dyson equations, the

usual definitions must be introduced for the
Green's functions in the presence of sources:
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5 lnz 1

5ij „8(x)5ij„,(y) i (3.44) 66l) "(x, x)—
58& (

)'
= IIy""(x, z)5I"'(z, y)dz, (3.49)

g (u8 ) (y Iu v) X y)6ij „8(x)5i J""(y) i

D(yluv) (olu8) X y)
62 tu'(x)62Z."8(y) i

Z 62)I"(x)622i8(y) „„-,
Let us consider the matrices

(3.45)

(3.46)

(3.4'7)

= J"",' ( 'I )ox""""(*,y)d/yX

(3.50)

5M "8 (x, x')
52 Ju (y) (yl()~)II "8 (x x'iz)D'y ~~'' ""'(z y)dz

(3.51)

6Muy(x, y), ,') = Z(~,~,)(x, x'iz)M~y (z, y)dz .

rr'(x)=(), rx""(x,y)=( ),
m, n, k =1, . . . , 50 (3.48)

where m, n, k will be replaced by (&yP ) or (yi o.p),
and introduce the polarization (II, II) and the mass
(I') operators according to the formulas

(3.52)

The equations of motion of the quantized Einstein
theory in the first-order formalism may be de-
rived using the standard technique. Provided that
the regularization of Ref. 7 will be used every-
where, these equations are of Schwinger-Dyson
type and have the following form:

dz([B"„5"—'(585 +6„"6~)—8"„5 —'(585, +5 58)+(I' „(x))5P—'(585„+5 68)+(I'P„(x))5 —'(5~5„"+5 58)
~y

—(I',"„(x))6P-,'(5„'26,"+5„'68)—(rp, (x))6",—,'(686'„+6,'62)]6(x-z)

11(P&uu)(uIPv)(x ) ill(Pluv)(uIPu)(x )]~(y&2&)&8&&(z y)Z (yips) x) Z (yi(t&g) p Z

+ &fz 8{ 8 k(626yl +6@)5~) 5(x z)+2II l Pu P (xyz) 2IIIP2( P (x z)

«l(-x*„x„*{i,"",(x, x'Ix) —x*„x*'r()Jy~(x, x'Ix) —x P" {lx&(,ix, «'I )I,=, Id " '(x, y)

= =,'(6'„6&,'+5', 5()6(x -y), (3.53)

d Qs
r

(6 o58 585;) ~ (I 8„(x))—,
'

(5u 6;+6Pu~) +(I"„(x))—,
'

(5u868+ 5885u) —(I"„',(x)) —,
' (5@8+5~86~)]6(x-z)

.
11{pa ) (8{uu) (X ) +ill(u 8) (o luu) (x z) 211(a 8) (vluv& (x )] Ir (r)rX ) (i)l0 ()

( y)(&t) )(. ) I2
Z (@g) y Z ((t))( ) y

Z

dz f[(gu'(x))68-,' (6„'6„'+6g6„') + gu8(x)) 5;—,
' (52'6„'+ 5)6,') —Q'(x))6;—,

'
(5g6,'+ 686„")]5(x -z )

+2TI&u" &"u '(x z)+ill&»& "lu '(x z) -iII&»&"'"'&(x z))D{y(8» (~ '&."(z y)(yl @)(.) ~ Z &yi (1 )(. ) ~ Z (yl@)&. )

= =,' [6') (585 )8 + 5885 q) ——,'58 (5)5( + 685)) ——,'5'(58) 5q8 + 5885~))]5(x -y), (3.54)
r
dZ 8"5 ~ 6„6 +5„,6„—8"„5 ~ 6„5„+65„+ „„2„„+„„+I'„x 2, +

(I,"„(x))6P, -', (6t'6,'+686„') —&r P„(x))6",—,
' (686'+ 5)5,')]6(x -z ) +211«P(u„&(" P"&(x, z) - zll&(PIu;& & IP "&(x z )

+2[ 8{,8"jfl("-"»&(x,x'[z') —&)&„8"'llu'y~, (x, x'iz) —8&,'8*'III'ly „(x,x'iz)]„=„.]D'y'~~""' ~'(z, y)

d —Br„x* (ilxil ilx rr ) y( — ) lrrxx'{,"rr 'x r(x, x) —lrrlrxr{;rr ix r(x, x)Iv xxrr"'xrr(x, y)=D, (3.55)

dz ([8„-,' (6868 +6885, ) + &r8„(x))-,' (6u~6„+ 686& ) + (r„„(x))-,' (6u868 +6886u, ) (I'„",( ))-,
'

(686~8+ 686;)]6(x -z)
+ iII'ua' '8'u"'(x z ) +iII'u 8 ' &a'u u'(x z ) —iII&a» &" I u"'(x )]G &8& & &8(;&

(($)(. ) ~ (4)&. ) ~ (4X)

dz {[(gu (x))68-,' (5@6&~545 )+(g u8(x))6 2' (645&+505~) —(g'8(x))5'z (5~5~+5@6/]5(x -z)
+,11&pa& «(u (x )+,11&u8& &. uu (x ),11«»&.lu )(„)I&&ylq ~& &()&&((yl@X) (yl4X) & (yi@)() ~ Z j Z (3.56)
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dg f[(&,g"'(x))5"&"„+(e,g" '(x))5 "&"„+(g"'(x))6"8",8,"]5(x -z)

t2[S."'S",
Z&&,'., (x, x'~2) +S."'S"Z,„'.&(x, x'~s)+S",S."ZI'„'., (x, x'~z)]„,,]M'~(s, y) =i5»6(x-y),

2i =2) =0. (3.57)

In these equations the notation [pv] means that
symmetrization with respect to the indices p, , v

is supposed. The c2 appearing once in Eq. (3.53)
and once in Eq. (3.55) denotes the parameter fix-
ing the gauge.

When the sources are switched off in these equa-
tions, one must put

(g"'(x)) =A&'&5&'", (I'&2, (x)) =0,

while the polarization and mass operators are
connected with the three-particle vertex functions
in the usual way. The connection between these
vertex functions and the higher-order vertex func-
tions may be found with the aid of standard tech-
nique. '

In Secs. IV and p we shall analyze the diver-
gences which appear in the threshold asymptotic
behavior of the Qreen's functions. One might
think that this analysis is much simpler in the
framework of the first-order formalism than in
the second-order one, because there is only one
bare vertex in the classical Lagrangian of the
first-order formalism. However, because of the
formal nonrenormalizability of the theory, one
has to analyze not only the lowest-order Qreen's
functions, but all the exact Qreen's functions in
both versions of the theory. Besides that, a part
of the Qreen's functions of the first-order theory
which does not contribute to the scattering ampli-
tudes may contain the additional divergences
which one does not need to analyze. On the other
hand, the second-order formalism is more sym-
metrical and the Ward identities are of a rather
simple form in this theory. That is why we pre-
fer to present the subsequent analysis in the
framework of the second-order formalism.

I

(oil'4" "O'"I»
as was discussed above. It is convenient to single
out the connected part of (4.2) [see Fig. 1(b)]:

5"InZ[j]
5ZJ al ~ ~ ~ g&~ an j=0

In addition to the propagator of the field Q [see
Fig. 1(c)],

(4 3)

1 ., 5'Inz[j]
—.C

we introduce also the propagator of the fictitious
particles C (x), Cs(x) [see Fig. 1(d)],

M"'(x, y) =(0~Tc (x)c'(y)~0)
=—(0(TQ '" (x, y)(0) . (4.5)

Now, according to the well-known definition, we
introduce the proper vertex functions of the field
P [see Fig. 1(e)],

5G ',„[j],
, n -1.

2122 nnt2 62(gn3) ~ ~ . 52(gnnt2) ',

a&

{a) (c)

(4.6)

Let us introduce also the proper vertex functions
for the interaction of the fictitious particles with
gravitons [see Fig. 1(f)],

IV. WARD RELATIONS FOR RENORMALIZATION

CONSTANTS

A. Propagators, Vertices, and Renormalization

Constants
0+2
(e)

0+2
(f)

Let us introduce some necessary notations. "
Instead of the n-point function of the field g,

0 T . .. ()
I 5"z[j]

zg
~'''

zg &
(4.1)

we shall deal with the n -point function of the field
g [see Fig. 1(a)],

FIG. 1. Graphical notation of the exact Green's func-
tions of the theory: (a) n-point function of the field III),

(b) its connected part, (c) exact graviton propagator,
(d) exact propagator of fictitious particles, (e) proper
vertex functions of graviton interaction, and (f) proper
vertex functions of graviton interaction with the fictitious
particles.
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+Z@ ' +
n n p

+- -+8
p t

n , n even
2
n-i, n odd

2

, &—[i ~1+J&.(~)Q'(el~)&8(~)«,

1
S[g, ()(] =- v-g Rdx — X"(x) y)'(x) dx2'

in terms of the variations

Pa g
g= &olg I o&

Let us denote

(4.9)

FIG. 2. Representation of the n-point function in
terms of the connected parts of the lower-order p-point
functions. Decomposition is carried out in the number
k of disconnected pieces. Z denotes the sum over p&,
p&, ... ,p), with the condition Q; ( p(= n in every term,
while @denotes symmetrization with respect to the
indices a&, ... ,a„ in such a way that every particular
arrangement of indices should enter the expansion only
once.

(n+ 2)r. „..., ..,„„.„(., yl „.. . , „)

-y„() (x, yla, a )

6M-', (x, ylq)
5i(g')) 5i(g +)

. O'S[g, o.]
5g'5g~

G(o)ao(+)

6(n+ o)S[g]
kg~1 ~ ~ ~ Qg~n+ P g=6

= I'& &&n+~) g ~ ya1 ~ "on+2 '

[q"'l;,6(x -y)]-' =M""(x,y),

(o ) (n+ o ) (x
Qg(21 ~ ~ ~ Qg~n g=6

By virtue of

(Ol g '(x) l0) =A(o)5»',

the bare propagators and the infinite set of the
bare graviton vertices are represented as

(4.7)
~A(o)~(o)a~ (g(q 'M(o)"'(x, y),

may be expanded in the proper vertex functions
(4.6) and (4.7).

The bare propagators and the bare vertices are
determined by the expansion of the action func-
tional

—

n+2 n+2 pl +2 p&+2

pl+2 p~+2

~ ~ ~ +

FIG. 3. Expansion of the connected part of the n-point
function in the proper vertex functions with the same
notations as in Fig. 2.

Expansion of the n-point function in the connected
parts of the lower-order p-point functions is given
in Fig. 2. The connected part of the n-point func-
tion is expanded in the proper vertex functions as
shown in Fig. 3.

The (n +2)-point function

e"'(x yla a }=&OITq "'(x y)y" "y'"I0)
(4.6)

(4(o))-(&+))1 (o) (o+o)
K (21~ ~ ~ (2n+ 2 ~

(4.10)

It may be easily verified that the average field A'o'

enters expressions (4.10) with just the powers
mentioned.

Now the gauge conditions being linear, only the
first bare vertex

) "'"'(x yla)

does not vanish:

(4.11)

y„"()'"'"(x,yla, ~ ~ a„) =0, . n&1. (4.12)

The bare vertices are not independent of each
other. The gauge invariance of the gravitational
field action functional imposes a set of constraints
on them which is analogous to the Ward identities
for the exact Green's functions. The gauge rela-
tions of the bare vertices are obtained in Appendix
A. Another set of ("scale" ) relations of the bare
vertices is obtained in Sec. VC.

In the present section we shall examine the di-
vergences arising in the threshold asymptotic be-
havior of the Green's functions. Since each new
bare vertex in the Lagrangian generally brings in
a new type of overlapping divergences, the re-
normalization procedure as prescribed by per-
turbation theory generally requires an infinite
number of rcnormalization constants. We shall
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formulate the renormalization conditions as the
requirement that the threshold asymptotic behavior
of the renormalized propagators and vertex func-
tions should have the same structure as in the
lowest order of perturbation theory. For conve-
nience of further consideration we shall deviate
slightly from the usual rules of introducing the Z
multipliers, and introduce the latter as the factors
by which the threshold asymptotic behavior of un-
renormalized Green's functions differs from the
values of the bare Green's functions (4.10)-(4.12):
p(n+ 2)

01"1 ~ ~ ~ An+2"n+ 2(p1 ~
' ' '

& pn+ 2)

-I
Zpi=o (Z (n))-1 (~(0))- (n+1)
Pi-+0

(4.17}

FIG. 5. The first set of generalized Ward identities
for the Green's functions.

We shall show that as a consequence of the gauge
invariance of the theory, the renormalization con-
stants Z, , Z„Z, =- Z',"are the only independent
ones in the whole infinite set.

X"(I)„.(&,P l&I) — Z, 'y(„'s(&„'„'(i'2,P~q),
(4.13)

)& I (o) (n+2)
)) 1 V 1 ,'l))n+ 2vn+ 2 (Pl i ' ' ' t Pn" 2) i

B. Ward Identities for Propagators and Vertex

Functions

4+P+@=0
knP, q ~0

'dna(p v;...;2„v (I),pl% ' ' '(I„) = 0, )2 + 1 ~

4+P+ Zqi=o
2&.&i

Now the graviton propagator depends on the pa-
rameter a, fixing the gauge. But the 8 matrix
does not depend on e on the mass shell. That is
why we shall consider first the case of degenerate
gauge (n =0), while the generalization to the case
of arbitrary (nondegenerate) gauge will be given
at the end of the present section. The renormal-
ization conditions for the propagators in degen-
erate gauge have the form

G»»'))2v2( (2) — Z )(&&0)G«»))(v(:22v2 Ck

2 ~ g(OJ
P2 ~0

a-0
(4.14)

(p) =z M"'" (p)
I

2 g(0)

p„G)'"' ~(p, a()p =i()(5"8. (4.18)

Let us use now the expansion presented by Fig. 3.
Then the first set of generalized Ward identities
takes the form

divG" divG~~ divG" I'3,',.=0, (4.19)

(divG) ~ ~ ~ (divG )[r '~" + ZSI'21+ "Gr &»+2)

+ ~ ~ ~ +er "}Gr"'G" Gr&')] =0,

In order to obtain the relations of the renormal-
ization constants, let us represent the generalized
Ward identities of Sec. III in terms of propagators
and proper vertices.

Let us begin with the first set of generalized
Ward identities (3.26)-(3.28), which is given by
Figs. 4(a) and 4(b). It is not difficult to make sure
that Eqs. (4.15), (4.16) may be uniformly put into
the form of Fig. 5 and

Cl l V

dlV

d IV

(4.15}

(a} n odd

dlV
lV

Cfiy

dlV
d y dly

(b} n even

FIG.4. The generalized Ward identities, obtained in Sec. III.

(4.20)

where (divG) ~ ~ ~ (divG) consists of n +2 factors of
divG.

As to the second set of generalized Ward
identities, it must be noticed that the Green's
functions entering the right-hand sides of Eqs.
(3.29)-(3.35) may be represented in terms of the
Green's functions 8 [Eq. (4.8)], the identity of
order n containing not only the 8 function of order
)1, but also the 8 functions of order (n+1) taken at
coinciding points. The higher-order Green's func-
tion, taken at coinciding points, generally has the
pole asymptotic behavior of the lower-order func-
tion, so that both contributions are to be analyzed.

Correspondingly, let us represent the function
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from the right-hand side of (3.34) in the form

&0I T&~"y(. , y) x"'(,) "x~(x.)10)

=A«&V«&ay'v(y)e 2 ~ ~ ~

a'2

where the linearity of the operator V ing is used,

v8yl (gly) =~«&v«»y& (y) ~vsy& (lpl y) (4 22)

v«&sy &v = vsylv(5I y)

x e",e" l"""2:- '4~(x„ylx„. . . , x„) =gsa~+Oye~ g»e~o y o 8 o& (4.23)

+ 6 "& y'"2"'+(x„ylx„. . . , x„), (4.21) and the following notation is introduced:

g"&"y' '" (x„ylx„.. . , x„)-=&ol7'v'y" (yl )q-"( y) x"'(,) "'x (.)Io) (4.24)

As a result we obtain the generalized Ward identities of the second set (3.31), (3.35) in momentum space
in the form

1.—2P G'y:""(P ~) =2A«&(5'. P, +5yP, —5"P.)M "(P)+S""y(-P,P), (4.25)

—2)2, G "& '2'al I(0)iq„,G "2"2'"'~(q)Gsy'"'&(p)1'"'. ..l. «&&~p~q)

+5yp, 5' yp)~-" &~ i(I2)~ "(
p) 2qp

"2"2'" (q)r".I. ,» (I2, PI q)+h"'" '"2(~l plq),

k+p+q =0. (4.26)

C. The Analysis of Threshold Asymptotic Behavior of the Green's Functions and Generalized V4rd Identities

The asymptotic behavior of the Green's functions 8 is obtained separately in Appendix 3.
Let us consider first the exact graviton propagator. The highest possible Lorentz-invariant structure

of the propagator with respect to the symmetry properties contains five independent scalar functions.
However, with respect to the lowest-order Ward identity of the first set (4.18), only three of these
functions remain independent. In terms of these three functions, which we denote G"(p2, l&i), GLr(P2, o&),

Grr(P2, n), the exact graviton propagator has the form

pppp1 Q

(P2)2 p2 Sy P v 2v 8 y
G»vsy(p o) "2"ysv Gll+ (5 p p +5 P P ) o G» Gll 2Grr

p'

1 Q
+ —.(&.8 Aye„+ &.,ps&„+ &„8p,p. + &„,»e p.& ~ +v")

ps vy py vs 2p2
(4.27)

(4.28)

I
—,.P„G"" (P, )p. = 5„ (4.29)

The bare propagator, which may be easily obtained
from the Lagrangian, is given by the formula
(4.27) with the values

Since the exact propagator in the pole term must
have the structure of the bare propagator, we ob-
tain

Gll(p2 L2)

(4.31)
g(o) II p G(o)L T p

GL r(p2 ~) - 0

~(o)Q(o)TT p2 ~(o) +~ & I(~.~(o) p
2 2

(4.30)
Thus, the pole asymptotic behavior of the exact
graviton propagator has the form
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1
—.G "'

(p, )= 25„„5 —5„,5„,-5„5„,——,(5 p„p„+5„,p p )+ —,(5„p p„+5, p, p„5„,p p„5„p p„)

xGrr(P2, (2)

1 1+ 2 (5085oy oy 0()) + 2 (50()pyp)(+ 50 ypBP))+5ogpypo+5oy pap)I) 2 (58yp)(po+ 52vpspy) 2 p

p'- 0 . (4.32)

The propagator (4.32) in the degenerate gauge
(n =0) is transverse with respect to any of the in-
dices.

Now the renormalization condition (4.14) takes
the form

Grr(P2 (2) = Z2)(A(0)
1

p2~0 p
(4.33)

As to the propagator of fictitious quanta, its high-
est possible Lorentz-invariant structure is

I"8(p) =(p'-pp' I (p*).p"' 'I "(p)-p' p'

8 0'. u ~ u u (X—,(5"'py+5"yp'-5»p") =i(5"2py+5"yp2 56yp")—Z

+ 8,"2)„'((-P,P) . (4.36)

The following expression has been obtained in Ap-
pendix B, Eq. (B9):

@"-"r(-PP) =[ P"t)'"+ (P' 5"'+ P'5"')] M'(P').

(4.37)

Substituting Eq. (4.37) into Eq. (4.36) with regard
for (4.35), one obtains

(4.34)

The corresponding bare propagator is equal to

ns
~(O) ~2

Thus, we obtain

[M'(p') -M))(p')j = 0,
p2-+p

—,(5 spy+5"yps) i -iZ —c (,)g

+ —,6 &p -i+ig, —c, (,) g, =o.p'

Hence,

.c, =-iA(0)(g2 ' -1),
c =2A(o)(g -) 1)

(4.38)

(4.39)

(4.40)

and the renormalization condition (4.14) takes the
for m

Mpg 0(p2) =M22 0 (p )

Thus the lowest-order Ward identity (4.25) per
mits us to define the constants c, and g, .

Let us consider now the generalized Ward iden-
tity (4.19). After the transition to the mass shell
with regard for (4.13), Eq. (4.19) takes the form

1 1
+2~(O) 2p

(4.35) g '(A' ') 'divG"'" divG"' divG' '" F',0'3',,' =0.

We shall begin with the lowest-order generalized
Ward identities (4.25) and (4.19).

A relation of the bare propagators, analogous to
the generalized Ward identity (4.25), is obtained
in Appendix A, Eq. (A12), but we also possess
rather simple explicit representations for the
functions occurring in Eq. (4.25). Taking into ac-
count Eqs. (4.28), (4.31), (4.34), and (4.35), one
obtains from (4.25)

I

(4.41)
Equation (A14) of Appendix A shows, however,
that (4.41) is satisfied identically and thus it does
not lead to relations for the renormalization con-
stants.

Let us consider therefore the higher-order gen-
eralized Ward identity of the second set (4.26).
With regard to Eqs. (4.28), (4.31), (4.34), (4.35),
and (4.13), one may represent Eq. (4.26) as follows:

Q

@2k'
(A(0))-2Z -1(50&a)P a2 +5 2 )Pa& 50& a+a&) (6f&n2 f2 + 5foa2 f& 5f)fo~a2)G8y; $9(P +)P(0) (3)

(P ~ P)g~a2, yqy2; ye

pp/e 2y2 2 2
(A(o))-(g 22 -)(5y&ps +588py 58yp&)(5f)no~f2+5f ~f 2ao5f))fo~a2)+(0)(3) (y p[ 4()Ze~~Z~ 2

~0 p ~0,02 ~0;2+2+2=o (4.42)

An expression has been obtained in Appendix B, Eq. (B16), for the asymptotic behavior of the function
h "(2y "2. Putting (B16) into the form symmetric with respect to k, p, q, and taking into account (4.35) and
(4.13), one obtains
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g 1&8)'& 2$~p~ q) = (Q ) Z Z [c (5)''p'+508p'/) +c 5»p ]
$2~O p2 +p q2~0 7 ~ P

)& (6/1 2q/2 +5/2 2qf1 Qf1/2q 2)y&0) (2)
(Q p ( q)ag81f~f2 (4.43 )

C~ =$C~ ~ C2 =ZC2 ~ (4.44)

However, the constants c, and c, were obtained
from the previous Ward identity: (4.39)-(4.40).
Thus, one obtains with the a.id of (4.44)

c =A(o) (Z -' 1)

c2 = -A(0) (z2 ' —1 ) .
(4.45)

It must be noted that the exact propagator
G 8) '~e(p, &&&), containing the constant &&&, still re-

It was also proved in Appendix B, Eq. (817), that mains on the left-hand side of (4.42). Let us can-
cel &)& entering (4.42) as a multiplier and then pass
to the limit e- 0. Then, for the resulting factor

c8) ':;.. .(p, ~),

one may use the renormalization condition (4.14).
Substituting (4.45) into (4.43) and (4.42), one veri-
fies that the addition of the term g "~Y 2 in
(4.42) is equivalent to multiplication of the right-
hand side of (4.42) by the factor Z, ' .

Finally one obtains

I (4"') 'Z 'Z (5 1"lk '2 + 6'2 lk'1 -50102k 1)(5 1 2q/2 +5 2"2q/1 -6 1 2q 2)G"'8&"&o(P &2) 6""' . (k q P)q2y2 1 2 &y &2 ~ f1/ 2

(A"') 'Z 'Z (5) P +5 P) —5 rP ) (5 1"2q 2 + 5 2"2q 1 —5 2q" 2)y"' "' (k Pi q) .
pole ~2p 2P 2 1 2 a y8I fyf2

(4.46)

The corresponding relation of bare vertices has
been obtained in Appendix A, Eq. (A18). Compar-
ing (4.46) with (A1 8), one f inde that

z~z ' =z~z (4.47)

—the first Ward relation for renormalization con-
stant s ~

In order to obtain the other relations, let us con-
sider the whol e first set of general iz ed Ward
identities (4.20). The corresponding relations of
bare vertices have been obtained in Appendix A,
Eq. (A23). Comparing the exact identities (4.20)
with their analogs for bare vertices (A23) one may
obtain successively the infinite set of Ward rela-
tions for the threshold renormal ization constants,
determined by Eqs. (4.13) in the degenerate gauge:

(Z(n))-1 Z -nZ n 1- (4.48)

It must be noted that the first set of general-
ized Ward identities at the threshold is exhausted
by the relations (4.48). As to the second set,
only the first two relations have been examined .
It is obvious, however, that by virtue of Iqs .
(4.12), (4.13), the higher-order generalized Ward
identities for the fictitious -interaction Green' s
functions cannot produce new relations for the
threshold renormaliz ation constants .

Thus, Eqs. (4.47), (4.48) represent the complete
set of Ward relations for the renormal ization con-
s tants . Let us proceed with the cons equence s of
these relations ~

D. Lagrangian of the Renormalized Theory
(Renormalizations at the Threshold)

XP 1 ~ ~ ~
Q n+2

+A C Q
' Csdx

a()
+ (~&'&)-' C. . C,y d~ . (4.49)

g
I.et us perform the following change of the field
variables in (4.49):

ya Z -1/2ya

C&2 —g - ~ /2ga

g a g -y/2ga
B 2

Then the terms

(4.50)

g(o))-n(t)al. .. pan+2 (~&0))-n ~ (n+2)/2~01 ~ ~ ~ ~an+2

(g(0)) lco'Caya (/i(0)) 1Z, Z,l/2 C~ C8
n ) 1

The action functional of initial theory in the de-
generate transverse gauge reads

s[(t), c, c;a&0), /(]

(Q(0))-I 1 52S

6ga6go

OO (n+ 2)g
+ (g(0&)-n

(&2 +2)& (gal 5gan+2
n= I @=h
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by virtue of the Ward identities

1 =z'"'(z, "z " ')

Z1Z2 I 2&

take the form

and

(A(0&)-1C&Csya Z (A(0))-1CaC &pa

yayb Z (tabb

C CS=Z C Cs.
R '

(4.53)

(4.54)

(4.55)

(A(0)) -1 (A(0))-1[g -lg 3/2] (4.51)

and choose the initial value A"' in such a way that
the renormalized constant AR

' should be finite.
Then we obtain

(A( &) opal ~ ~ ~ Jan+ 2 —Z(n) (A(0&) n(t&a 1 ~ ~ ~ (t)an+2R R R

(4.52)

(A 0
) n(t)al Jan+2 = g n (t)ai (t&an+2

1 R F
)([(A(0))-1Z -IZ 3/2]n

(A(0))-lCnCsya g CuC()ya [(A(o))-ig -lg 3/2]

Now the constant A"' plays the role of a coupling
constant in this theory. Let us define the renor-
malized value of this constant as (A(0))-1 (A(0))-1

K KR

=/( (z 'z,"'), (4.56)

and choose the initial value of the constant K in
such a way that the renormalized constant K„.
should be finite.

Substituting Eqs. (4.51)-(4.56) into Eq. (4.49),
we obtain the expr'ession for the action functional
in terms of renormalized quantities:

Thus, as a result of Ward identities the "coupling
constants" of all bare graviton and fictitious-
particle interaction vertices are renormalized with
the aid of a single quantity Z, 'Z,"'.

Let us introduce the renormalized gravitational
constant KR,

S[$, C, C;A(0&, R] =—8„[(t)R 1 C„', C'; A"), /( ]

22& 5 a5"b 4~R Zln ( R ) / 21( 5~1... 5 a„+2 „4R 4R
KR - ~ g' g' g=g

n+8
+A"' Z dxC'RQ"& 3C'R+Z (A(") ' C'" C'"Q'dxR 2 CX 8 1 B & g a 8 Rg' g=g

(4.57)

where E. Gauge Invariance of the Renormalized Theory

The renormalized gravitational field operator
reads

g =A"'5 +(t) (4.58)

are the actual renormalized fictitious fields.
The renormalization constant Z, may be elimi-

nated from the expression for the S matrix by
means of a trivial change of the local measure. "
The constant A„"' may be set equal to unity.

Thus, as a consequence of generalized Ward
identities, only two essentially divergent quan-
tities, the wave-function (t) renormalization con-
stant Z, and the gravitational-constant renormal-
ization constant Z, 'Z, '", survive in the theory.

It is seen from (4.57) that the generalized Ward
identities permit us to transform identically the
initial Lagrangian to such a form that after the in-
finite factors are included in the parameters of the
theory, all the Green's functions possess the fi-
nite threshold asymptotic behavior. This does not
mean, however, that divergences have been re-
moved from off -threshold amplitudes.

g Z -1/2[(Z Z -1)A(0&5+(t)] (4.59)

The renormalized gravitational field operator gR
may be expressed directly in terms of the unre-
normalized operator g only, provided that one
extra relation takes place:

Z1 Z2 (4.60)

However, the generalized Ward identities, which
were analyzed here, do not yield this relation.
As we shall show in Sec. V, relation (4.60) is true,
but it is not a Ward identity. In other words, the

and the asymptotic behavior of all the Green's
functions of the field gR is finite by virtue of the
finiteness of A'„" and the Green's functions of the
field QR. It is a surprise, however, that the con-
stant and the variable parts of the gravitational
field operator are generally renormalized with the
aid of different quantities:
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g -1/)'2g (4.61)

Contrary to (4.59), (4.61) is proportional to the un-
renormalized g but is generally not finite. Never-
theless, the gauge invariance may be proved.

Indeed, the gauge invariance of the initial theory
was true by virtue of the action S[P,A"'] invari-
ance in terms of the integration variables g =A."'5
+(t). In the framework of renormalized theory,
one may transform the differentials

II di, =IId4» =IIdg,

and consider g as the integration variables of re-
normalized theory. It remains to be noted that by
virtue of (4.57),

5 l4's As ] =~I.~ A ]

and thus provided that S is invariant under the
transformations of g, S~ is also invariant under
the same transformations of g and consequently it
it is invariant under the transformations of g, be-
cause g is proportional to g and the gauge trans-
formations are homogeneous.

Finally, the action SR is invariant under the trans-
formations of the integration variables of renor-
malized theory. Q. E.D.

It must be emphasized that the variables g and

gs, determined by the formulas (4.61) and (4,58),
coincide only by virtue of the extra relation (4.60).

F. Renormalizations in Arbitrary Gauge and Finiteness
of Longitudinal Parts of the Threshold Amplitudes

The Ward relations (4.47) and (4.48) have been
derived in the degenerate gauge (a=0). However,

gauge invariance of the theory does not require
this relation, but some other properties do. These
new properties of quantum gravity will be studied
in Sec. V.

The main consequence of generalized Ward iden-
tities for renormalization constants is the state-
ment that the counterterms, renormalizing the
threshold asymptotic behavior of the Green's func-
tions, do not break the gauge invariance of the the-
ory.

This statement is not quite evident because if Eq.
(4.60) is not considered, then by virtue of Eq.
(4.59) the renormalized Lagrangian as a whole
does not represent the invariant expression in
terms of the field g„. The renormalized Lagran-
gian of gravitational field has the form of a curva-
ture scalar up to the constant factor in terms of
another metric field:

g=Q +Z, 'Z, A~~)5

Z -1/2(y +A(0)5)

exact Green's functions generally depend on the
gauge, which results in their dependence on the
parameter n. Consequently, the constants Z, and
Z, also generally depend on n. Let us consider
now Green's-function renormalization in the arbi-
trary (nondegenerate) gauge.

Renormalization constants Z',"'(n), Z, (a), 22(a)
may be introduced with the aid of the same formu-
las as Eqs. (4.13), (4.14), while introduction of
Z2(o) needs a certain discussion When ()(OO, the
exact propagator (4.32) contains a free term pro-
portional to e and a term with the function
Grr(p2, o.) also dependent on (2. The bare function
(4.30) reads

~(0)g(0)TT p2
™ g(0) ~ &~

Only the function Gr" (p2, a)~» 0 is to be renormal-
ized. The renormalization constant Z, (n) must be
introduced in such a way that the Ward relations
in the case ng0 should remain in a form of (4.47)
and (4.48).

Let us show that this requirement leads to the
following definition of Z2(n):

Grr(P', a)~22, =[A(')Z, ((2)+2 (2]p' (4.62)

~(o) ~&(O) 1

Z, ((x)
(4.63)

Now, using the definition (4.62) and the repre-
sentation (4.32) one finds that

G8y;Pv(p & Ar(0)) G(0)8y;0v(p

With the aid of the analog of (4.42) for the bare
functions, Eq. (A18), one may cancel the tensor
factors in Eq. (4.42) with the value A'(0) (4.63).
Then it follows that

(A'"') 'Z, '(~) =(A'"') '&, ((2)&, '((2),

and thus

The requirement that the form of the Ward iden-
tities corresponding to ++0 should remain the
same as in the degenerate case is a nontrivial
one, because the propagator possesses the free
term dependent on n. Indeed, let us return to Eq.
(4.42). When (2e0, there is the exact propagator
with the coefficient of the form

(A(0 )-2Z 1 ((2)G8y; flU(p + A(0))
~

on the left-hand side of (4.42), while on the right-
hand side there is a factor

(A"') '& (~)Z, '(~) .
Equation (4.42) holds for any value of the parameter
A"'; in particular, it remains unchanged under the
following substitution:
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Z. (n)z, '(n) =Z.(n)z, '(n) (4.64)

by virtue of (4.63).
Using the same trick, one may easily prove that

provided the renormalization constant Z, (n) is de-
termined by Eq. (4.62), the Ward identity

[Z'"'(n)] '=Z, "(n)z." '(n) (4.65)

Z, (n) =Z, (0), Z3(n) =Z, (0) . (4.66)

It means that in the expansion of the exact Green's
functions in powers of e, only the terms of zeroth
order become infinite at the threshold. That is
why only the transverse part of the wave function
in the action functional

S[g, n] = S[g] ——J(y"(x) }t"(x)dx
1

2Q

is to be renormalized:

y rpv(x) z 1/2y Tpv(x)

which is equivalent to (4.50) in the case of the de-
generate gauge. Then in the case of an arbitrary
(nondegenerate) gauge, all considerations are
valid which were carried out earlier for the case
of degenerate gauge. As a result, the asymptotic
behavior of the transverse parts of the Green's
functions is finite in view of renormalization,
while the asymptotic behavior of the longitudinal
parts is finite by virtue of relations (4.66).

V. THE SCALE PROPERTIES OF THE THEORY
AND THE RELATION Zl Z2

In the previous sections we have analyzed the
consequences of invariance of the theory of gravity
under the gauge group of general coordinate trans-
formations. It will be shown in the present section

holds.
It is evident that if the definition of Z, (n) differs

from Eq. (4.62), the Ward identities cannot have
the form of (4.64) and (4.65).

In Sec. V the functions Z, (n) and Z, (n) will be
found. It will be shown that not only the charge
renormalization

Z -1(n)z 3/2(n} =Z -'(0}Z '"(0)
but the constants g, and g, themselves do not de-
pend on the gauge:

that the theory under consideration possesses ad-
ditional properties of invariance connected with the
conformal transformations of the Einstein Lagran-
gian, with the pecularities of symmetry breaking,
and with existence of a fundamental constant having
the dimension of length.

Considering first the generating functions of the
theory as functionals of sources, we shall prove a
theorem of invariance (homogeneity) which they
satisfy and deduce a new set of relations for the
Green's functions. Further, we shall consider the
properties of the equations of motion for the gen-
erating t" function as the functional of the average
field and prove a second theorem of homogeneity.
As a result, we shall obtain the second set of rela-
tions for the Green's functions. Both new sets of
"scale" relations contain the derivatives of the
Green's functions with respect to the parameters
of the theory.

Combination of these relations gives the remark-
able identities which state that the derivative of
the Green's function with respect to the parameter
A.' ' is equivalent to the derivative of the corre-
sponding generating function with respect to the
"average field" argument, i.e., to the higher-
order Green's function, with one of the momenta
equal to zero. The threshold analysis of these
identities will produce a fundamental identity for
the renormalization constants:

ZJ Z2 ~

Further, using the fact that gravitational con-
stant ~ enters the theory only through the dimen-
sionless space-time coordinates, we shall exclude
the derivatives with respect to x from the "scale"
identities and obtain the general off-mass-shell
relations for the Green's functions.

Next, we discuss the introduction of the "scale"-
invariant regularization and possible anomalous
singularities of the Green's functions. At the end
of Sec.7 the independence of renormalization con-
stants on the gauge win be proved.

A. The First Homogeneity Theorem

Let us present the generating functional (1.15)
as

exp —S,g] +S,g', C, C] +ig' J, Q d Q' g d C&(x) g dC" (x)
1 1

. exp —Sg +Sg C C d ' dC~x dC"
K a x,p X3P

(5.1)
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1
S,[g] = )]'-g R dx ——

Jl &(['y" dx, (5.2)

S[g, C, C] = jC"(x)Q" C "("x)dxxi)(0)$)xd)[d]dx.

(5.3)

The expression of these functionals in terms of the
field Q is given by the formula (4.49), where the
parameter A' ' enters explicitly.

The integration in (5.1) is carried out with re-
spect to functions vanishing at infinity:

&f)(t =+~) =0. (5.4)

In addition to this, according to the definition we
have

(o~y(x)(0}= o.
Let us perform the following change of variables
in the integrand of (5.1}:

pl CI (A(0))1/2C Cl (A(0))1/2C (5 5)

Then with respect to (5.2) and (4.49) one obtains

S,[y, A(0&, o.] =A(0&S, y', 1,

Also,

Here the parameters entering the theory are ex-
plicitly designated as arguments of the generating
functional, and the following notation is introduced:

altered, so that the following theorem is proved:

(5.6)

Equation (5.6) states that the generating functional
is a homogeneous function of order 0 with re-
spect to all of its arguments. "

The invariance (homogeneity) property (5.6) of
the theory explicitly states that the average field
also plays the role of a coupling constant in this
theory. It must also be noted that in the course of
derivation of Eq. (5.6) the properties of conformal
transformations of the Einstein Lagrangian were
exploited, which yield, in particular, the result
that the constant average field satisfies the clas-
sical equations of motion identically. The fact
that the constant A' ' cannot be defined by the equa-
tions of motion is specific for the symmetry break-
ing in the quantum theory of gravity. Later on,
we shall once more exploit this property when the
quantum equations of motion are considered.

Such peculiarities of a theory with symmetry
breaking mean that the average field enters the
theory only through a boundary condition. Indeed,
one may represent the generating functional (5.1)
completely in terms of the field g as the integra-
tion variables. Then the integrand of (5.1) will not
depend on the parameter A"' at all, but the depen-
dence of the integral on this parameter will re-
main the same as before, because the new vari-
ables of integration possess the property

C()&C —=A CQ( 'C+ y 'PCC P'(f = ~-) =A('&52" (5.7)

Clq(0)Cl++(0)y) ClCr

Further, the local measure transforms as

QM[g(x)] =+M[A(0)6+y (x)]

= CQM[5+y'(x)],

where C is the constant factor which cancels by
the identical factors in the normalizing integral of
(5.1), as well as the Jacobian of the transforma-
tion (5.5).

The transformation of the term with sources
reads

g' J, = (A(0'6 + Q ')J,'

= (5 + P")(A"& J,') .

and

(0~ g"'(x) ~0) =A"'5"'

Considering integration with respect to the field
P, we make explicit the dependence of (5.1}on the
parameter A"'."

Performing the differentiations of (5.6) with re-
spect to sources,

gn Qtl
A(0) )2

5i J'1 ~ ~ ~ 6iJ" MA"&J 1" 5iA(0&J'

we shall easily obtain the homogeneity theorem
concerning the higher-order generating functions
as functionals of sources: The "average field"
functional

It must be noted that the change of the variables
(5.5) does not alter the asymptotic behavior of the
functions at infinity (5.4).

Finally, as a result of such a change of integra-
tion variables, the generating functional returns
to the initial form (5.1), but with the arguments

- is a homogeneous function of order -1 of its
four arguments. The generating function

(5.8)

(5.9}
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is a homogeneous function of order -2, and so
on.

Let us now apply the Euler theorem" to these
functions. We obtain

/y

(
8 (o) 8 (5.15)

~A"
n n

FIG. 6. The first set of "scale" identities for the
Green's functions.

grab
1 1 1

(5.17)

and so on.
Let us now put the sources here equal to zero.

Then the first infinite set of relations for the
Green's functions follows as

+~«) + & g«) ~(0)
8

BA«) e z (5.10)

=2G'~(A~0'; lc; o.), (5.11)

+g() +~ Q g b 0~
~

~

K

«)
a~

~
(0 )

I

~

~

~
a b

~

c

= 3&0~ TP'P'Q '~0), (5.12)

generally (see Fig. 6). The first relation (5.10) is
satisfied identically, while the rest of them state
that derivatives of n-point functions with respect
to the parameters A"', K, and e are not indepen-
dent.

From (5.12) and (5.11), one easily obtains

and substituting the expression obtained into (5.9).
Hence, one may see that the dependences of the
functions (5.9) and (5.16) on the parameters are
generally quite different from each other.

In order to analyze the generating function (5.16),
let us consider the set of quantum equations of
motion obtained in Sec. IG. Let us denote

81W Ta[ ]gga

Tu (g (~))

1 68~91 Ta[-]
gga

where

S,[g] = Trlng[g]Q' ' '+6(0) InM[g]dx. (5.18)

It must be emphasized that the functionals T,
and T„being defined in terms of, the field g, de-
pend on only one argument.

Equations (3.41) for the generating functional
take the form

and from (5.11) it follows that

(5.14)

y T (n+&)
ay ~ e ~an+y ~

(5.19)1, 5, 5

Multiplying Eq. (5.19) by Z '[J'] from the left, we
obtain

=-2G, '(A' 'z o.) (5 15)

which will be of further use.

B. The Second Homogeneity Theorem

(5.20)
I

+ T; &g)'+ G"(&g)), 1 .
6 g'

At last, let us perform one more variation with
respect to the average field. Finally we get the
equation

The generating 6 function as the functional of the
average field,

G'~ (&g) ~

A"', z, o.), (5.16)

is of the most interest because it generates di-
rectly the vertex Green's functions according to
the formula, (4.6). The generating G function (5.16)
may be obtained from (5.9) by means of inverting
the function (5.8),

for the function

(5.21)
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G"((g)la"', ~, n)

of interest.
The boundary conditions read

(g""(~))(&)l,=, =A"'5"",

(&)lg=. -G ((g))l&,v &=~'"g~~ ~

(5.22)

(5.23)

It must be noted first of all that the parameter
A+' does not appear in the equation (5.21) for the
6 function. It appears only in the boundary condi-
tions (5.22) and (5.23), which reflects the pecu-
liarities of symmetry breaking, mentioned earlier.
Further, Eqs. (5.22), (5.23) serve as the boundary
conditions to the equations for the functions of
sources, but not to the Eq. (5.21), where the aver-
age field is the argument of the G function, so
that these conditions are applied to the function
G((g)) only as the conditions of transition to the
vertex Green's functions, which we are finally in-
terested in. Thus we have

S,[ar.;n] =aS, g;—

Hence

T,[ag;n]=T, g;— (5.25)

Now, as the operator Q[g] and the local measure
M[g] are homogeneous in g and the functional
S,[g] has the form of Tr ln, one finds

depend parametrically on A"', as a consequence
of the boundary condition (5.23) only.

We have proved earlier the homogeneity theorem
for the generating functions as the functionals of
sources. Let us show that the G function as the
functional of the average field possesses a similar
property.

Let us find how the functionals T,[g] and T,[g]
transform under multiplication of the argument &

by a constant.
From the known conformal-transformation prop-

erties of the curvature, one finds

„,G"((g)la&", ~, n) =o.8
(5.24)

T[ Ag]= —T,[g]. (5.26)

It follows from (5.24) that the G function as the
function of sources (5.9) and the Green's functions

Using Eqs. (5.25), (5.26) in Eq. (5.21) and omitting
the indices, one obtains

-5 =A'G((g)lK;n) T, A(g—) A+'G((g)it&; )nAn +T, A(g)+A'G((g)lK'n) 1.5A g ga 5A g 5A. g
(5;27)

G (A(g)l Aa; A n) =A'G ((g)l~; n), (5.28)

which holds for arbitrary A.
Equation (5.28) represents the second homoge-

nei, ty theorem, concerning the generating function
as a functional of the average field. Note that by
virtue of (5.24), for the generating function (5.16)
the number of arguments is less by one in com-
parison with the function (5.9).

Since, by virtue of Eq. (5.28), the G function is
homogeneous of the order 2, the function

G,~
' ((g) le; n)

Let us now denote

(g) =A(g) K =AK, n =An

G ((g) la; n ) =A'G ((g) la, n) .

One may notice that Eq. (5.27) for the function G
has just the form of Eq. (5.21) for the function G
written down in terms of the new arguments. Thus
we conclude

G((g)l~;n) =G((g)l~;n),

or

l

is homogeneous of the order -2.
Let us apply the Euler theorem to this function.

Then one finds that

. sG., ((g)l~;n)

+ "
&(

'' ' —n=-2G, '((g)le;n).

(5.29)

Performing functional differentiations of (5.29)
with respect to (g) and then putting (g~") =A"'6""
we obtain the second infinite set of relations for
the Green's functions, independent of Ward iden-
tities.

One obtains consecutively in the momentum
space

=-2G„,...- (pla&'~;~;n), (5.3O)
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n

id 8 . 8 l„(i, . . . , p„, —Qii, 0 5""4 + K—+a—~ 6 B 1 p, . . . , i„-Zpi)
i=1 i=1

n
= —(n +1)r'„";&I „„~„(p, , . . . , p„, -ri, ,

i=1

n & 2. (5.31)

In the case in which the gauge is degenerate, the
terms n[s/(Bn)] may be omitted in the relations
(5.31}

C. The Relation Zl =Z2 in an Arbitrary Gauge:
Scale Relations of the Bare Vertices

Comparing two sets of "scale" identities,
(5.10)-(5.15) and (5.29)-(5.31), we obtain the rela-
tions mentioned in the beginning of this section:

&,&G 8. , '(pl A&0&;&&;o) = -iI"8&. .„„(p,-p, 0)6&'",

(5.32)

&I S. , ye(p k p klA '&&'&)

=fr&~4&, .„.„,(p, k, -p-k, o)5~, (5.ss)
8

sA&» &&
&
a; ee ..p&; (pi ki qi -p —k —ql A;«; n)

(4) (o).

=l'r
8 .ee . &. .&iii(P k q P k q 0)5~

(5.34)
and so on.

Let us now consider the mass-shell asymptotic
behavior in the relations obtained with the aid of
the formulas of Sec. IV:

G""' 8(plA"';&&'&) — &G&o"'""'" (p8)+ [A&&"'Z (A"'&&"a)+ 'n]G',"&'"' 8—(p, o. =0),
p2~ 0

1
K,A

(0+k)2 0

Further, at the threshold,

1r"'(p, k, q, -p -k-q)- &,»(Z"'(A"'&&;&x)) 'I'""'(p, k, q, -p-k-q),

(5.35)

(5.36)

(5.3V)

and so on.
Only Eq. (5.35) needs some explanations. As was

discussed above, the exact propagator (4.32) pos-
sesses a free term proportional to n, which is de-
noted here as

K nG"'~"'
2

"homogeneity" property:

S[Ag] =AS'],

5"S[AP] 6"S[p]
5Ag '& 5AP ii 5g'& 5f'n

Application of Euler's theorem gives

(5.38)

(5.39)

and a completely transverse term, which is de-
noted as

&&[A&0&Z, +-,'o. ]G&&o»'"' s .
Besides this, it was shown in Sec. IV that the re-
normalization constant Z, (o.) must be introduced
as in Eq. (5.35) in order that the Ward identities
should remain in a form of (4.64) and (4.65). In
order to obtain the relations for renarmaliza-
tion constants from the threshold asymptotic be-
havior of Eqs. (5.32)-(5.34), we shall need one ex-
tra set of relations among the bare vertices, dif-
ferent from the gauge relations found in Appendix
A.

The gravitational field Lagrangian possesses a

5"". S[p] „( )
5"S[p]

6g 1~ ~ ~ 6p nQ~n+1 5giil ~ 5gn

(5.40)

Equations (5.40) taken at

+~ PV gPV

represent an infinite set of new ("scale" ) relations
among the bare vertices.

One of the momenta is always equal to zero on
the left-hand side of Eq. (5.40) taken at P = 5; how-
ever, a generalization to the case of nonzero mo-
menta may also be given. For example one may
prove that
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'[G -"8
, og(q. )J

' --'[G "8,.0~(P)]
' -2 [(-"8,.p~(k)]

'

+-,' [5"3-(qop&) + qe po) +50~(q„k 8 +q() k„)

+ (5~ 5()3+5„e5() )q']

+ 3[5g(p ke -k()po) +5p (p~k8 -k()p~)

+ 5 ~~ (p

ok�„-

k„p 0) + 603 (p ~k„—k p ~)j,
k+p+q=0, o(=~. (5.41)

The relations (5.40), (5.41) may be very effi-
ciently used in perturbation theory calculations,
because in some cases they give a possibility of
avoiding the highly complicated explicit expres-
sions for bare vertices.

When q =0, Eq. (5.41) states that

1's,."„'.„,(p, -p, 0)5""=[~':,',.(p, )]-'I= .

(5.42)

When n = 3, we obtain from (5.40) the relations
for the higher-order bare vertices:

ZJ Zp (5.49)

in the arbitrary gauge. The role of this relation
was discussed at the end of Sec. IV.

One can show that (5.49) is the only consistency
condition following from the whole infinite set of
relations (5.46)-(5.48).

It must be emphasized that, just as the Ward
identities (4.64) and (4.65) were obtained from the
requirement that the renormalized theory should
preserve the property of gauge invariance of the
initial theory, in an analogous manner relation
(5.49) expresses the requirement that the renor-
malized theory should preserve other properties
of invariance of the initial theory: the homoge-
neity properties.

Solving Eqs. (5.46)—(5.49) for renormalization
constants as functions of A."' one easily finds that

Bgi Bg
Bg(o) Bg(0) (5.50)

the previous two. As a condition of consistency,
one obtains from (5.46)-(5.48), after some simple
arithmetic, a new fundamental relation for renor-
malization constants:

p(o) &n+1)
Ot~8~2. .~ ~ 0!fI+ys~+y PI 9 n " ' &Pff &

1, 1
SZ(0) P(o) 2 (+(0))2 1

/g(n))-1 / g(n+1) $-1
()~(0) (~(0) )n+1 ( 1 i (g(0))n+ 2 ( 1

(5.44)

n - 2. (5.43)

Using relations (5.42), (5.43) to cancel the tensor
factors in the threshold asymptotic behavior of
relations (5.32)-(5.34), we obtain the new infinite
set of identities for renormalization constants
Z2 (A."', )(), Z(,")(4"),)() in an arbitrary gauge:

D. The Dependence of the Green's Functions on z and the
General Off -Mass-Shell Relations

The homogeneity properties of the theory which
resulted in Eqs. (5.49), (5.50) do not embrace the
whole variety of "scale" properties of the theory.

There is one more, almost obvious, property,
which is the consequence of the essential feature
of quantum gravity: the existence of a fundamental
constant vg, having the dimension of length (11 =1)
(Planck' s length 3'). This property states that )(

enters the dimensionless generating G function
only through its space-time arguments. This
statement becomes apparent if one works in units
for which h =c =z =1. It may also be easily proved
using Eq. (5.21) for the generating G function:

Next, Ward relations

(Z"') '=Z "Z"

must be used. It then follows that

B 1 1
s~(0) ~(0) 2 (~(0) )2 1

n - 1. (5.45)

(5.46)

G '(&g&l~) =G(x, yll&g&;~)

(the discrete indices are omitted).
Let us denote

f X IX =~
and define a new function G':

(5.51)

B 1
~ 2

~~(OT (~(0))2 1 (+(0))3 1 2 t

8 1 2 3
S~(0) (~(0))3 1 2 (/(0))4 I 2

J

(5.4V) G'(x', y'll&a&(. ')) =' G(x, yll&a&(z);~) (5 52)

The equation for the new function G' may be shown
to have the same form as Eq. (5.21) for the func-,
tion (5.'51) of the new arguments and the value

Only the first two equations of this infinite set
are independent. The third one is consistent with So it follows that
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G'(x', y' ~[(g)(g')) =G(x', y' (((g) (g'); 1) . (5.53)

Comparing Eq. (5.53) with the definition (5.52) of
the function 6', one finds

G&~sll&,ss&& » s& snl~=, ~ &2&(~);&ll,

(5.54)

which gives for the Green's functions in momen-
tum space

8 1 8-p', 6„,~8. '(p) + 2»—G „„.„8 '(p) = -4G„„.s '(p),

(5.56)

n+2
s, s& r&n+2)Pj ep && &2)81,... , &2 y 82yn(2P )s

' ' s Pn+2}
1

K r&n+ 2)8

Q» + 1 81 ~ +2+ 28 + 2 (Pl s ' ' ' s P&s+ 2)

G(p~») =»'G(»» p)1),

(P„",P:.IK)

(5.55)
4rln+ 2)

~ ~+1812~ ~ ~ 2 Ofn+28n+2'~1 ' ' ' '
& pn+2 &

n+ 2

Q p, =0. (5.59)

=K 'r'"'"(»» P„.. . , WgP„„~1),

Qp, =0. (5.56)

One can see that Eqs. (5.55), (5.56) again have
the form of "homogeneity property. ,"this time con-
cerning the Green's functions as the functions of
momenta and 1/W». Application of the Euler theo-
rem immediately gives

p. a 8
P G"""'(p) —2»—G""'"'(P) = -4G"""(P)8p~ 8g

(5.5V)

Let us now consider the second set of scale iden-
tities (5.30)-(5.31). The derivatives with respect
to ~ entering these identities may be excluded now

with the aid of Eqs. (5.57)-(5.59). Then one ob-
tains the set of off-mass-shell relations for the
Green's functions:

8 8
P sp. G B., p, '(p)+2&2~ G 8,2, '(p)

=2ir'2&I. .„„(p,-p, 0)A&o)5"", (5.60}

-p's, '„",s, „,8, „, (sp k sp&-&)-u'e, r'„",,, „,, „.&).(Psks-p-k)-2~„"... „,, „...(Psks -p -0)

o. =o (5.61)

n+1 n+1 n+1

p
p

p~ -- I.(n+2) * . . . p -~ p -2nr(n+Pss„,s„.... .„~„„P P.+ Ps , , .... .ss.„sP s &s.~ -Z &ss).
1 P /=1 j=l

&2 = 0. (5.62)

8 8—Z2(», n) =—Z, (», n) =0. (5.63)

Equations (5.60)-(5.62), obeyed by the Qreen's
functions, are the "scale-invariance" relations
which may be regarded on a level with the gen-
eralized Ward identities as the exact consequences
of the dynamical equations.

As to the renormalization constants Z, and Z2,
the threshold analysis of Eqs. (5.55), (5.56}gives
the evident result that

E. Scale-Invariant Regularization

Equations (5.50), (5.63) state that threshold re-
normalization constants do not depend either on
A"' or on v. This means that radiation correc-
tions to the threshold asymptotic behavior of the
Green's functions are either absent or coupling-
constant-independent. Both of these possibilities
seem paradoxical; nevertheless we shall show
that the conclusion is correct and the details de-
pend on the way of dealing with the divergent inte-
grals.
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FIG. 7. Graphical representation of the integrals of
perturbation theory.

In order to analyze what happens one must first
make sure that the integrals of perturbation
theory formally possess the same invariance prop-
erties as the exact functions do, according to the
considerations of the present section. Let us con-
sider, for example, the perturbation expansion of
the graviton propagator (see Fig. 7). Performing
formally the change of integration variables in the
integrals in momentum space

one obtains, provided that the boundaries of inte-
gration region are infinite,

in any order of perturbation theory, just as is re-
quired by Eq. (5.55).

However, the case is somewhat more complicated
in view of ultraviolet divergences. The calcula-
tion of the integrals of the type presented by Fig.
7 needs the introduction of a regularization. For
instance, the introduction of a cutoff in the momen-
tum space would immediately break our present
conclusions, for the Green's functions would de-
pend on the additional dimensional parameter.
The latter would enter the Euler theorem as well
as invalidate Eq. (5.55) and all the consequences.
However„ to secure the invariance of the theory„
the regularization must also be introduced in an
invariant way. In the present case, except for
gauge invariance, regularization must also secure
the homogeneity of the theory. While introduction
of a gauge-invariant regularization presented a
certain problem, '" the introduction of a "scale"-
invariant regularization is straightforward: per-
form a formal change of integration variables

in the divergent integrals and introduce the upper
limit A or any other type of regularization in the
integrals with respect to dimensionless variables
(a/A'0')'"k. It is evident that the invariance re-
quirements of the type (5.55) are then satisfied
manifestly and the dependence of the Green's func-
tions on the dimensionless parameter A does not
affect the "scale" properties of the Green's func-
tions in any case.

It must be emphasized that the choice of dimen-
sionless units does not yet guarantee invariant
regularization because A would become dimension-
al again when the gravitational constant v is rein-
troduced. Another necessary step consists in pro-
claiming A (which is numerical in the celebrated
system of units) purely numerical. Then changes
of system of units will touch the momenta, but not
A.

Reference 7 gives an example of a regularization
which is both gauge-invariant and scale-invariant.
Thus, provided that the invariant regularization
is introduced, all the conclusions of the present
section are also true when the ultraviolet diver-
gences are taken into account, but perturbation
theory is no longer an expansion in the "coupling
constant" (z/A. "')' '. The quantity (z/A"')' 'p
serves as the true external parameter for the
scattering amplitudes. Working in absolute units,
one makes it obvious that all orders of perturba-
tion theory become important at the same time be-
cause there is no small pure number in the theory
to distinguish the various orders.

Perturbation theory acquires its literal meaning
only in the framework of such an invariant regu-
larization technique which annihilates all the
power divergences in terms of the upper limit A,
so that only the logarithmic divergences remain.
The regularization of Ref. 7 possesses this prop-
erty too. The perturbation expansion regularized
in such a manner becomes at the same time an ex-
pansion in the powers of external momenta, each,
distinct order being of a unique power in momenta.
In this case there will be no radiation corrections
to Z multipliers: Z, =Z, =1. However, it must be
stressed that this is not the property of the theory,
but the property of a particular regularization
technique (for example that of Ref. 7), since gen-
erally neither the gauge invariance nor the scale
invariance require the obligatory annihilation of
power divergences.

So generally the constants Zy and Z, as functions
of the infinite parameter of scale-invariant regu-
larization, A, would possess radiative corrections
from all orders of perturbation theory, notwith-
standing that they are coupling-constant-indepen-
dent. In the general case Z, ~ I, contrary to elec-
trodynamics, because in gravitational theory there
are charges of only one sign and thus radiative
corrections make the experimental charge larger
than (or equal to) the initial one. It must be noted
that the peculiarity of the theory of gravity which
is the nonlinear gauge theory causes not only the
renormalized three-graviton-vertex function, but
all the renormalized vertex functions of graviton
scattering at the threshold, to be equal to corre-
sponding bare vertices with the renormalized val-
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ues of K and A"', all infinite radiative corrections
being included in g multipliers.

Now, we considered a particular form of pole as-
ymptotic behavior of the Qreen's functions through-
out the present paper. It must be noticed, how-
ever, that if the infrared divergences exist in the
theory (see Ref. 32), they may lead to the occur-
rence of anomalous singularities. The additional
powers in momenta may be formally included into
g multipliers:

a G—"8'y (p~A"'(«&()
8

~Q t

= G"'y'(P~A"'~ ~)

-fG"""' (p)Gy':y ' (p)

x r'„9„, , „„(p,-p, 0)A&"5~", (5.66)

~,- s, (p'),

Z, - s, (p', k', pk),

.=, -». ...,„(P,k, -p -k~A&'&;~;~)

and so on.
Although Ward identities in a simple form of

(4.47), (4.48) would not hold for () quantities, the
scale properties of the theory will yield certain
relations among them, provided that the invariant
regularization is introduced. Using the exact rela-
tions (5.60)-(5.62); one obtains in the degenerate
gauge

8
~, '(P')+p's 2 s2 '(P') = 3) '(P' P', -P')

(5.64)

and the analogous relations for the higher-order
anomalous factors 8&,"&. If the anomalous singu-
larity has the form

const
2 P (P2)y

Eq. (5.64) gives

(5.67)

Relations (5.66), (5.67) together with the Ward
identity represent the' complete set of equations for
renormalization constants as the functions of o..

Substitution of the asymptotic expressions
(5.35)-(5.37) into the set of equations (5.66), (5.67)
is not straightforward, because the propagator
(5.35) possesses the free term, dependent on n.
It will be sufficient to consider only one structure
in the propagator, of the type

(5~"5"'+5»5"")

which does not mix up with other structures when
multiplication with summation over collective in-
dices is performed.

Confining ourselves to this structure, we find
from (4.32) that

G(0))(u; n8
(p & 0) (5()a5u&) +5 85(v)n)1

j pK

(l +r) s, '(P') = 3, '(P', P', -P') . (5.65)
G"'"" (p a=0) = (5""5' +5" 5"")

2p2

Equation (5.65) replaces the Z, =Z, relation, while
the higher-order relations for 8',"' with respect to
Eq. (5.65) replace the Ward identities for renor-
malization constants.

F. Gauge Independence of Renormalization
Constants

We shall end the present section with the calcula-
tion of the dependence of g, and Z2 on the constant
a, fixing the gauge.

Let us use Eqs. (5.58)-(5.59) to exclude the de-
rivatives with respect to )& from Eqs. (5.30)-
(5.31). [The threshold asymptotic behavior of the
Qreen's functions being known, the derivatives
with respect to momenta may be calculated ex-
plicitly in Eqs. (5.58)-(5.59).] Thus we obtain on
the mass shell (m.s.)

Then the free parameter n cancels in the expres-
sion (5.35) for the exact propagator, this being the
consequence of the correct introduction of P, (n),
and we obtain

G" ( ~

p&'A~&n)~.. .= —,(5~ 5"8+5'"5»)

x [-((A(o)Z, (o.)].

(5.68)

Further, with the aid of relation (5.42) for bare
vertices we find that

fG+8;+'&)'(P)Gya;y'o'(p)F(3) (p p 0)A(0)5)(v

= —(5""5" +5""5" )[-)&A"'Z, '(o.)Z, '(&).)].p'

(5.69)

Substitution of (5.68) and (5.69) into Eq. (5.66)
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a„Z,=Z, (1 -Z, 'Z, ), (5.70)

a Z, ' =-2Z, '(Z, 'Z, -1). (5.71)

In order to solve this nonlinear set of equations,
let us remember that we have obtained

Z, (a) =z.(a).
The solution of Eqs. (5.70), (5.71) immediately
follows:

dZ, (a) dZ, (a}
dQ dn

Thus not only charge renormalization, but Z,
and g, themselves do not depend on the gauge; and
an the relations for renormalization constants,
which were obtained earlier, hold in the arbitrary
gauge. Construction of the renormalized Lagran-
gian in the arbitrary gauge was discussed at the
end of Sec. IV.

We shall get an idea about the information car-
ried by the "scale" properties of the theory if we
compare the equation (5.60), which was obtained
here, with the similar equation (3.40) of Sec. III.
Qne finds that the integral of the connected part of
the four-point function, arising in Eq. (3.40), is
Unambiguously expressed in terms of the I "' func-
tion with one of the momenta equal to zero. Simi-
larly, calculation of the derivatives with respect
to a of the higher-order Qreen's functions by
means of the method of Sec. III leads to the inte-
grals of the connected parts of the Green's func-
tions of the field Q analogous to (3.40) or to the
integrals of the Green's functions of fictitious
fields, analogous to (3.39}. Using the relations
obtained in the present section. , one easily finds
explicit expressions for these integrals in terms
of higher-order vertex functions with one of the
mgmenta equal to zero.

VI; CONCLUQON

The re$atj, oo obty. jned,

gives a differential equation for Z, (a) and Z, (a).
In order to obtain the second equation, let us sub-
stitute the pole asymptotic behavior of l functions
(5.36) and (5.37) into the second equation (5.67) and
use the fact that the function Z, (a) is introduced in
such a way that the Ward identity

[ZP'(a)] '=Z, '(a)z. (a)

holds. Using Eq. (5.43) to cancel the bare vertices
in Eq. (5.87), one finels the second differential
equation. The complete set of equations reads

APPENDIX A: THE GAUGE RELATIONS OF THE
BARE VERTICES 33

The starting point for the derivation of gauge
relations among the bare vertices is the Ndther
identity":

where

5S +~ 5S
8 (+)6"pu( )

~ 86 (A1)

S= ~g fIdx.

Performing the consecutive differentiation of (Al)
with respect to g'~ and after that putting g =5, we
shall obtain the infinite set of relations which the
bare vertices obey.

First we obtain a set of exact relations, where
g is arbitrary:

constants are specific distinctions of the theory of
gravity from the theory of the Yang-Mills field.

In particular, it is possible in the Yang-Mills
theory to make the renormalization Z, (a) finite by
means of an appropriate choice of the value of
a.""' Then, only one essentially divergent con-
stant remains in this theory: the charge-renormal-
ization constant. We see that similar considera-
tions cannot be applied to the theory of gravity,
because in this case Z, does not depend on ~. The
relation Z, =Z, serves the equivalent of these ad-
di.tional considerations for the theory of gravity.
By virtue of this relation, there remains in the
theory of gravity, as well as in the Yang-Mills
theory and in electrodynamics, only one essential-
ly divergent constant, renormalizing the threshold
asymptotic behavior of all the Green's functions.

It goes without saying that the main question of
whether the theory is renormalizable or not re-
mains unsolved. The Green's functions are unre-
normalizable from the viewpoint of the perturba-
tion theory, but we have seen that the latter does
not exist in the usual sense. The true parameter
for the scattering amplitudes is the quantity vv p,
so that the next problem is the renormalization of
the terms following the threshold terms in the ex-
pansion of the Green's functions in vz p. There
are reasons to think that this task will not require
the introduction of additional higher-order in-
variant structures in the Lagrangian, because
structures of this type are present already in the
covariant and unitary 8 matrix. " In this case, the
theory mould prove to be renormalizable, at least
on the ma, ss shell.

and the gguge independence of +e renormalization
58 5~8„(v"8) =;-+v", , -, =0,g-' (A2)
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6/a& ( 8) 5gb6.g a) 5ga) ( 8 6g b5gaa

V'„'), V'„'2 and then put g = 5. W'ith regard to (A5),
one obtains

g3(0) ~
+(0)a +(0)b +(0)cV fxV SV y (aaa(ab(sasc 0 ~

5 5"S
6g i 6g 5g ) ~ 5g i-)5g i+( 5g a=1

gn+iS

2 (0)
+{0)b 6 S

V 8 g"bg"a =0 as 5)

Let us now act upon Eq. (A.3) with the operators

We used here the linearity of the operator V' in g.
It follows from (A2) when g =5 that

Let us now consider the functional

1
8(o.') = S ——X"X"dx .

2G ~

In terms of (A7), Eqs. (Al)-(A3) take the form

+b 58(os) 1
-b =-—Q 8X'

5g n

6 +b 68( (|),b O'8(()()
6g' 8 6g' 8 6g 6g'

=-~(sr~a.s)x'--s). s(s-. x'),

(A8)

(
6 ~ 6'8(P) 6 ,b O'8(n) ,b O'8(n) 1 5 - 5 , 1 6 6

a 8 6 b6 c 6 c 8 6 b6 a + 86 b5 a6 c & 6 "aQ08 5 c X & 6 c~a8 6~aXg
(A10)

We used here the linearity of the operator Q and

the gauge condition X in g.
Equations (AB)-(A10) present the nontrivial gen-

eralization of the previous relations because
the second variations of action may be inverted in
these formulas. It would not be possible to per-
form this inversion in Eqs. (A2), (AS) because of
degeneracy of the matrix

52S
g+ag+b

'

Denote

O'8(n)D"Rl = 6-.6-b

When g = 5 one obtains from (A9)

I SyG(0) p)s;0 xx(y ) V(0) oxxl8 (y)M(0) p8 (g y) (A12)

sxsG(o)P):osx(y 8) V+(0)osx(y) 6(y s)y t p
8

=9» 8~ ~

Here the transversality of the gauge was used.
With regard to (A13), Eq. (A6) takes the form

(divG"'" )(divG"'"')(divG"'"')I ""'=0 (A14)

which is the analog of the Ward identity (4.41).
Equation (A12) is the analog of the Ward identity
(4.2 5).

Inverting the second variations in (A10), one ob-

tains, for a = (ii., v; x), k = (p, y; y), c = ((p, g; ~),

0" —,c s
' s(s -x) c s, ss'*ss*)s (X -x)

grab
8 5g'

3
+Wb ccrc +a+rb D

=--D"' -~$.8(x) [8„"D '"(,, x)]e 5g

~'D ", , A15

which is a rigorous relation. Let us now put g =5,
then find the explicit form of variation of the op-
erator V' in the first two terms of (A15), and then
go to Fourier components,

x—k, y p, z-q,
keeping in mind that k+p+q =0. One notices that
the terms which come from the first two terms of
(A15) have the one-particle pole 1/p' or 1/q',
while the other terms have the pole 1/p'q'. Thus,
when the pole asymptotic behavior is considered,
one obtains

(6pk" +608kp —6""k8)G"'~ '8 (q)G")»'p )' (p)

&& I'„„". ' .~ 0, (k, p, q)

= -G""""(p)q G"' " "(q)~"'"' (,qlp)
pole n e' 0 '8 I p'y'

G(o)sb6;sb'8'
(q)p G(0)P); Psy'(p)y(0) (0) (k pi q)

(A16)
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Multiply this equality by q and use relation (A13).
Then it follows that

Q'
(5vuv+5vI2P 5Pvt33)(5ee qe +5ee qe 5e e qe)

"'""'(p)~„",., ',"., ~ (,p, q)

't5'8 t p'y'= G"'""~(p)r"'"' (~ ql p)

+ (5ee'qe'+5ewqe 5e e
q

x —,(5p'ppy +5 p'yp 0 5pypp') rp'(I')'z e. (k, pl q)

(A17)

Note that the first term on the right-hand side of
(A17) possesses the one-particle pole 1/p', while
the other terms have the pole 1/p'q'. Omitting the
term with the weaker pole asymptotic behavior,
one obtains finally

, (5pu" +—5",I 0 —5p"I e)(5«'q'+5e'qe' 5e"qe)
q2 8

XG(o)py p y'(p &)1 (o&(3&

(5«'q'+ 5e'q e' —5e"qe)
pple l2q 2

x(5P PPy+5P yPP-5PyPP )rp 3('e e (& Plq)

(A18)

which is the analog of the Ward identity (4.46).
Let us return to the rigorous equality (A15) and

take two divergences there: with respect to one
index from the pair b and another one from the
pair c. The equation thus obtained is to be varied
n times with respect to g; then g is to be put equal
to 5 and the pole asymptotic behavior is to be
taken. It is not difficult to see that the first two
terms on the left-hand side of (A15) will always
produce the weaker pole asymptotic behavior than
the other terms.

Thus we can write

CC' +a S
ebD BCD ~ u ~-a~-b ~-C-1 1

Doo r(o) ((& Dc;a() )by a/I b' Cy 0]
gn g-g

pole

Analyzing the action of the operator (A20) upon
both sides of Eq. (A19) and using Eqs. (A4) and
(A13), one obtains

6&-'y+3l;, -0 n) o (A22)

n o- 1 (A23)

where (divG(0&) ~ ~ ~ (divG(0&) consists of (n+2) fac-
tors of divG(0&. Equation (A23) is the analog of the
first set of Ward identities (4.20).

APPENDIX B: THE THRESHOLD ASYMPTOTIC
BEHAVIOR OF THE GREEN'S FUNCTIONS 8

IN COINCIDING POINTS

For the analysis of the Ward identities (4.25) and
(4.26), it is necessary to find the threshold asymp-
totic behavior of the functions

(~ P ) ln+&&= 0

s" )»)" (~lplq)l„„. . .
which are determined by the formula (4.24). Ac-
cording to (4.8), these functions are expressed in
terms of the Green's functions 8"e(x,y la) and
8"e (x, y la, , a, ) at coinciding points.

Let us consider the first of the functions (Bl).
One has

~""y(., y) -=«11"~'y (sly)e-'" (x, y)lo)

((&a 5y58+()2 5(&5y (&2535y)euu(PP(x yl y)

dg 5 y -g 5&58+586&

x()'eau&»(x, ylz) . (S2)

Going over to Fourier components and taking into
account the translation invariance, one obtains

ig (ey(-p, p) =
~

dt[tp(5y53+535y)+p"535yj

as a consequence of Eq. (A19). The equality (A22)
may be written down as

(divG"') ~ (divG" ')

X[F(0)(n+2) + Q~o) (p&+2)G(0)la(0) (p2+2)

+ ~ ~ ~ +@P(0)(3)G(0)po) (3)G(0) ~ ~ ~ G(0&P(0) (3)] ()

xe )»(t, pl-p-t). (a3)

Let us now apply the operator

Sy&" yn = divD &y& divD n yn
5 . i 5

5gii 5gln (A20)

y("'yn( 5 Dc;a() ] gy&" 'fnca
L C2 e2i (f1+2) (A21)

to Eq. (A19) and define the action of this operator
upon the quantity

For the Green's function 8 one has a representa-
tion

~ "'"'(t,pl -P —t) = I""'(t)I""'(p)G"'""(-t-P)
xr. ,„„...(t, pl t p), (s4)

corresponding to Fig. 8. We are interested in
(B3) when p-0. With respect to Eq. (B4), one
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FIG. 8. The three-point function e.

+ I

a bany
represents the right-hand side of (83) in terms of
the following two integrals, in which we may di-
rectly put p =0:

M"" (t)G" '" ( t)y„i,-x, pa pa(t y Oi t)dt =-f, —

(85)
py

(86)

Here, the constants fp'p~ and f","" are the rela-
tivistic tensors composed of 5~" only. Thus

fP|Pyl 0

and
b

f pp~ =c, "6 p~6+c,(6'p6pv +6"p6pv ) (83)

where the symmetry properties are taken into ac-
count. Finally, using

M"" (p) - 6"'M" (p'),
P2-+ Q

one obtains from (83) the asymptotic behavior
needed:

h "i8&(-p,p) = [c,p"6'y +c,(p~6" + p'6"y))M'(p'),

(89)

which is deteyrmined by (89) up to two unknown
constants c, and c, .

Consider now the second of the functions (81):

FIG. e. The four-point function e.

taken at coinciding points. This expression reads
in momentum space (t s)

i h" & i'&' ~(k
i
-k -qi q)

h""'yi"'( i~is) =&0i1~ ~ (ei~)e- " '(~, ~)x"(~)i0). q' p& &&a„'+~'~& + a+q "~8~~

(810)

Similarly to the previous case, one expr|.sses
(810) with the aid of the explicit performing of the
operator V action in terms of the higher-order
Green's function

eppes
"i'i""(tix, y i s) = &OiT&»(t)Q ' "&'(x,y)p"''(c)i0)

(811)

»(s+k+p+q)epp'"y'i 2'(slk plq)dpds.

(812)

For the Fourier transform of the function (811)
we use the representation of Fig. 9. We are inter-
ested in (812) when k, q-0. As before in the in-
tegrals which arise we put k =0, q =0 directly.
Then (812) takes the form

&'~~'" (ki-k -qiq) = iq~[ kp(6-&68+-6~6&)+ (k+q)"686&]Gpp' 2~(q)M"&'(k)
A~Q
q-+ Q

+iq~(k+q)"686&M"&~(k)G"'~' '~2(q)[f"~p~~'~'+y"ei& (k, -k —qiq)M (k+q) f"" ~]

(813)
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where j,"»~ & 2 and f2»~ are the constant tensors.
Now note that the first term on the right-hand side of (B13) (which is the contribution from the discon-

nected part of the four-point function), as well as the term proportional to f„possesses the pole 1/q'k',
while the third. term, proportional to f„has the pole 1/[q2k2(k+q)2]. Omitting the terms with the weaker
pole asymptotic behavior one obtains

h "& 2& (k(-k -q)q) = iq~ (k+q)"585&M ~(k)G"2"~' (q)y2'e~~ ~ (k, -k -q(q)M &(k+q)g"»&
y-+ P

(B14)

Thus only one constant tensor f2 contributes to
the final expression (B14). This means that only
one of the last two diagrams of Fig. 9 contributes
to the pole asymptotic behavior of the Green's
function at coinciding points. This contribution
reads

f2»' =2JI dP~" (f )G»'""(-P)r"'.. (o, PI -P)

Thus it follows finally from (B14) that

lls)'I 2(k~ k q) q) M (k )M (@+q) )(6 1 2q 2+5 2 q 1 P1 2q 2)
a O
q-+ O

xy"'
( q (k, —k -q~qgc, 58~(k+q) +c,t5~ (k+q) 8+58e(k+q)~]], (B16)

which gives the asymptotic behavior needed up to
two unknown constants c, and c™,.

It is of special importance that the constants cy
and c, are not the new ones. One can make sure
comparing the integrals (B15) and (B5) that those
integrals are exactly equal. Thus,

I

and from (B15) and (B8),

C~ =ZC~ q C2 =2C2 . (B17)

In Sec. IV the constants c, and c, are determined
with the aid of the lowest-order Ward identity. Then
formulas (B16) and (B17) permitus to substitute in
the next Ward identity the completely known as-
ymptotic behavior of the Green's functions (B1).
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