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We consider the two-body decay of the spinless resonance or particle produced in a central plateau,
with an arbitrary transverse-momentum spectrum. The spectrum of the decay products is calculated
exactly as an integral over the spectrum of the centrally produced resonance or particle. Special forms

applicable to large and small momentum transfer are presented along with an accurate inversion

formula. We show how the large-transverse-momentum behavior of the resonance production is
replicated in the decay products. The decay m y + y is considered in detail.

I. INTRODUCTION

The recent verification of the existence of a
central plateau in the CERN Intersecting Storage
Rings (ISR) experiments' allows us to probe deep-
er into the detailed mechanism of pionization. In
previous papers' ' we have investigated the prop-
erties of the pionization spectrum in q~ resulting
from the internal-damping structure. As orig-
inally discussed by Amati, Stanghellini, and
Fubini~ (ASF), the pions in the central plateau
arise from fireballs or resonances produced in a
chain of peripheral pion exchanges. In this paper
we calculate the inclusive spectrum of a particle
resulting from decay of a spinless two-particle
resonance which is peripherally produced in a
central-plateau region. The generality of the
calculation allows it to be applied also to the case
of a m produced in the central plateau, which
then decays into two photons. It can then be used
to infer the m spectrum from the y spectrum.

Our work is an extension of the treatment of
these problems as recently considered by
others' " Our formulation (1) includes an exact
treatment of the kinematics and integrations; (2)
is applicable to any q~' spectrum of produced
resonances or m" s; (3) applies to both large and

small q~; (4) has the integrations performed ana-
lytically, not numerically; (5) gives a unified
treatment of massive and massless final particles.
The formulation includes many of the earlier re-
sults as limiting or special cases.

The calculation proceeds by considering a reso-
nance of momentum q and mass q'—=m' being pro-
duced in a central plateau with a spectrum
p(q ', q~') independent of longitudinal momentum.
This then decays into two particles of masses
p. , and p. , so that q =q, +q, . Since only one par-
ticle q, is observed in the single-particle spec-
trum, we must integrate over the momentum of
q~. It is convenient to work with

q .=- (q,
' +q3~)'+m',

'qx = (qj. ) + p x ~

n. = (q')'+ u.',
mo2 ——m p 22+ &i2

where the & denotes two-dimensional transverse
vectors. The integration over q, is performed
by converting to integrals over q, q„and the
rapidity y, = sinh ' (q~~/q, '~'). The q, and y, inte-
grations are performed exactly for infinite en-
ergy, and the integral over q, with the general
function p(q)

—= p(m2, q~') remains.
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In Sec. II we formulate the problem and calculate
the decay pionization spectrum for q, ~ m, '/4m'.
In Sec. III we study the large-q, approximation and
show how the large q-behavior of p(q) replicates
itself in the large-q, behavior. In Sec. IV the
decay spectrum is calculated for q, ~m,4/4m'.
The m 0-2y decay is presented in Sec. V.

II. RESONANCE DECAY SPECTRUM

We assume that a spinless resonance or par-
ticle 8 is produced in the central-plateau region
and calculate the transverse-momentum distri-
bution of its decay products. For notation we call
the decay products g„and m2 of mass p. , and p.2
and consider them as distinguishable. In Sec. V,
however, they are considered as massless pho-
tons.

The inclusive R production a+b-R(z, m2)+X

FIG. 1. Inclusive cross section for a+5 R+X,
where R —1+2.

d ga+b ~X+I+2

1 1 ~l
(2 &)

(Fig. 1) contributes to the single-particle spectrum
for w, in the central plateau":

T(ab -RX) T(R - w, m2)pl(h 2s 2(2+)3 M q2 I( (ql q2 qx Pa Pb)
( + )2 m 2+brmX

(2.2)

d g~ dy2"P2 —
2(2 )2

drab ~X+B -=p(q', q, ') .
y

This gives

(2.8)

T(R - s,~,) =(ls~rm„)'~'. p, (n, ) = d'q'dy2 (&8~rm~)p((q, +q.)', (q, +q.),')
2(2w)2 ) (q, +q, )' -F2+ irma )2

We assume that the inclusive integration and
summation over X produces the spinless reso-
nances g in a central-p1ateau region constant in
the R's rapidity:

(2.4)

We can make this into a superposition of spec-
tra for various masses m'=(q, +q, )' of the virtual
resonance by introducing f dm a'(nP —(q, + q, )') = 1:

(2.5)

p(q) p(m', (q,=+q2)~2) . (2.6)

In the narrow-width limit I"«m~ the integral in
brackets becomes 1, and we evaluate the remain-
ing integral at m'=m~'. For the remainder of
this paper we will suppress this integral over the
resonance virtual mass as well as tke dependence
of p orms'.

We now proceed to convert the integral over
d'q, dy, to dg dq, dy, and perform the integrations
over dq, dy„ leaving only the dg integral over the
unspecified resonance spectrum

cosh/i p Q = fj sink/i,

cosh/2, g2 =$2

~i =(qi )'+ p
'

n2 = (q:)'+»',
we compute the argument of the 6 function:

(q, +q, )' -m' = p.,2+ p, 22+(q~)2

+ (q,')' -m' —(q, +q,')'
+ 2(q,q, )'~' cosh(y, -y, ) .

(2.7)

(2.8)

Using the variables:
The 5 function is then satisfied at two values of
y, given by
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(2.9)i) +i) +2(q,q, )' 'cosh(y, -y~) .
4

Integrating over all y2 for infinite energy will
then give a 8 function when (2.9) can be satisfied:

'rj,'/' ~ sinh(

d'q,' = -', d(q', )'d 8ia

a (cos8»)
Sin812

Using

(2.13)

Calculating the denominator from (2.9) gives
(2.10) -(q')'+(q'8+2

I q,
'

i I q.' I cos8»+ m', (2.14

we have

. i a(n)8 (n'/' ni'"--n' ')
v, (n, ) = —,

(2.11)
where

dg2dq'
[ &(( m') (q')' (q')')]"''

(2.15)

4(x y z) =x +y'+z' —2xy -2yz —2zx.

We now convert

(2.12) where the extra (2) is included for the double-
valued mapping q -+ 8». Rewrit'ngritin this in terms
of q„q, we have from (2.11)

( ) ( '/' — '/' — '/') 8(- &(q -m, q, - p, ,', i), —p.,'2
')]'" '&'"( n) [ /i(n -~, n, -v, , n. -v' (2.16)

where the latter 8 function guarantees a physical
angle between q, and q, .

We define the four roots in q2 of the denomina-
tor:

(2.17)

This gives

„p(7))8(( —il ) (c —i) )}8((b—i) ) (q d))
[-(n. 4i) (n-. -b)(n. -c) (n. - d)]'"

(2.18)
c=(q' '-q ' ')'

d = p.,'+ [(q -m')'/' —(q, —g, ')'/'] '.

c=d

f 2=0

(GeV)'c)
3—

The 8 functions then give the limits

)2&C~& 0,
(2.19)

d&q, &b.

Therefore, for the upper limit on q2 we must
know when b is greater or less than c. The solu-
tions in q to the equations b = c and c = d are
formally

m' 4~2m' '~' '
4 ~1 1 1

o i/z+(~ + zp/z
0

(2.20)
2

fop
2m~

I

I
I

r2=0
c=d

By substituting q =i), into (2.17), we find that

q+ corresponds to c=d but not to b =c. It is there-
fore the upper boundary of the g integration re-

In substituting q =i) in (2.17), we find that for

b-d
f fit Oo

I

I

I I

O. l 0,2
N~

I I I I I

0.3 0.4 0.5 0.6 0.'7
Jq, (sev/c)

2

I

0.8

2
2 1/2 0 2 1/2

(n -m')''=, (ni-~,
2p

1/2 1 1
1 m 0

(2.21)

FIG. 2. Kinematic boundaries for p —vr+x. In reg1on
I:b&c &d; in region II: c&b &d; regions III are not
allowed kinematically.

(m 4j4m', the right-hand side has thewhile for q, &m „m,
opposite sign. Then for q, mp4, th b-&m 4 4m2 the sub-
sti u ion g =qt t co~ sponds to c =d but not to
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d&q2& c. (2.22)

b =c and is the lower limit of the q integration.
However, for q, &m,»/4m' q =q corresponds to
fl =c (Fig. 2).

In this section we treat the case q, &m,»/4m'

which for a p resonance is
~ q, (

& 0.36 GeV/c and
for a 11' decay is

~ q, ( &0.07 GeV/c. For q,
&m,»/4m' we find from (2.17) that b & c always
and, therefore, the limits are

In this region

"1'+ p(n)
"[q(q -~')]'" '

1
Pl(n. ) = 2-1/.

01 7)lc
(3.4)

In fact, for q, & 1.5m we have to better than 1/o

accuracy

Also, for q, &m,»/4m' we have shown that

'q &g &g+ . (2.23)

We may invert this by differentiation and ignore
p at the upper limit if it is rapidly falling to obtain

with a& b & c & d we define

(a-b) (c-d)
(a —c) (5 —d) '

(2.24)
» 4 [(nq )1/2 (n ~2)1/2 (q ~ 2)l/2] 2

16 [qq, (q -m') (ql —
V 1')]"'

Then the exact result for the single-particle spec-
trum from (2.18) is,"for q, &m,»/4m',

m~ -~«d
p(ql -) c 1/2 nl nl d [ql pl(ql)] ~

~1

(3.5)

We are particularly interested in the connection
between the asymptotic behavior of p(q) and that
of p, (q, ). For the case q»m'» p, ,' we take the
upper limit effectively infinite:

F(-', ';1;r') p-(n)" 2 [nnl(n -111')(nl -ui')]'" )
1

d p(n)
gy ~1

(3.6)

(2.25)

E is a hypergeometric function which is 1 at y' =0.
It is related to elliptic integrals":

F(k, k;1; ~') = F(-.'~,r)-
The three cases for large-g behavior,

1/2
p(n)-[n ",8 '", e '" 1,

become after integration at large q, (o, &0)

(3.7)

2=-Z(r) .
m

(2.26)

Z/2—
~-&ng

Pl ( 11) ll t I 5 1/2
tl ~l

(3.8)

III. SPECTRA FOR q1 LARGE COMPARED

KITH m2

The relation between the resonance spectrum
p(q) and the decay spectrum p, (q, ) becomes even
simpler for large q, .

For q, » p. ,', the limits in (2.20) become

4 4~ 2m2 1/2 2

q, — ', q, 1+ 1 — '
» -=q,c, , (3.1)

m, '
m4

~+m2/pp 2 p 2
p

4 ~l&

m4 4p, 'm' '~2'
q - ', q, 1 — 1 — ', -=q, c . (3.2)

4p, , ' m

IV. DECAY SPECTRUM FOR q, (mp /4m

For q, &mo'/4m', we find from Fig. 2 two re-
gions of q, g, space which give different g, limits.
q, is fixed and for region I (Fig. 2)

q &q&@+, b&c so d& q2 & c. (4 1)

But for region II

A simple ASF model for resonance production
with peripheral pion exchange gives p(q) ~q-' due

to the pion propagators alone. ' The resulting g, '
spectrum is inconsistent with data. In fact„ in-
ternal form factors must also be included' to give

p(q) ~ q-» and therefore p, (q, ) ~q, ' to fit the data.

For q, »m', y' approaches zero as m'&g&q; d&b&c so d &q, & b. (4.2)

4 4mp mp
16',q 16',' ' (3.3)

From (2.16) we now include the additional cortri-
butions of region II:
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b

+ — dq p n dg2 a-g, c-q2 b-q2 g, -d
7r m2 4

(4.3)

In the second integral a&c&b&d, giving" the result

"+d F(2 2 1;r')p(q)
2 d,„F(22 1'r ')p(q)

Pl(ql) — q 2[qq (q m2) (q p 2)]1/4 ~2 {m 4 4[ql/2q 1/2
(q m2)1/2(q ~ 2)1/2]2}1/2

(4.4)

The 1/r' in the second integral resulted from the
interchange of b and c in the ordering and in (2.24).
In the first integral r' ~ 1, and in the second
1/r' &1.

We note that for q, «m, 4/4m' the curve r' =1 or
b =c always occurs in the integration region, Fig.
2, and it is no longer possible to approximate the
hypergeometric function by 1 throughout the en-
tire region.

We take the limiting case q, - p, ,2 or (q, )'-0.
In this limit"

p-0 limit. In this limit we have from (2.20)
(denoting variables for p, =0 with primes)

m
q ql 4 1/2)

(5.1)

The resulting kinematic region is shown in Fig.
3. Again there are two regions of integration for
q, «m'/4.

From (2.24) we now have

CC
1

QQ
2 1/2(ql-p, )

(4.5) m4 4q [ ql/2 (q m2)1/2 ] 2

16q,q'/'(q -m')'/' (5.2)

F(— —~ 1 r2) ~ ——1 1 lnx

"(q, -p, ')' '» (q, -p, '),
(q, q) "-(q, -p,')'".

Combining the above we find that the first integral
in (4.4) vanishes as q, - p. ', and in the second
integral the hypergeometric function approaches
1:

For the photon spectrum we include an extra fac-
tor of two for identical photons. For q, &m'/4 or
(q, (

& 2m, o =0.01 GeV we obtain from (2.25)'4

F(-', -'; 1; r")p:(q)
Py(ql) q 2 1/2[ ( m2)]1/4

(5.3)

Again, for q, &1.5 m' or (q, (&0.1 GeV we can
approximate the hypergeometric function by 1 and
obtain' to 1/o accuracy

pl(ql = p') = 2
m,4g4t p(q)"

(m,' —4qp. ,')'/'
'

(4.6)

If m' » 4p, ,' and p(q) is rapidly falling, we find
that

O
g I

2=2
p, (q, =p, ') =——. , dq p(q).

Bio
(4.7)

(GeV/c)

V. no ~ 2y DECAY SPECTRUM c=d

The decay m'-2y is of course characterized by
a spinless decaying particle with no width, p, =0,
q, =(q, )', m= m„o, and p,o(q) is the )yo production
spectrum. The kinematics and results are ob-
tained from the general case above by taking the

n)

' 0.t 0.2
I I

0.3 0.4

(Gev/c}

FIG. 3. Same as Fig. 2 but for ~ —y+ y.

I

0.5
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p 0(7i)
py ( ll 1/2 «l l

[ ( ma) j 1/4 (5 4) p„(ni) = E(p, 2, 1; r")p 0(q)
)l '/'[q(q -m')j'/'

The inverse is obtained by differentiation:

(5.5)

For q, »m' this becomes the approximation of
Ster nheimer':

The point i q|~( =0 obtained from (4.6) is'

p, (n, =0)= , —,~n p:(n).4

p.o(q. ') = —2, y [(q, )p, (q, ')j.'

lpga
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