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The features of general SU(3) particle mixing among mesons are studied in the framework
of asymptotic SU(3), chiral SU(3) (3 SU(3) charge algebra, and the hypothesis of asymptotic
level realization of SU(3) in the algebra IA;, A&] =-

if;~A, V&. In the level scheme of a simple
quark model, our framework requires that the mixings between the corresponding members
of two nonets with the same J but different I. excitations should take place in such a way
that their net effect disappears from the SU(3) sumrules, leaving the previously obtained nonet
structure of bosons intact. We thus need to consider, in effect, only the usual mixings be-
tween the I = 7 = 0 members of each nonet (with the same L) and also, less importantly,
the mixings between the I =~1 members of two nonets with the same J+ and I but opposite
C. These mixing parameters are fixed in our theoretical framework.

ln broken SU(3) symmetry, SU(3) particle mixing
must always be considered in order to have a cor-
rect description of physical ("in" or "out") parti-
cles. We summarize in this note the result of our
investigation as to the question: Is there any sim-
ple regularity among the various possible tvpes of
SU(3) particle mixing' ?

Consider, as a guide, the qq quark model of
bosons with L excitation, i.e., 0 ", 1 (L=O};
1', 0", 1", 2" (L=1); 2 ', 1,2, 3 (I.
=2), . . . . For each J~~ and L we will have a nonet
[SU(3) singlet and octet]. Since SU(3) is broken,
SU(3) particle mixing can take place between var-
ious levels: (i) mixing between the I = F =0 mem-
bers of a nonet, such as the &u-P and f f' mixing;-
(ii) mixing between two nonets with the same J~o
but different L (this is no longer academic because '

of the recent discovery of p' which may belong to
the 1 with L =2); (iii) mixing between the I =-,'
members of two nonets with the same J~ and L,

but opposite C (for example, K„and Ks of the
L = 1,1,1' nonets).

We study general SU(3) mixing in the framework
of asymptotic SU(3) and the chiral SU(3)ISI SU(3)
charge algebra' supplemented by the presence of
the exotic commutation relations' ' {CR) such as

[V o, V o] =[V' o, A. ,-] =[V O, A o] =0, etc.

( V~o = d Vro/d t, V„o = V, +i V„etc.).
Nonet bosons are denoted by 8„,(m„K„q„q',),

where s stands for J~~, I., etc. Asymptotic SU(3)
assumes that the annihilation operator a„,(k, X)
of 8, (X denotes helicity) transforms linearly
under SU(3) in the limit k- ~&.' ' Namely, we write

[V, , a„,(%, X) ] = t u, „,„a, ,(k, &) + «, , (1)

picking up all the possible terms linear in as, (g),
where t has the same J~c or J~ as s. 9?e assume
that as k-~, 5u, -0 sufficiently fast. ' Therefore,
at k-~, a,(k, X) can be linearly related to the
(hypothetical) SU(3) representation operator
a& (k, A), satisfying [ V& a&,] =if&»a, , for j = 1, 2, . . . ,
8 and equal to zero for j=0. We thus write

a„,(k, X) = Q ~,C„)„a)~(k, A.), k- ~ .

C„,„involves the SU(3) mixing parameters. With
the exotic CR, [Vro, V~o] =0, one can show" that
the above-defined mixing plays exactly the same
role as the usual one in the SU(3) mass formulas.
With the CR, [V„A,.] =if„„A„our asymptotic
SU(3) also permits our mixing parameters to play
a role similar to the usual ones in the coupling
constants':

(A): "the matrix elements of A, ,

(a. ,,(k, ~) IA. , I as, (&, ~'))

with k- ~, can be parametrized by the usual pre-
scription of exact SU(3) plus mixing. "

We now look at the mixings of the type (ii) be-
tween the I =1 members and I=-,' members of
I, =O 1 (p, K*, p, ro) and L=2 1 (p', K*', p', &o').

The p-p'mixing angle 8P is given by (suppressingX)

a~ (k) = cos 8~ a~(k, L = 0) + sin 8& a~(k, L = 2),

a,(k) =-sin8pap(k, L= 0+}cos8ap(k, I.=2), k-~.
In 'the SU(3) limit,

a,- a, (I.= 0), a p.- a, (L = 2) .
Similarly we define the It. *-K*' mixing angle 6I~~.

We now define
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n= cos(8~- 8„~),

P =- s':.(8p —8zw),

m~* —K
2-=2P p ~ ~ a ~

P

We also define in the limit k-~
(v'IA, —

I
p'(k)& =f

(K'IA, IK*'(k)& -=i,
(v' I A „-I p"(k)& = g,

&K'IA, IK*"(k)&=-j.
(In the following we exclude the trivial case g= j
=0)

Sandwich, for example, the CR's

[Vzo, A, -] =0

and

[i„.,A„]=0

between the states (with k- ~) (a) (K*'I and
I
p'&;

(b) &K*'I and
I p"&; (c) &K*'I and

I
v'&; (d) &K*"I

and
I
v'&. With asymptotic SU(3) we obtain from (A)

(a) (a)'"f= -to' jp—
(K'- v')( '}"'f=(K*' —-p')(-io)+(K'" —p')(-jp),

(b) (2)'"g=i&-j&

(K'- v')(-')'"g = (K*' —p")(ip)+(K*"—p")(-jo'),

level I., L=0, 1,2, . .. , seParately realize the ra-
tios in question.

Three points may be worth mentioning: (i) We
do not seek the saturation of the CR. Instead, we
are interested in realizing the asymPtotic SU(3)
contents of the CR (represented by the ratios of
g 8) by levels. (ii) We prefer to invoke only the
concept of levels and the nonet structure of the
quark model. %'e expect that some regu1. arities
come out without imposing further assumptions
[SU(6)v, etc. ]. (iii) We cope with broken SU(3)
by using asymptotic SU(3).

Consider for illustration the CR [A,+, A„]
=2V„O and choose

and also

We consider the level realization of SU(3) of this
CR at the ground-state level, 5=0. If we choose
X =0, only the 0 ' state of the ground states needs
to be considered and we obtain a constraint,

(e) j' = 2i' .

Repeat the argument for the L=2 1 (i.e. , re-
place p and K* by p' and K*'); we obtain

(f) g' = 2i'

Successive elimination from Egs. (a)-(f) yields

(c) (2)"'(fn) +(2)'"(-gP) = -i,
(K*' —p')(-')"'(f~}+(K*'—p"}(-'}"'(-gP}

+2 2 ++2 p2 ++l2 pI2

(y =1, p=0, or 8~ =8p —= 8.
(2)

(3)

(K*"—p')(-')"'(fP)+(K*" —p")(-')"'(go.)

=(K'- v')(-j) .
We now add the recently proposed hypothesis of

asymptotic level realization~' of SU(3) in the hith-
erto unutilized CR,

[A»g] =if(pa~a.

Sandwich it between (B,(k, A.) I
and

I Bs,(k, X)& with
k- ~. Then the right-hand side will produce pure
numbers g 8. We seek a simple pattern by which
the sets of single-particle intermediate states (in-
serted between the A, and A, } realize the ratios of
g s produced by varying the SU(3} indices n and P.
We assume that, among the whole set of interme-
diate states, the set of states belonging to each

Therefore, the SU(6) result' K' —v~ =K*' —p'
emerges even in the presence of general SU(3}
mixing. The confirmation of the mass of K*' is
awaited. The constraint obtained, 8~~ = 8~, looks
reasonable, especially if we note the fact that
p=K* and p' K~' before SU(3) breaking is intro-
duced. It implies that, although 8 itself should not
be zero, the net effect of type-(ii} mixing neverthe-
less disappears from our sum rules, since 8~+
and 0 always appear in the combination 9~ —8&.
For example, with partial conservation of axial-
vector current (PCAC) for A„Eqs. (a)-(d) re-
produce the old broken-SU(3) result, '

(gr*z.&g...) =(K*/p) (g '«.&g. ..}
= (K*'lp') .

The mixing between the I= F =0 members of
these nonets is much more complicated. It has
the form
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a8,,(k, &) = p C8~ „a~,(k, X), k-
where (P, s) = Q, &u, Q', &u'. C is a member of SO(4).
We parametrize' C by

e P 3ef z'Ic3ef s J~efyK~ecIIIc~efvE
7

where J,' and K', are the generators of angular mo-
mentum and of "boosts, " respectively. This gen-
eral parametrization has the advantage that it is
simpler to handle and that each angle permits a
simple physical interpretation. Namely, X and X'
will be the &u-P and &u'-p' mixing angles, respec-
tively, when all other angles vanish. p. , n, 6, and
v will also reduce to the P-P', P-&u', v-P', &u-e'

mixing angles respectively in a similar way. Again
we make use of the result (A) and the exotic CR's,
deriving sum rules corresponding to Eqs. (a}-(d).
For the level realization of SU(3), we make use
of the full algebra,

[A, ,A, ] =zy„,v„.

We now choose X =+1 for the external 1 states
(L=O and L=2). Then only the 1 states appear
in I.=0 intermediate states and we obtain con-
straints similar to Eqs. (e) and (f). Corresponding
to Eq. (3), we obtain

/+I '=0
y p =5=0.

e+ p =0 implies that the magnitudes of octet (L =0)-
octet (L=2) mixing angles are all the same
and y = 5 =0 means that singlet (L =0) and octet
(I.=2) a.nd also octet (L =0) and singlet (L = 2) do

not, in effec&, mix. Therefore, the zzet result is
again that the angles 8, p. , y, and 5 do not appear
in the sum rules. v never enters from the outset.
The only mixing angles appearing are the y and y'
which represent the +-p and e'-P' mixing angles,
respectively. They appear as follows. From
[Vr2, Vzo] =0 we obtain the familiar mass formulas
for 1

3&' —4K*'+p' =3 sinzy (p' —&o2),

3$ 24KIQI2 y pl2 3 i s~ n(2y I2~I2I)

Corresponding to Eq. (4), we obtain with PCAC for
A~

8 @p~ 8 @p'~

8'v pfr 8'vp' x

=tang (p' —(u2)(p' —&2) '

= 0.053,

8 y'p'm 8@'p~

gfzI'P'ft Stan'Pfr

=tang'(p' —~")(p"—P") '

For 1 (L,=O) we obtain, after eliminating y and

coupling constants, ' Schwinger's nonet mass rela-
tion'

(&' —P*) = -4(K*' —P'}(2K*'—4' P'—)

X(P2+3y' 4K'*') '. (9)

Note that these sum rules are obtained in the pres-
ence of general SU(3) mixing. Equations (7) and (9)
which exhibit the almost ideal nonet structure of
1 (L =0) nonet are well satisfied experimentally.

So far the type-(iii) mixing did not enter into our
discussion. Unlike the type-(ii) mixing discussed,
it appears explicitly in the sum rules. The K„-K~
mixing (L = 1, 1",1' ) has been treated before. "
The result is unchanged in the presence of type-(ii)
mixing because of the argument presented here. It
was shown that the K„-K~ mixing can take place
only to the extent that the ideal nonet structure for
the 1 (I.=0) is violated. Therefore, K„-Ks mix-
ing angle 0 cannot be very large (al0'). In fact we
obtain'0

-(K„' —Ks') cos8 = (K22 —A,2) —(K*' —p*), (10)

which reduces~ when g = 0, to Kg —A. j =K* —p
[compare with Eq. (2)].

By repeating our argument for higher-lying me-
sons [again using the asymptotic level realization
of SU(3) at the ground-state level], we find that
the same pattern of general SU(3) mixing persists'
also among higher-lying mesons.

In summary, we find that due to our result [Eqs.
(3) and (5)] the type-(ii) mixings, though present,
will not appear in the SU(3) sum rules, and we need to
consider, in effect, only the usually considered
type-(i) mixings. As shown, for example, by Eq.
(10), type-(iii) mixings appear explicitly but the ef-
fect will not be so important, since they can take
place only to the extent that the ideal nonet struc-
ture of the 1 (L =0) mesons (i.e. , p =&@, K*' —$2
= p' —K*', g& „=0, etc.) is actually violated.

Modification of our result by, for example, the
presence of radially excited states is possible but
is expected to be less important in boson cases.

For baryons the situation looks more complicated
and we expect that the type-(ii} mixing may play a
more important role.
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Algebraic properties of the transformation between constituent- and current-quark bases
are discussed in the case when SU(3) is broken for the current quarks. In a simple model,
it is shown that SU(4)@, may still be an exact symmetry in the constituent-quark basis. Still
within the context of the model, the question of whether the transformation actually does
distinguish two SU(3) algebras in nature, one for current and one for constituent quarks, is
investigated. It is shown that the so-ca11ed 0 terms of meson-baryon scattering provide a
means of determining if there is such a distinction.

I. INTRODUCTION

The existence of two SU(6) algebras generated
by "good charges" (those whose matrix elements
at infinite momentum do not vanish) has been rec-
ognized for some time, although the distinction be-
tween them has not always been clearly drawn.
The generators of SU(6)~,„„,„, are essentially the
integrated weak and electromagnetic current den-
sities and related operators. ' The other algebra,
SU(6)~ „„„,, is an approximate symmetry of the
strong-interaction Hamiltonian and it is not known
if its generators can be written as integrals of lo-
cal operators. Although the two SU(6) algebras are
isomorphic, they are not the same; however, they
are closely related by the conserved-vector-cur-
rent (CVC) hypothesis which identifies an SU(3)
subalgebra in SU(6)„,„„„.„, to one in SU(6)~ „„„,.
In general, hadron states at infinite momentum do
not transform irreducibly under the group
SU(6)I, ,„„,„, and the problem of discovering the
ensuing representation mixing has been attacked'
in the past with some success, although not in a
systematic fashion. Some time ago Gell-Mann
suggested4 that the two algebras may be related by
a unitary transformation, V. H so, then by finding

such a V, one would solve the mixing problem.
Less ambitiously, by determining some of the gen-
eral structure of V, one would obtain some prop-
erties of the mixing that might be useful.

Following this suggestion, Melosh' has shown
that in the free-quark model the two SU(6)~ alge-
bras may be related by a unitary transformation
V„„. Assuming that the algebraic structure of the
correct unitary transformation V is similar to that
of Vf, , one may make predictions for pionic de-
cays of meson and baryon resonances, ' recover
many of the good results of the old SU(6)~ scheme
for matrix elements of weak charges, and correct
some of the poor results (such as the prediction of
GA/Gv r)

A fundamental question in this context is how dif-
ferent can one expect the correct transformation V

to be from the explicitly constructed model trans-
formation Vf, '? For example, Vf„, = exp(i Yf„,),
where Yf, is bilinear in quark fields. In general,
writing V=exp(iY), we might expect to find Y pos-
sessing higher-order terms in quark fields. More-
over, the extremely simple property of Vf„, that .

the transformed axial charge Vf„', Q'; Vf„, trans-
forms as a sum of (8, 1) —(1, 8) and (3, 3) —(3, 3)
representations of SU(3) XSU(3)„„„,might not be


