- ¹A. Donnachie and G. Shaw, Phys. Rev. D <u>5</u>, 1117 (1972). This paper is referred to as I in the text, and the notation follows this reference throughout.
- ²For a discussion of earlier work on these topics and references, we refer to I.
- ³T. Fujii *et al.*, Phys. Rev. Lett. <u>28</u>, 1672 (1972). We would like to thank Professor T. Fujii for providing us with the numerical details of the experimental results.
- ⁴G. Von Holtey *et al.*, Phys.Lett. <u>40B</u>, 589 (1972).
 ⁵Pavia-Frascati-Roma-Napoli (PFRN) collaboration, Frascati Report No. LNF-71-44 (unpublished).
- ⁶Aachen-Berlin-Bonn-Hamburg-Heidelberg-München (ABBHHM) Collaboration. See A. Donnachie, in *Proceedings of the 1971 International Symposium on Electron and Photon Interactions at High Energies*, edited by N. B. Mistry (Laboratory of Nuclear Studies, Cornell University, Ithaca, N. Y., 1972).
- ⁷There is need for some reservation still in that the present experiments use bremsstrahlung rather than tagged photon beams. This is of course a more serious disadvantage when working with deuterium rather than hydrogen.
- ⁸T. Fujii et al., Phys. Rev. Lett. 26, 1672 (1971).
- ⁹A. I. Sanda and G. Shaw, Phys. Rev. Lett. <u>24</u>, 1310

- (1970); Phys. Rev. D 3, 243 (1970).
- ¹⁰For a detailed discussion of the dip test see G. Shaw, in Proceedings of the Informal Meeting on Electromagnetic Interactions, Frascati, 1972.
- ¹¹The same value of t is obtained if the E_{0+} waves are fixed at their theoretical values, as is done in most of the fits (to less precise data) in I. However, the quality of the fits to the π^-/π^+ ratio is not so satisfactory.
- ¹²D. Schinzel (private communication). This supersedes the earlier published result of the same group
- [J. Favier et al., Phys. Lett. 1, 60 (1970)].
- ¹³P. A. Berardo *et al.*, Phys. Rev. Lett. <u>26</u>, 201 (1971).
 ¹⁴Cf. Ref. 3 for an illustration of this. The capture data are again from Berardo *et al.* (Ref. 13).
- ¹⁵S. Barshay, Phys. Rev. Lett. <u>17</u>, 49 (1966).
- ¹⁶B. L. Schrock *et al.*, Phys. Rev. Lett. <u>26</u>, 1659 (1971). ¹⁷One should bear in mind that the data for π^+ photoproduction and for the π^-/π^+ ratio, on which these predictions for the π^- reaction are based, have typical errors of 7% (π^+) and 3% (π^-/π^+), respectively.
- ¹⁸The other previously outstanding anomaly—that in the η -decay asymmetry parameter—has been removed by the recent data of J. G. Layter *et al.* [Phys. Rev. Lett. 29, 316 (1972)].

PHYSICAL REVIEW D

VOLUME 8, NUMBER 11

1 DECEMBER 1973

Possible SU(3) Classification of E Meson*

Richard H. Capps

Physics Department, Purdue University, West Lafayette, Indiana 47906 (Received 30 July 1973)

We point out that the 1420-MeV E meson cannot be a pure SU(3) singlet. We discuss the possibility, suggested earlier, that the E is a tenth member of the pseudoscalar-meson multiplet of the pion. The $(K\overline{K}^* + \overline{K}K^*)$ decay partial width, calculated from an extension of Odorico's bootstrap condition for pseudoscalar mesons, is consistent with experiment.

The 1420-MeV E meson is observed to be of j^{P} (spin-parity) either 0⁻ or 1⁺ and of zero isospin and positive G parity.¹ The observation of the $(K\overline{K}^* + \overline{K}K^*)$ decay mode shows that the E cannot be a pure SU(3) singlet. This follows because the singlet classification would require the existence of a $\pi\rho$ mode, a mode forbidden by G-parity conservation.

In this note, we assume that future experiments will show the *E* to be a *P* (pseudoscalar) meson. We discuss a recent suggestion that the *E* is a tenth member of the lightest *P* multiplet, a multiplet corresponding to the SU(3) representation $\underline{8} \oplus \underline{1} \oplus \underline{1}^2$ At the end of the note, the possibility that $i^{P} = 1^+$ is considered briefly.

We now assume that the *E* is a *P* meson and that its nonsinglet part is associated with an octet. In the mass region $1300-1600 \text{ MeV}/c^2$, the *E* is the only nonstrange meson listed in the meson table of Ref. 1 that could possibly be associated with a P octet whose $I_z = Y = 0$ members are of even C parity. Thus, the E must be significantly heavier or lighter than the other nonstrange members of the octet or nonet. The second possibility is un-likely, since isosinglet members of other known meson octets or nonets are of mass less than the average multiplet mass only when they decay strongly into two-pion or three-pion states. Therefore, the most likely assignment for a pseudoscalar E is as a tenth member of the $\pi K\eta X$ multiplet.

This assignment has been suggested previously by the author.² It was shown in Ref. 2 that there are two solutions to Odorico's linear-zero-bootstrap conditions for *PP* scattering.³ Of these, only the solution discussed by Odorico in Ref. 3 is compatible with the measured $\pi\eta/K\overline{K}$ branching ratio of the A_2 meson. It was further shown in Ref. 2 that Odorico's solution is compatible with bootstrap conditions for certain reaction amplitudes involving internal P mesons only if the Prepresentation is $\underline{8} \oplus \underline{1} \oplus \underline{1}$. Two of the isoscalar mesons are predicted to be particular octet-singlet mixtures, while the third must be a pure singlet. It was suggested in Ref. 2 that the E is the pure singlet. However, as pointed out above, this is incompatible with the *E*-decay data. In this model the X(958) must be the pure singlet, and the η and E the singlet-octet mixtures.⁴ We take the η to be the mixture with the larger octet component.

If this assignment is made, the ratio of the $K^*(890)-K\pi$ and $K^*(890)-KE$ couplings may be computed from the interaction constants of Ref. 2. The phase-space factor for the $K^* - K\pi$ decay is often taken as p^3/M^2 , where p is the decay momentum in the K^* rest system, and M is the K^* mass. If the VPP vertex is of the type $e \cdot (p_1 - p_2)$, where e is the V polarization four-vector, and p_1 and p_2 are the four-momenta of the two P mesons, the corresponding phase-space factor for the $E - K^*\overline{K}$ decay is p^3/E_K^* , where E_K^* is the decay

energy of the K^* , approximately the K^* mass. If these phase-space factors are used, a K^* width of 50 MeV leads to a predicted ($\overline{K}K^* + \overline{K}K^*$) partial width of the *E* of ~9 MeV. This compares favorably with the tentative value of ~12 MeV given in Ref. 1.

Finally, we want to point out that if the *E* is in an axial-vector meson, there remains a problem with the SU(3) classification. The $A_1(1100)$ has the appropriate *G* parity to belong to the *E* octet. The $A_1 - \pi\rho$ decay appears experimentally to occur predominantly in the *S* wave. If one uses a simple phase-space factor of ρ for the *S*-wave decays, the ~300-MeV width of the $A_1 - \pi\rho$ decay leads to a predicted $E - (K\overline{K}^* + \overline{K}K^*)$ partial width of about 200 MeV, if the *E* is a pure octet particle. This is compatible with the measured value of ~12 MeV only if the octet component of the *E* is extremely small.

Part of this work was done while the author was visiting the Lawrence Berkeley Laboratory.

 2^{-} over 0^{-} for the spin-parity of the X (958). See V. I.

Ogievetsky, W. Tybor, and A. N. Zaslavsky, Phys. Lett. <u>35B</u>, 69 (1971); G. R. Kalbfleisch *et al.*, Phys.

Rev. Lett. 31, 333 (1973). If this turns out to be the

the predictions of Ref. 2 do not apply.

case, the \overline{E} may be the ninth member of the nonet, and

*Work supported in part by the National Science Foundation. ¹Particle Data Group, Rev. Mod. Phys. Suppl. <u>45</u>, S1 (1973).

²Richard H. Capps, Phys. Rev. D 7, 3394 (1973).

³R. Odorico, Phys. Lett. <u>38B</u>, 37 (1972).

⁴Some experimental evidence has been cited that favors

PHYSICAL REVIEW D

VOLUME 8, NUMBER 11

1 DECEMBER 1973

Field-Theoretic Calculation of the Direct-Emission Amplitude in $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$

C. A. Dominguez and A. Zepeda

Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politecnico Nacional, Apartado Postal 14-740, Mexico 14, D.F. (Received 21 May 1973)

We show that to order eg^2G the direct-emission amplitude in the decay $K^{\pm} \rightarrow \pi^{\pm}\pi^0\gamma$ is logarithmically divergent.

The possible existence of a direct emission in the decay $K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \gamma$ (Refs. 1-4) has recently attracted much attention after clear evidence for such a contribution was reported.^{1,2} A short time ago Barshay and Hvegholm⁵ computed the directemission amplitude to order $eg^{2}G$,⁶ in perturbation theory, in a model in which the two pions rescatter through a ρ meson in the direct channel. In their calculation the divergences of the pion loops cancel out and thus a finite result is obtained. However, the direct-channel contribution is not the only one arising at order eg^2G . In other words, given the interaction-Hamiltonian density considered in Ref. 5, the crossed-channel diagrams of that same order should in principle be considered also.

The purpose of the present paper is to point out that if all diagrams to order eg^2G are included in the calculation the direct-emission amplitude turns out to be logarithmically divergent.

The considered interaction-Hamitonian density