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The low-energy theorem is derived which relates the invariant vertex function of Xl yy
to the corresponding function of (2V~ [Q5, L,~j~o), where it is assumed that Schwinger and sea-
gull terms, if present, cancel against each other. A chiral Lagrangian model is studied
which satisfies PCAC and which has an octet weak Lagrangian with [Q5,I „j=0. In this
model, the effective K&-pp coupling constant produced by certain baryon loop graphs is
found to remain finite as the momentum of the kaon goes to zero. This contradicts the low-
energy theorem and indicates the failure of seagull and Schwinger terms to cancel. The
effective coupling produced by this anomaly is estimated to give a rate roughly comparable
to the experimental one. Implications for mesonic effective-Lagrangian studies of K decays
are discussed.

I. INTRODUCTION

Since its discovery by Bell and Jackiw' and by
Adler, ' the anomaly in partially conserved axial-
vector current (PCAC) Ward identities has been
the object of intensive study. 3 From investigation
of Lagrangian field theories, some understanding
has been gained of the source of the anomaly, its
renormalization (or lack of it), ' and its general-
izations to SU(3) &&SU(3).' The problems that the
axial-current anomaly create in proving renormal-
ization of spontaneously-broken gauge theories
have recently been discussed. ' The existence of
the anomaly does not depend upon existence of a
perturbation expansion, as has been brought out in
studies of short-distance behavior of the appropri-

ate operator products.
Several experimental tests for the existence of

the anomaly have been proposed, ' but the conse-
quences are largely restricted to electromagnetic
decays and electron-position annihilation process-
es. A possible test for the SU(3)XSU(3) version of
the anomalies links the y- 3n anomaly to the vec-
tor-current amplitude in K„decay, "but weak had-
ronic decays remain, for the most part, outside
the problem of PCAC anomalies.

In this paper, we analyze the weak-electromag-
netic process K~ - yy to determine the conditions
under which an anomalous kaon PCAC effect could
exist. In Sec. II, we examine the appropriate
%ard identity and argue that if Schwinger and sea-
gull terms cancel then the soft-kaon limit yields a
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low-energy theorem relating the invariant ampli-
tude describing K~ - yy decay to the invariant am-
plitude for the matrix element

(2 photons l[q'„L„,~]I0&

(Ref. 11). For the class of models where [ Q', , I. ]
=0, the Kl, - yy amplitude is predicted to be zero
in the soft-kaon limit. In Sec. III, a ehiral La-
grangian model is studied which has PCAC for the
pseudoscalars and which has an effective I. which
satisfies [Q,', L„]=0. However, loop graphs" are
found which violate the requirement that the K~- yy invariant amplitude vanish as P~- 0, indicat-
ing a failure of the Schwinger and seagull terms to
cancel. " The possible size of the effect is esti-
mated in Sec. IV, and results are summarized and
discussed in Sec. V. Details of the Ward identity
analysis are presented in Appendix A, while in
Appendix B a demonstration is given which shows
that pseudoscalar (ps) and pseudovector (pv) cou-
pling versions of the model give equivalent results
for loop graphs.

II. WARD IDENTITY, KAON PCAC, AND E~ -+

In this section, we review the Ward identity ap-
propriate to an off-shell pseudoscalar meson in
the presence of a weak perturbation. For the case
that [ Q', , L "]=0, where Q, are the axial charges
and L~ is the 4S =1 nonleptonic weak Lagrangian,
we present a formal argument that the invariant
amplitude for the decay Kl. - yy vanishes in the
soft-K limit. This ease, which includes the cur-
rent-current octet Lagrangian L,„-d„&j'„j","is
particularly transparent when looking for contra-

dictions to the forrnal result: in a calculation based
on a chiral Lagrangian model.

We take PCAC in the operator form"

m, '~, , /=1, . . . , 8

and apply it to the matrix element

& r(P), y(q) I L.(o) I A.(k) &,

which describes Kl, —yy decay. A Lorentz tensor
amplitude G„s(k, p, q) is defined as follows:

(2&)"'(8k.poqo)"'( y(p)~ r(q) I L~(0) I 4's(k) &

=- e"(P)e (q)G„s(k, p, q)

d'xe "'"(2»)'(4p q }'"
g &r

x (r(P), r(q) I T(sa, (x)L„(0))I o&,

(2)

where the last step follows from the reduction for-
malism applied to K~ (Ref. 16) and the PCAC re-
lation (1). Corresponding amplitudes G„„sand

R„&are defined as

)td'xe " "&r(p), r(q) IT*(&'„(x)L (o)}IO&

x (4 p,q )'i'(2»)

e"(P)e "(q)-G,.s(k, P q)

Z„e (P}e'(q}kpG s
2 2m~ -k

+It,. (k, P, q)e"(P)"(q). (8)

The Ward identity then reads

m ' —k'k" e" (p)e (q)[G„„s(k,p, q)+possible seagulls]
g mg

(m»' —k')
(4poq, )'~ (2»)s y(p}, y(q) d'xe'" "[A',(x, o), L (0)] 0 =e"(p)e (q)G„s(k, p, q). (4)

If it is assumed that seagull terms and Schwinger
terms are either absent or cancel each other,
then the covariant T product and the charge com-
mutator can be used to write E(l. (4) as

The general covariant expansions for G„s(p, q, k)
and R„„s(p,q, k) are very lengthy and are present-
ed in Appendix A. We are only interested in the
part of the braces in E(l. (5) which has the form

~ ( )~')(~)I s((&, , ))+q)~), .e(&, ), s)I

=
F
—(4p,q,P'(2&)'&r(p) r(q) I[ +, L.ll0&.

(5)

(P ' q)P q & poas )

when k =p+q. As shown in Appendix A, we can ex-
press E(l. (5) in terms of the invariant functions
G; and 8& which occur in the expansions of G z and

R„8, respectively. Displaying the important
terms explicitly, we rewrite the Ward identity (5)
as
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R4q +R4P k +R&2k p Rg R$3k +R$4P k +R$5q k
pP q ep ~g+ G2+ ~ poc, S

(6)

where the G, and R& depend on the kinematical in-
variants k', s = (p+ q)~, t = (k —p)', u = (k —q}'. The
functions G, are related to G, by

G, (k', s, t, u) = G, (k', s, u, t)

and similarly for R&. The invariant function

f(p ~ q} describes the matrix element of the com-
mutator [ Q,', L ] and is defined as

-i(2v}'(4p.q.P'(y(p), y(q) II. Q.
' L ] I o&

=f (P ~ q)P q'e p,„se (P)e (q) . (8)

The content of the Ward identity is now contained
in the set of relations

E„G,+R~q ~ k +R~ p k +R,2kB = f,
G2 Rz+Rjsk +Rj4~ 'k+Rxsq. k =0,

I „G,+R, -R„k'-R„k q-R„k P =0

The invariant function appropriate to K~ - yy decay
is regained by imposing energy-momentum conser-
vation, k =p+q. We then have

G.e(k=p+q, p, q) =G(k'=2p q')p'q e...8

G(0) = f(0)&&. . (14)

When [ Qs, L~) = 0 the invariant function f is zero,
and G(0) vanishes for this case

As mentioned above, the octet weak Lagrangian
d„,j '„j"' has the desired property since

[e'., L.l =[@',L.l =if.„L'.. (15)

Lee" and Schechter" have studied a chiral dynam-
ics model which includes baryons, pseudoscalar
mesons, and a weak Lagrangian which satisfies
Eq. (15). Since PCAC is built into this model and
since [ Q,', L„]=0, we expect the invariant ampli-
tude for K~ - yy to vanish as k'- 0 if the assump-
tions of the argument presented in this section are
satisfied. The baryon-loop contributions to Ki.- yy are studied in Sec. III to see if this is the
case.

E„G(k') = f(k')

+k'[R, +R9- (R~+R,m+ 2R,3+R,~ +R„)].

(13)

The R's are free of kinematical singularities as
k'-0 and we find

where
(loa)

III. EFFECTIVE LAGRANGIAN MODEL

WITH K~ -+ yy ANOMALY

G(km) = G, (k', k2, 0, 0) + G, (k', k', 0, 0)

—G,(k, k2, 0, 0), (10b)

Gauge invariance imposes the restriction

R, +R, = (Rgk ~ q+Rsk p) +(R, +R, )p q, (12a)

which becomes

2R (k k, 0, 0) =k R,(k' k' 0, 0)

+k R„(k', k, 0, 0), (12b)

when k =P+q. Our final result is obtained by sub-
stituting (12b) into Eq. (11), and it reads

where the dependence on invariants was defined in
Eq. (7). From Eq. (9) one now obtains

F„G(k') =f (k )+2R,(k', k', 0, 0) —k'R~(k', k2, 0, 0)

—k' R,m(k', k, 0, 0) —2k' R,3(k', k', 0, 0)

—k' R,~(k, k', 0, 0) —k~ R„(k', k', 0, 0) .

Following Lee, "we consider a chiral-dynamics
Lagrangian which accommodates PCAC (though the
details of the meson part of the Lagrangian are not
considered here). A Lagrangian for a massive oc-
tet of baryons which is chiral SU(3}XSU(3) invari-
ant' is

Ls =Tr[(1 —n, —n, )Niy ~ BN+ct, N, iy ~ 8N,

+a,N2iy ~ BN, ——,'m(N2N, +N, N, )], (16)

where

N, = N(o +iQy, )
v2

and

N, = (o —igy, )N
M2

The fields P and N are, respectively, pseudo-
scalar-meson and nucleon fields which transform
as members of (3*,3) +(3, 3*) and (8, 1). The axial
transformations are
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6M=-,'xi~;, M] P, , (24c)

so

M= ~ P (A.,g;+iX,Q;) =a+i/,

6g ——f;yr P, y,g», N& —(1+y,)g&,

1=~K

(18)

the Goldberger-Treiman relation, with g the pseu-
doscalar-meson to nucleon coupling constant, I'„
the pion decay constant=94 MeV, and G„/G~ the
ratio of axial-vector weak current to vector weak
current form factors. In this model the relation

(26)

6N =
p & [ A), N]Pg, 6N, = ~ i ( A.;, Ng ] P, ,

6N2 = -2 i ( A.g, Nm ] p) .

N= A~by. )BU'(~4 y.),
where

(19)

Also M M= ,'E„' i—s imposed. The Lagrangian (16)
contains both pseudovector (pv} and pseudoscalar
(ps) meson-baryon couplings. The ps couplings
can be eliminated by a redefinition of the baryon
field. The unitary transformation

holds.
The phenomenological nonleptonic weak Lagran-

gian for baryon decays which transforms as the
(A.,)q member of an (8, 1) contains two independent
nonderivative terms and twelve independent deriv-
ative terms. Those terms which have direct bear-
ing on baryon-loop contributions to K~ —yy decay
read, after the transformation (19) is made,

L„„=—,'d TrB( A.„B)+,' f TrB[A-„B].
+b, TrB( A.,B qQ] y, y"B

+5,TrBy, y"(X„&„Q], (26)

assures that

,'Tr(N, N, +N, N—,) =TrBB,

and produces the interaction Lagrangian:

(20)

where terms higher than first order in P have
been dropped. Charge couplings (and contact
terms} involving the electromagnetic field Q„are
generated by the minimal substitution 8„-8„
—ie8„[Q, ], with Q= —', [X,+(1 /MS)A. ,]. Only the

L1 =
2

E' TrBy.yue "eB(1 —2n, )

(1 -2n, ) TrBy,y„BB"&f&+Q~ and higher .

(22}

E)

+ 2 DIAGRAMS

WITH Lw
IN OTHER

INTERNAL

LINES

-E8 Q+ ~ ~ ~
7f P (22)

where the dots indicate terms bilinear and higher
in the meson fields and trilinear and higher in
products of meson fields with baryon fields. The
coupling coefficients are related to the standard
ones by

g (1 —2n~)
m E„

and

G„/G» =1 2n, -
or

(24a)

(24b)

The axial-vector current in this model is given by

A'„= (1 —2n, ) TrBy,y„,'X'B—
—(1 —2n, )TrBy, y&B2 X' E;j

+ 4 DIAGRAMS

WITH INTERNAL

LINES REVERS E D

(w).

FIG. 1. Feynman diagrams for Kl —yy with the
model described in the text. The pv label on the BB4
weak- and strong-coupling vertices refers to pseudo-
vector couplings. The labels i, j,k, and l indicate the
octet indices of the internal baryon lines while (g)&&&,

(L~);, , (L~)@,, and E,~ are given by (g/m)(ade;, +

+Ffe;)), (dd6~; +iff@~), v 2(b&+b2)d6@, d&;z, and e(f3)p
+ &/~3f »„), respectively.
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charge coupling of baryons to the photon,

i-e TrBg [ Q, B]

1= B PB, f„,+ ~f„,), (27)

enters in this calculation.
The.KI, - yy loop graph contributions which are

zeroth and first order in strong pv coupling are
shown in Fig. 1. The amplitude G„()(k,p, q), as
defined in Sec. II, which is computed from these
graphs, reads"

6 (k, P, q) = 2M-2e'(k, +b, )[I"" 8(k, P, q}+I""8"(k,q, P)]k~+(g/m)e'(fF+dD)[I'" (k, p, q)+I'" "(k, q, P}]k„
(28)

where I'" and I'" are given by

I'" e(k, P, q)=Tr '

«y, y"(P+P —m) 'y (g-m) 'y8(g —
)It

—m) 'd4t

I'"'(k, P, q) =» «y, y"(1+A'- m) 'y"(l- m) 'y'(t' e —m-) '

4
+Tr y y" + —m 'y —m 'y — —m

(27f)4 '
4

+Tr I yy" + —m 'y" —m 'y — —mJ (2m)4 '

dna——— I"'"
dm

These amplitudes satisfy the relations

k„I'" (k, p, q) = 2mi" e(k, p, q),

k„f'" (k, p, q) = 2mi"" (k, P, q) +21' (k, P, q),

with the definitions

4
I' 8(k, j, q)=Tr t «y, (P-P —m) 'y (f —m) 'y (f —g —m) ',

(29)

4r"(2, 2, 2) Yrj,2, (=f' P~) ;(f ~-) &'(2 «--~)-
4

+»~l y (f -P-m) 'y (f-m) 'y'(II'-0-m)-'
(2m)4

4
+Tr y (P-P'- m)-'y"(j —m)-'y'(f g m)--'-

(27f)4

(31)

I a8
dm

T" (k, P, q) -=I'"8(k, P, q) + I' "(k, q, p)
=—e " p„q T(k'),

T (k, P, q)-=I'"8(k, P, q)+I" "(k, q, p)
=- e ""'Piq.T(k'),

and the invariant amplitudes have the values

(32)

and

(o)=
4

(33}

The symmetrized combinations T ~ are defined by in the soft-kaon limit. Thus the more convergent
amplitudes, which have the baryon "weak mass"
transition in the internal loop, give contributions
which are in agreement with the formal arguments
of Sec. II, namely,

G(k') „„,=2 e'(fE+BD) m T+2')—2

m dm

e'(fF+dD)—k2

m 12m'

+k4 and higher-order terms.

(34)

However, the di~ect parity-conserving phenomeno-



KAON P ART IAL - CONS E RVAT ION-OF -AXIAL. . . 4187

logical weak BBQ coupling violates this formal re-
sult, and

W2(b, +b, )
&"direct" = r 2

+02 and higher-order terms.
(35)

This is the anomaly-like behavior which we seek.
Our assumption in Sec. II that seagull and Schwing-
er terms, if present, cancel against one another
is not valid in this model. This is also a way to
view the m'- yy anomaly. "

Though the effective Lagrangian which we are
using is not renormalizable, the result (35) is of
interest because it shows up in finite loops which
are of the same order in strong and weak cou-
plings as the usual pole approximations in chiral-
dynamics calculations. Baryon nonleptonic decays
can be used, for example, to estimate b, and b2

in a calculation in which the couplings are present
in the same orders as for K~- yy loops. It is im-
portant to estimate the magnitude of this loop ef-
fect in order to assess the reliability of pole-mod-
el calculations of K~- yy." If the anomaly can be
sizable, perhaps phenomenological direct K~ - yy
terms should be added to the weak Lagrangian,
just as direct 7t'0- yy terms are included which ef-
fectively represent the pion PCAC anomaly. Me-
son decay studies which attempt to determine the
form of L (Ref. 21) rely upon the absence of a
direct K~ - yy coupling terms. Conclusions about .

the SU(3) content of L" would be weakened by the
presence of such a term.

The result of Eq. (35) is superficially similar to
the PCAC anomaly for tf 0- yy (which is present in
this model also, and yields a tf' width of 22 eV).
However, though there is no explicit baryon mass
dependence in Eq. (32), the parameters b, and b,
are tied to a phenomenological evaluation of baryon
nonleptonic processes. The coefficient of the m'

anomaly, in contrast, can be expressed in terms
of E„and the fermion coupling to the axial-vector
weak current. The possibility of interpreting this
anomaly as a quark-loop effect does not seem
likely in the present framework.

Because the Lagrangian is not renormalizable,
there is no possibility of arguing that higher-or-
der, multiloop graphs are free of anomalies and
the argument for nonrenormalization' of the K~
—yy anomaly cannot be made. The contributions
from phenomenological baryon magnetic form fac-
tors and direct strangeness-changing BBy magnet-
ic couplings22 cannot be handled, since they lead
to divergent graphs.

The result (35) does not lead to a complete cal-
culation of K~ - yy, but is an interesting effect

which suggests a counterpart in renormalizable
gauge-field models with hadrons" and which has
implications for phenomenological Lagrangian
studies of weak K decays. " Motivated by this lat-
ter consideration, we make a rough estimate of
the triangle graph contributions to KL, - yy by de-
termining the weak parameters d, f, b„and b,
by a fit to hyperon s- and P-wave nonleptonic de-
cay amplitudes.

IV. ESTIMATE OF BARYON-LOOP

CONTRIBUTION

The effective weak Lagrangian of Lee" has four-
teen independent terms but eight of the terms are
SU(3)-breaking effects of order Lm/m, baryon
mass splitting divided by baryon mass. We have
ignored baryon mass differences up to this point
and continue to do so in this section (except in de-
nominators). The Lagrangian which describes
weak baryon decay is then

L„=—,( d f]( TrB -Bt+ TrBB(t„e])
0

+-'(d+ f (]rTB ,LB r rTB[ „t]eB)

mm' 'I'
&B'(P')0(~)IL.(o)lB(P)&=-

2 .f.
x (A +By,)u(P) .

The results for the s-wave amplitudes are

(3'f)

+b, TrBydyqf ](.B, 9 "ftf'iB

+b, TrBy, y„Bi]X„s"g'i

+b, TrBy, y&8 "ftrBX, +bc Tr.By,y„PBBS "(tt .
(3t3)

As stressed by Lee, the last four terms do not
vanish in the SU(3) limit nor do they obey the cur-
rent-algebra relation between parity-violating s-
wave amplitudes and parity-conserving "weak
mass" transition amplitudes. In view of the well-
known failure of "current algebra plus pole domi-
nance" to correctly predict the ratios of parity-
conserving to parity-violating amplitudes, the cur-
rent algebra plus pole contributions must clearly
be supplemented anyway. As was shown in Sec. III,
these four derivative-coupling terms, which super-
ficially vanish in the soft-meson limit, do not van-
ish as expected in the loop calculation.

The parameters d, f, and b„.. . , bd can be fixed
by comparison with the baryon nonleptonic decay
amplitudes A. and B defined by
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A(Z )=
2 2 F (f d)i

A(Z,') =0,

TABLE I. Predicted amplitudes, Lagrangian parame-
ters, and Kz yy branching ratio for the inputs A(&0),
A(Z ), B(Z ), B(Z+), B(jt, ), B( ), D/5'=1. 5, G /G
=1.23, Am =0.2 GeV, and m =1.0 GeV.

A(Z,') = — — (d —f), Hyperon decay amplitudes (dimensionless)

A(A') = M(d+3 f),

A. (= ) = v —,
' (d - 3f),

x(zo')

x(=-)

Predicted

-1.36

-1.94

Experimental'

0.06 +0.02

-1.46 + 0.06

-2.02 + 0.02

1 G„m F(f -d) D (Sf +d)
v 2 G» Am F» 3 F,
+2mb2,

1 G~ m
' (f -d) D (Sf+I)

G» bm F„3 F„
+2mb, ,

G„m " (1-2F)
a(Z,') =-,' —" —(f —d)—

G 4m

+ W~m(b, -b.,), (39)

( .), G, m (~)u2' 20(f -d), (Sf+d)

B(ZO) 13.9 12.2 +0.7

Lagrangian parameters x(v2E„m /m& x10 )
~

in GeV ~

f=3,96 f /d =-0.38

bg =1.2

b3 =6.9
b2 =-0.5
b4 =6.8

Kl yy branching ratio

&f)/(K& all) =2 x10 {Expt.=5 x 10 )
+b2 =1.5 x10 ~ MeV ~

'Particle Data Group, Rev. Mod Phys. 45, 5]. {1973).
H. Filthuth, in Proceedings of the Topical Conference

on Weak Interactions, CERN, 1969 (CERN, Geneva,
1969).

2m—~(2b, —b, -b,),
m 2

(40)

~( )
1 8 (&)1/2 2~(f )

G~ 4m Ii„

(D F)(Sf -d)

+ (b, +b~ - 2b, ), -2m

for p-wave amplitudes. A mean mass PPl Rnd
"mean mass splitting" Lm are taken for simplicity
in expressing the B amplitudes. This is consistent
with the disregard for mass splittings in the bary-
on-loop amplitudes. The values of the parameters
and the assumed input values for G„/G», m, Am,
and I", are shown in Table I. A satisfactory de-
scription of the amplitudes is obtained as expected,
since the s-wave amplitudes are the current-alge-
bra results and are in satisfactory (10%%uo or so)
agreement with experiment. The addition of the
b, 's preserves the bI =-,' rule among the B(Z) am-
plitudes, which are in 10-15%%uo agreement with ex-
periment, and at the same time allows one to lift
each B magnitude to the experimental value.

To estimate the loop graph, it is sufficient to use
the soft kaon approximation, b —0. The O(mr/m)'
correction from the graphs of Fig. 1 is only 4/o.

The result is

TABLE II. All input is the same as in Table I except
that individual masses are put in everywhere in the
baryon pole amplitudes (but not in the Goldberger-
Treiman relation) . Predicted amplitudes A (Z+), A (Z&+),

A(- ), and B(ZO+) andf and D/I' remain the same.

Lagrangian parameters x(W2E m„2/m~2x10 ~) ~

in GeV ~

bg =5.7

bs =8.4
b2 =1.0

b4 =7.2

E~ yy branching ratio

yy}/(KL all) =200 x10 4 (Expt. =5x10 4), with
b&+b2 —-15 x10 "7 MeV-1

With the values listed in Table I, this yields

(Z' ),„,= 2 x 10 '
- all

compared with the data compilation value 5 x10 '.
We emphasize that no effort is being made to seri-
ously calculate K~ —yy, but only to get an idea of
the order of magnitude of the theoretical effect
discussed in Secs. II and III. Aside from unknown

contributions such as magnetic couplings and high-
er-mass-resonance loops, R severe uncertainty
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results from the sensitivity of pole-graph ampli-
tudes in B-B'P to choice of mass inputs. For ex-
ample, using the individual baryon mass values in
E(l. (39) leads to the parameter values in Table Il.
The resulting Kl, - yy branching ratio is an order
of magnitude larger than the experimental one.
We have established that, in this model, the rate
calculated from the anomalous amplitude is com-
parable to the experimental K~ - yy rate.

V. SUMMARY AND CONCLUSIONS

We have taken a careful look at the Ward identity
which, with kaon PCAC, provides a condition on
the off-shell K~ - yy amplitude. We assumed that
if seagull terms are present in the matrix element
of the T produce T(A'„(x)L (0)) then they are can-
celed by corresponding matrix elements of
Schwinger terms in the commutator
[A.',(x, 0), L„(0)]. This assumption made it possible
to state a low-energy theorem for the invariant
amplitude G(q p) appropriate to Ki, (k)- y(q)y(p).
For the case that [ Q'„L ] =0, which is true, for
example, in the model I -d„&j'„j"', the invari-
ant amplitude G(p ~ q) should vanish in the soft-ka-
on limit, k' =P ~ q =0, according to the formal ar-
gument.

A chiral Lagrangian was then adopted which has
baryon and pseudoscalar meson fields, operator
PCAC for the eight axial-vector currents, and an
effective current-current weak Lagrangian belong-
ing to an (8, 1) representation of SU(3) X SU(3). The
single-baryon loop amplitudes were examined and
a contradiction to the formal arguments was found.
That is, the parity-conserving BBQ weak deriva-
tive coupling terms in I. lead to baryon-loop
graphs which do not vanish when the kaon momen-
tum is set equal to zero. In an estimate of the
size of this effect, we found that it can easily be
comparable to the experimental K~ —yy rate.

We conclude that under certain conditions a soft-
kaon theorem can be stated for the invariant am-
plitude for KI. - yy, even though the Bose, Lorentz,
gauge, and CI' symmetry restrictions require that
the matrix element be proportional to the momen-
tum of the kaon. This is analogous to the PCAC
analysis of ~"-yy. We find that a contradiction to
the low-energy theorem is found in an effective
Lagrangian which superficially satisfies the con-
ditions of the formal argument. 'The source of the
contradiction is the noncancellation of Schwinger
and seagull terms in the manipulation of the T
product. Because the estimate of the size of this
anomalous kaon PCAC effect resulted in a K~ - yy
rate comparable with the experimental one, we

suggest that a Chrect Ki —yy (Ref. 24) coupling
should be included in phenomenological chiral La-

grangian studies of weak and weak-electromagnetic
K decays. For example, investigations which have
argued that a 27 piece is needed in the current-
current effective weak Lagrangian" have tacitly
assumed that the direct coupling is small enough
to ignore.

Because there is lack of solid evidence that kaon
PCAC is reliable and because corrections to the
basic effect which we find using kaon PCAC cannot
be calculated in the model we use, this work does
not provide a reliable calculation of baryon and

kaon weak decays. Bather, we present it as dem-
onstration of an effect which has implications for
future calculations in a unified strong, electro-
magnetic, and weak renormalizable Lagrangian
framework and which has direct bearing on param-
eterization of kaon decays in chiral-Lagrangian
models.
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APPENDrX A

Recalling the definitions

i m ' k2) C'xe '"'"(2w)'(4P q )' '
m 'F 0 0

K

x (y(p), y(q) I
T(s A'„(x)I. (o)) I o&

=e (p)e (q)G e(k, p, q)

(2w)'(4poqo)" e " "(y(p), y(q) I
r*(A'„(x)L.(0)) IO&

=q (q)eq(q)(q„, — ", ',
) +))„„q),

rnid

—k

we wish to write the covariant amplitudes
G„()(k,p, q) and R„()(k,p, q) in terms of explicit
kinematical factors times scalar functions G which
depend on the kinematical invariants

s = (p + q)', t = (k —q)', u = (k —p)',

and k'. For G„8(k,p, q) the desired expression is

G~8(kq pq q) =G)q p e)((~8

+G,,k"p" e„„6+6,k"q" e„, 8

+(G,pa+ G,q() +G,ka)k" q"p'e„„„
+(G, p +G,q„+G,k„)k"q'p'e()„,„.

Bose symmetry requires the relations
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G, =G, , G =-G, G =-G„
G5 =-G7, G6= -G, ,

where

and

G, +p qG, +q kG, =O

G3+p qG5+p kG6 =Q.

(AS)

G;(s, t, u, k') = G, (s, u, t, k') .

Gauge invariance imposes two conditions:
Similar considerations for R„8(k,P, q) lead to the
ponderous expression

Rpn8 6 p n8o( Ry q RzP ) +(Rnf „ap Ps R2tp Sopq )q P

+(Rsepnopq8 Rs-Cp Sap pn)q p +RSEpn6ak +Enspa q p (R4qp+Repp)

+(R,epap~q k qn+R, epopnP'k P8)+(R,cp p
oqn'k q 8+R,c papP8'k Pn)

+(R,pp, pgq kpp„+R,ep, p„p'kpqp)+(R, ep, p„q'k p~+R, ep, p8p'k q„)

+(R,&p„,pq ppks R,c-pz, pq'ppk„)+(R„e, „p'k kp~ R+„e ,p8q'kpk„)

+(RyyEp op gP k kn +RyyEpopnq k kg) +Ry2 ngpoq P

+(Res nspaq k -RzsengpoP k )kp+(Ri4 n8poq k qp —R&4enspoP k Pp)

+ (R15~n 8paq'k Pp -R&5~n Bpa 0 k 'qp) +P

+(R„cap «Ppqs-R„&8po&qp Pn+R17~npag Ppk8 Rla&spag Ppkn

+~j.e ap&C p8 p +19 8p~kqa p ++2o apo(q8 p ~2o Bpag pa p

+~2y~apag P8qp ~21 8pogqapp ++22 p pop paq8 22p8qa

+R23ep pay pnk 8 R2gep po(qakn +R246p pg ) P Bkn R24Eppoa'q'nkvd) .

Now, eighteen conditions follow from imposing
gauge invariance,

P Q a8=. 0 and q Qpa8 0

Ejk Ekl

The details of most of these constraints, as well
as the kinematical relations among the terms, are
not of interest here. %e quote only the gauge in-
variance conditions which are essential to the ar-
gument, namely,

8, -R2q p-Rek p=0 + 4 DIAGRAMS WITH Lw INSERTED

IN OTHE R lNTERNAL LINES

8 -A q p-A' k ~ q=0 E;j EjI

Forming k"R„„afrom (A4) and using (Al), the low-
energy theorem (5) takes the form shown in Eq. (6),
where only the terms which have bearing on the
K~ —yy amplitude are displayed. A11. others vanish
identically when k =p+q and are of no interest
here.

Without the commutator amplitude f(k'), the
form of Eq. (13) is identical to the corresponding
result in m —yy analysis. When energy and mo-
mentum are conserved, the amplitude R„8has
the form

6il

6
+ 7 DIAGRAMS WITH INTERNAL

LINES REVER SE D

FIG. 2. Diagrams for X~ yy in the mixed pv-ps
form of the Lagrangian with nonderivative weak La-
grangian only. Couplings are defined in Appendix B.
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R„„s(k,P, q) =rP„ensapq'P'

+rk(&pnap PS - & p Sapqn)q P

+rk(epnapqS epSappn)q P

+rd&]inSa(q P ) e

where

r, (k') =R,(k', k', 0, 0) +R„( )

+2R ( ~ ~ ~ )+R ( ~ ~ ~ )+R ( ~ ~ ~ )

r, (k') =R,(k', k', 0, 0) +R,( ~ ~ ~ ) .
The term in brackets in Eq. (13) is equal to
(r, r-, ), which is the same as the corresponding
factor in the m'- yy discussion of Bell and Jackiw, '
for example.

APPENDIX B

In the chiral-invariant strong-interaction La-
grangian (16), there are both pv and ps couplings
between the fields N and @. The nonderivative
weak Lagrangian, when expressed in terms of the
N fields, is

i. = g (ierh. rh'g —irigf dh]+ g, Id, ÃI y yrh— . , yry ] d, ie] h. )

+ Tr Nh N — Id, h Iryr Id, h]y h,rhr — Ny h Id, yi])+higher order in d

(81)

and it also contains ps couplings. In this version
the diagrams, shown in Fig. 2, which contain the
ps couplings do not, by themselves, vanish as
k- 0. However, the diagrams with strong ps cou-
pling plus weak Nj - N~ internal line transition
combine with the diagrams which have a direct AS
=1 ueak ps coupling to produce the same structure
as the graphs with strong pv coupling plus internal-
line weak transitions. The sum of all graphs
shown in Fig. 2 reproduces the result of the pv-
coupling version of the same model. To see this,
define the vertices

from strong pv coupling,

(83b)

from strong ps coupling, and

2i'~ [I'"s(p, q)+rs"(q, p)] (83c)

from direct weak ps coupling. The latter two
terms combine to give

if —[2ml' s(p, q)+2I'"s(p, q)+(a —]6, p —q)]

y —hpy i (+1++2) d (+1 +k) digj6jf y J 6jj ~ 6jj ~

7r r
=i

Z
k„[l'"'(P, q) I'+" '"( Pq)], (84)

(L )]& = (dd„.
&

+if„,),
—ps m

(g) sv =2
p fau

(82) which has the same form as the pv-coupling term
(83a). The combination of (83a) and (84) yields
the full amplitude

and

s e 2
(La)pg'g& =&

~ ff;gkfkaf i—
or

&&[I'""'(P,q)+I'"'(q, P)]k„

and fold in the propagator and momentum factors
to obtain G" (p, q) =e' [fE+dD]—

x [ I'""s(p, q)+I'" (q, p)]k„(83a)

x[ I'""s+I "s"]k„.

This is identical to the pv-coupling result obtained
from the graphs in Fig. 1.
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