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Starting with the Mueller-Begge assumption, a multiperipheral-like integral equation for the
multiplicity generating function is constructed and solved. The integral equation, therefore,
involves inclusive parameters only. A one-to-one correspondence between our result and that
of an exclusive multiperipheral model is established through a proper orthogonal matrix.
Explicit expressions for the multiplicity distribution and correlations are obtained. Possible
applications and generalizations are discussed within the framework of a two-component pic-
ture of hadronic productions.

I. INTRODUCTION

We demonstrate in this paper how the multiplic-
ity distribution for hadronic collision at high en-
ergies can be obtained if we assume the n-particle
inclusive spectra satisfy the Mueller-Regge ex-
pansion with a finite number of Regge poles. A
multiperipheral-like integral equation' for the
generating function of this distribution is con-
structed in terms of inclusive parameters. The
solution of this equation is explicitly obtained for
the physically interesting case of two poles, al-
though the general case of arbitrary number of
poles can also be written down.

The Mueller-Regge approximation is plausible
provided we are willing to leave out the diffractive
component of the total cross section. Therefore,
we are working within the framework of the stan-
dard two-component picture, ' and the generating
function obtained refers to the short-range corre-
lation component only. For this reason, our
scheme does not allow the possibility of a complete
bootstrap, although partial bootstrap is possible
if additional dynamical assumptions are made.

After an appropriate leading-particle modifica-
tion, the generating function, which is written
completely in terms of inclusive parameters, is
compared with a similar one resulting from the

exclusive multiperipheral model' ' (MPM). We
find that they can be put in one-to-one correspon-
dence with each other, This connection can be
made by a proper orthogonal matrix, as has been
found previously in Ref. 5. This equivalence al-
lows us to express multiplicities, inclusive cross
sections, and correlations in terms of parameters
of either model whichever is more convenient,
and provide us with a new technique of parametriz-
ing experimental data.

We introduce notations and review the Mueller
analysis of the multiplicity distribution in Sec. II.
We construct and solve the integral equation for
the generating function in Sec. III. In Sec. IV, we
compare our results with that of a multiperipheral
model. We show that they are indeed equivalent.
Possible applications and generalizations are dis-
cussed in Sec. V.

For simplicity, we shall assume the existence
of only one type of scalar particle and ignore the
dependence on transverse momenta throughout the
discussion.

II. MULTIPLICITY GENERATING FUNCTION

AND CORRELATIONS

We first review the formalism developed by
Mueller' in relating correlation parameters of
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inclusive processes to the exclusive multiplicity.
distribution. We then discuss how the knowledge
of inclusive distributions allows us to obtain the
multiplicity generating function.

We denote the total cross section for the process
initiated by particles a and 5 by

o& &(Y)=- ga„(a+b-~)
. NM

d (y )-=c,(y, ),
4(ylp y2) Cl(yl)cl(yk) C2(yly 32) 0

(2.5)

d3(yll 3 kt 3 3) cl(3 1)cl(32)cl(3 3) cl(yl)c2(y2I 3 3)

+ C1(yk)C»(yly y3) + Ci(yk)C»(y|P y2)

+ Ck(ygg ykP yk) P

dC„i 'I(a+ b -X)i',N2¹
ag.d the k-pmrticle inclusive density by

dk(y„yk, . . . , yk;y)

1 d" o

0'z 4Jg ' ' '
4Pg,

(2.1) Although the above construction is general, it is
particularly useful if one works within the frame-
work of the short-range correlation picture. In
this case, all c»(y„. . . , y»; Y) s vanish whenever
the rapidity separation

~ y,. -y,.
~

of any pair of par-
ticles becomes large compared to a characteristic
length L, called the correlation length. The effec-
tive integration volume in (2.5) is then reduced
from F" to I~ 'F, and we find, asymptotically,
that

x dC~iT(a+b-c, + ~ + c„+N)i',

(2.2)

where Z=y, -y, &0 is the rapidity separation be-
tween the initial particles, y,.'s are rapidities of
produced particles, and dC„ is the invariant phase
space (integrated over the transverse momenta).
If we integrate dk(y„. . . , y„; Y) over the y,.'s, we
obtain, from (2.1) and (2.2), the kth binomial mo-
ment of the multiplicity distribution

D„(Y)=(n(n - 1) ~ ~ ~ (n —k+ 1))

f
dye' ' 'dyke»(yu - ~ yki Y) (2.5)

where c,(y„.. . , y»,
' Y}can be obtained from in-

clusive densities by'

l dyl dyk dk(yl yk &

k ~ 1 . (2.3)

Relations among partial cross sections oN„bi-
nomial moments D„, and inclusive densities d„
can best be summarized by the multiplicity gen-
erating function

oo pP
I(z, Y)=- —g o„z"=gD„(Y)—

&r N=2
'

a=p

OO I 0-
=—exp g Ck(Y) —, , (2.4)

k' -1

where either z or h=-z -1 can be used as the gen-
erating parameter. In (2.4), Do(Y) =1, the func-
tions C„(Y) are correlation parameters, and the
last equality is also known as the cluster expan-
sion. One can show that C,(Y) is related to the
kth correlation function

Ck(Y) =a„Y+b», k=1, 2, . . . (2.'f)

A particular realization of the short-range corre-
lation picture is the Mueller-Regge model where
the leading J-plane singularity is a factorizable
pole. It then follows that all inclusive densities
dk(y„. . . , y„Y) satisfy the scaling condition at
high energies, and (2.7) is automatically guaran-
teed. Furthermore, the correlation length is given
by I.=(a~ —o.„) ', where u~ and o„are the two
leading J-plane singularities.

Our primary aim is to calculate I(z, Y), assum-
ing the inclusive densities are given, either from
the Mueller-Regge analysis, or from experiments.
Technically, once the d„'s are known, we can im-
mediately calculate the e, 's, which, upon inte-
grating over the y,.'s, yield all the correlation pa-
rameters C„(Y). Substituting them into (2.4),
I(z, Y) is then obtained. However, this procedure,
though straightforward, is very complicated, ex-
cept possibly in the "weak"-coupling-limit analysis
of Ref. 2. Therefore, we shall adopt a different
procedure for calculating I(z, Y) in Sec. III by di-
rectly utilizing the "recurrence" property of the
Dk's Once I(z, Y). is found, the correlation pa. -
rameters Q~ can then be obtained by a direct dif-
ferentiation.

Before proceeding to the analysis indicated a-
bove, we would like to discuss some general prop-
erties of I(z, Y) under the assumption of short-
range correlations. From (2. '1), we obtain an as-
ymptotic expression

I A

I(z, Y) = QD, (Y)—,=exp[a(k) Y+D(k)j, (2.8)
p ko

where the D,(Y)'s are the asymptotic behavior of
the D„'s, and
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I k

A(h) = Jab —
i0 pt

B(h) =Q ba-
n-p

(2.9)

{2.10)

III. THE INTEGRAL EQUATION FOR THE
GENERATING FUNCTION

The N-particle inclusive density, d„, is related
through the generalized optical theorem' to an ap-
propriate forward (N+ 2)-to-(N+2) absorptive am-
plitude, +~, by

From the scaling property of the d~'s, it follows
from (2.3) that Db(Y) is a. hth-order polynomial in
Y. Therefore, I(z, Y) in (2.8) can also be written
as a power series about Y=O,

I(z, Y) = ge„(h) i
=exp[A(h)Y+B(h)],

p 8 ~

(2.11)

where the coefficient e„(h) depends on Db(Y), h~ n.
In particular, e,(h) only depends on the constant
term of Db(Y), and e, (h) on the linear term of the
polynomial D„(Y). However, it also follows from
(2.11) that

e„(h) =A{h)"e+b', Yi=0, 1, . . . {2.12)

Therefore, in order to find A(h) and B(h), it is suf-
ficient to know only e, (h) and e, (h), i.e., the con-
stant and the linear terms of D,(Y), h=0, 1, . . .
More generally, if the D„(Y)'s are known, (2.12)
is a necessary and sufficient condition for guaran-
teeing the short-range correlation constraints.

dg(yii ~ ~ i yg' Y)=(e &r) Fg(yii ~ ~ ~ iygi Y) ~

(3.1)
The Mueller-Regge expansion is a statement on the
dependence of g~ on the y,. 's. By keeping a finite
number of Regge poles in each Mueller complex
angular momentum plane, a recurrence relation
in N can be obtained. When this is substituted into
(2.3), and (2.4) is used, an integral e(luation for a
quantity related to the multiplicity generating func-
tion I{z, Y) follows.

To simplify the discussion, we shall first ignore
the leading particle effect. This amounts to ne-
glecting the triple-Regge behavior and we shall
demonstrate that this will not affect the asymptotic
behavior of our correlation parameters. We con-
sider a world with only two trajectories, a leading
pole with intercept oN(0) =1 and a secondary pole
with a„(0)= —,'. Generalization to more than two

poles can be made in a straightforward manner.
The Mueller diagrams that contribute to the as-

ymptotic limit of &„'b) are those shown in Fig. 1(a):

F(a, b)( Y ) gg(a)g(b)ea Y

FN (yli ' ' ' i y gi Y) Q di gi i ' ' 'gi i Gi xpe[&i (y1 y0) Dig(yN+1 yN)]
il

X 8(y, )8(y2- y, ) ~ ~ 8(Y- yv)

+ other permutations over (1, 2, . . . , N) for N ~ 1, (3.2)

where we have put p pp 0 and y~ =y„„=Y. The

Q,.'s and g, , 's are, respectively, external and in-
ternal Mueller-Regge couplings, and o, runs over
e~ and o.„.To construct an integral equation, let
us define an "internal Mueller-Regge amplitude, "
B,",(h, Y), by first removing from (3.2) those ex-
ternal couplings G,. and then multiplying a genera-
ting parameter 5 for each internal coupling, i.e.,
replace g, , by hg, , . Upon integrating over each

y, , we obtain, for fixed N,

gN
( ( bO) aY)De( b) aG(a) BN (h. Y )G( b)

2' E Nt i jj & j
$ g

in E(l. (3.2), after performing the phase-space in-
tegration, just cancels the factor 1/N! in E(l. (3.3).
The resulting B,",(h, Y) satisfies the m.ultiperiph-
eral-like recurrence relation [see Fig. 1(b)]

rY

B,, (h, Y)=Q dyB," "(h, y)e" ""hg„

Defining

B;;(h, Y)= QB;,(h, Y),

we find that

dy ''dy y'("b) . (3 3)N
orI{z, Y) = QG',"B,,(z-l Y)( {3.4)

It is easy to see that the permutation over 1 to N and xt satzsfxes
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B,,(h, Y)=6,,e" ~"

Y

+g I dy B,.~(h, y}e"&(" ")hg., (3.5)
~pp ~pM

70
+LIPS

27 7.

NP T+ 70
(3 9)

Substituting (3.6) into (3.5), after solving two
eigenvalue conditions, we obtain

u, (h)+ u„(h) = y, (h)+y„(h), (3.7a)

The above integral equation can further be simpli-
fied by performing Laplace transforms so that the
solution can be obtained algebraically. (See Ref. 5

for details. ) However, we shall adopt a more di-
rect approach here by relying on our past experi-
ence with the multiperipheral model.

The linear integral equation (3.5) has a typical
solution of the Regge type. Because of our two-
pole input, the solution will be of the form

B. (h, Y) =),), (h)e" «" +v (h)e"z "" (3.6)

y«(h) = ~«+~»h,
yz(h) = ~z+~zzh

r, (h) = y«(h) —y„(h),

(3.10)

7(h) = o,«(h) —n„(h) .

We note that, for h=0, T(0) =v, (0) =o.« —n„, and

p, &(0)=6,&6,«, v, ,(0)=6,&6,„, ij run over P and
M. From (2.4), (3.5), and (3.6), we then have

where yp, yM, 70, and 7 are functions of@, given
by

o. (h) —o. (h) ={[y (h) —y„(h)]' + 4g 'h )' ',
(3. tb)

7+T0
P pp &pM

2T 7

(3.11)

where

I' "(h Y)=[g""(Y)]-'PG-"B.{h Y)G'"
~ td

= [g(~ ~ &) (Y)] ~g(~ ~ &) (h Y)

p p RNPI 0

7 27

(3.8) g(~ ~ &) (h Y) —G(~) (h)G(&)(h)er(&«(&) -»

+ G(~)(h)G(')(h)e"("z(") '& (3.12)

a I NI N b

G' (h)G',"(h) = G". & . (h)G(j'),

G(~)(h)G(a)(h) G(P) & (h)G(a)

(3.13)

(3.14)

g g
~I IP N-2& 4-I

G. wvN'AMhlv —————-v'ANwhNN G,io 0;I0 II N-I N

The above factorizable form is possible because
det&&, (h) =detv(h) =0, and p, + v=I. Using (3.8),
(3.9), and (3.10}, we find that it is consistent to
choose

a I N b a I 2 N b
T+~ '/' j. /2

G (a)(h)
+ o

G (a) + ~o G(a) (3.15)

Z/2 j. /2

G '(h) =- ' G ' + G (3.16)M 27 P 2T M

for any a. Since G(«&(0) = G«('), G(„'&(0) = G„"', we see
that

g.„.~ (g.„.k) g(a, l)(0 Y) g(a, b)( Y) (3.11)

Near z =1, or h=0, we have a«(h) & o,„(h). To
obtain the asymptotic expression for the correla-
tion parameters Q~(Y), we only need the asymp-
totic behavior of I(z, Y) near z =1:

FIG. 1. (a) The multichannel Mueller-Regge model
shov'ing inclusive coupling constants and Regge ex-
changes. (bj The internal blob satisfying the integral
equation.

I("~)(z, Y) = « '
(,&

«(» exp[Y(n«(h) —n«)]

= exp[YA(h)+ B(h)] . (3.18)
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Comparing (3.18) with (2.9), we find that the linear
term of the correlation can be computed easily by
expanding [az(k) —()(~] in powers of k. After some
algebra, we obtain

a~ =g~J„

a =(k-1)l[P (X)-XP (X)](V f) (21)

(3.19)

k&2

where

f= g»+~(g~z
X= (g„„g~J-)/2Wi,

I,= (o(~ - ()(„) ' =- ~(0) ',
and P~(X) is the Legendre polynomial. In the weak
coupling limit' where couplings involving ~~ are
small, i.e., Ig~ul »

Ig~~l + I g»l (3 19) reduces to
the E(I. (20) of Ref. 2:

~. = & I" '«~~)'«~~)" '
~ (3.20)

The constants 5, of the correlation parameters
get contributions not only from the central region,
but also from the fragmentation regions. There-
fore, the function B(h) given by (3.18), which fol-
lows from the Mueller-Regge expansion (3.2), will
in general be modified by assumptions made con-
cerning the behavior of the inclusive spectra in
the fragmentation regions. For instance, the most
general criterion for the Mueller-Regge expansion
of the single-particle spectrum at sufficiently high
energies is

sume that the Mueller-Regge expansion works for
the entire phase space and represents the leading-
particle effect by adding appropriate 5-function
terms at the edge of the phase space. For in-
stance, we replace f(')(y, )e o" by $,()(y, )
xy'(" )(Y-y, ), and f (~)( Y-y, )e"o" by ]~()(Y—y )
x P(0'~)(y, ), where $ and g ~ are numerical constants.
For the two-particle cross section, in addition to
two single-6-function terms, we also add terms
which are products of two 6 functions:

4.(,[((y,)((Y-y.)P.' "(y.)

+((y.)d(Y-y, )F.' "(y,)].
These terms will then simulate the contributions
from the di-triple-Regge regions [Fig. 2(b)].

The above construction is certainly heuristic,
but as we shall see later, it is supported by the
MPM. In general, after performing the phase-
space integration, the Nth moment of the distribu-
tion is changed to

D„D„+($, + $ ~)ND„, + (,$ ~N (N - 1)DN „
(3.22)

The new generating function, which we denote by

C)

ff (a)(y )8eoY 0 ~y

e" =-&Z' "(y Y) ~&y ~ Y-~

,f(")(Y-y,)e o", Y- h&y, - Y

(3.21)

where b, is a finite constant of the order I.—the
correlation length of outgoing particles-and

(y, Y) is given by'(3. 2). The functionsf(')
and f(') are arbitrary except for the conditions
that they should approach the central region
smoothly and should exhibit leading-particle ef-
fect, e.g., the triple-Regge behavior [Fig. 2(a)]

(a)

f (a)(y) Qg (1 e-y)-(n)(t)+aq(t))+np + ( l~2)

where g, , , are triple-Regge couplings to the lead-
ing pole o, Since C, (Y) is related to the integral
over (3.21), it is easily seen that, although the
term linear in Y is unmodified, the constant 5, de-
pends on the choice of f ' and f(').

Since we are ignoring transverse momenta, it is
difficult to construct realistic representations of
f(') and f('). As a "minimal" modification, we as-

b

(b)

FIG. 2. {a) Triple-Hegge corrections. {b) Di-triple-
Regge corrections.



4066 SE - YUEN MAK AND CHUNG-I TAN

I„(z, Y) = [(1—t.)+4.z][(1-4,)+t,z] I(z, Y).

(3.23)

As we have noted, the leading-particle effects
have not changed the Y-dependent part of our
multiplicity generating function. Only those con-
stants, b~, have been altered. We are still left
with two constants g„g, which can be fixed by
energy-momentum sum rules. We shall later
show that the Chew-Pignotti model requires $, =)~
=1, which can satisfy the energy-momentum sum
rules only in the weak-coupling limit.

IV. MULTIPERIPHERAL MODEL AND

MULTIPLICITY DISTRIBUTION

The multiplicity distribution can now be obtained
from the generating function (3.24) by a direct dif-
ferentiation. However, the resulting expressions

a+b-0+ 1+ ~ ~ ~ +(N+1), N=O, 1, . . . (4 1)

is given by

o'„„=
( 2)( d4))(„]T(a+b N+ 2)P . (4.2)

We assume the usual factorization approximation
for production amplitudes (Fig. 3),

are so complicated that it is difficult to extract
"'physical" information from them. On the other
hand, if one is able to derive the same multiplicity
distribution from an "exclusive" multiparticle
model, the physical basis of the original "inclusive"
model then becomes clear. We shall do so next by
considering a two- channel multiperipheral model
under the CP approximation. ' '

The partial cross section for the process

7+2 g ~(o lo, () ())( y, ())(~)g (yl yo) *
(y))(+1 y))()b(yo)b(y))(+j Y)

l O~l

x exp[o. , (y, -y, )+ ~ ~ ~ + a,. (y„+, -y„)] + permutations of (0, 1, . . . , N+1), (4.3)

or, alternatively, we assume directly that

IT~+21'- Z V';A*, .(, '"A;„,„„V('~(y. -yo)" |)(y~,i-y~)exp[2~;, (y, -y.)+" +»; (y~„-y„)]
~l 0'1

+ permutations of (0, 1, ..., N+1), (4.4)

where v,.'s and A, ,'s are exclusive coupling constants, V,. = v,-', A, , = A, , ', z„z, are inPut poles, and we
have also neglected cross terms in (4.4).' With (4.4), (4.2) can be evaluated under the QP approximation,
whereas the phase space is given by

f~
dC„,2-e I dyN l

d
0 0

(4.5)

After some very tedious calculation, we find

0 —y(~~ y~ &~e~~0 1) ++ y[~~ y~ ~~e~81
2 0 0 + 1

o =[V"V'"A Y+(V"V'"+ V"V'")(~ )(p —p )-']e'"-'"+[0-1]

o v(a)v(b) g g g!vm + ( (av) (bv) + v (a) v(b)) 00 g g g arm-1A

m =1 P =0 n =0 Apl m =1 p =0 n = -1

where

+)'"v'" " g Q Q w ' 0" (v) + Y'v'"(a ) r"I "-'~'+(0 —))A

A01 m=2 P=0 n=-2 J

N- -p y
l

(4.6)

(m+ n)!
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and

p,. =-2n,. -1, j=0, 1. (4. I)

j. /2 1 /2
G('&(z) =+ - ' V' + ' I&'') (4.12)

2g ' 2

l„(z, r)=[z" z(Z')] ' Qz",",z"'*)
M=0

-=[o& '&(y)]-'e& &(z, y), (4.8)

v' "(y)=e' "(z=-1 I")T r (4.8)

and or' &(z, I') can be calculated from (4.6). It
turns out that this is really unnecessary since
or' " (z, I') can be directly written down from the
known result of a two-channel CP MPM. ' The only
difference is that we should multiply the exclusive
couplings V, , A... etc. by a factor z, and
(y&r- ~&(z, I') is basically the total cross section [Eq.
(2.20) of Ref. 5]:

a' "(z I ) =(z)'(G"(z)d "(z)s"'" "-"
+ g(a}(z)& (()(z)er&n (z) -]jj

(4.10)
where

It is easy to see that, when P, =A„=A„=O, 0 „
reduces to a simple Poisson distribution.

The multiplicity generating function for this MPM
ls

and p, , 6„5are functions of z given by

p,.(z) = p, +a„.,z,
&'.&( z) = p.(z) p, (—z),
5(z)= n, (z) —n (z) .

(4.13)

(4.14)

(4.15)

Owing to the identical structure of the MPM inte-
gral equation and the multiplicity generating func-
tion, (3.5), it is perhaps not surprising that
(4.10)-(4.15) can also be obtained from (3.6)-(3.14)
by the following substitution:

G,. —v„g,, -A,„(~,M) -(0, 1),
n, —p„n, -p„G(;&(I ) —(:!'(z),

&;&&())-G& &(.).
Substituting (4.10) into (4.8), we find that I„(z, I')
has the same mathematical structure as I„(z, I'),
(3.24), with g, = $, = 1. Therefore, by a proper
identification between parameters of the MPM and
that of the Mueller-Regge model, E„(z, I') can then
be made equal to f„(z, I; t, =t, =l). First, by com-
paring the total cross sections in these two ap-
proaches, we see that

n, (z)= .'(P. +p, )+-[-.'(p. p, )'+A.—,"']'",
(4.11)

n p
=- n, (1), n „=n (1) (4.16)

N+2

&o
4-I ~N

G';& = G(;&(a=0)

= G('&(z =1),

G'& = &:('&(I =0)

(a)(z —I )

(4.1V)

ya Yb

After some algebra, one can show that the identi-
fication becomes complete if

(a) (( (a)) (y(a)i
= ~(I)

g(.) y(.)

(4.18)

= U(1)
Aoo Ao~

Aio A

U(1) ', (4.18)

FIG. 3. (a) The diagram for the multiperipheraI pro-
duction of (iV +2) particles. (h) The square of. ~T„„~~
without cross terms.

(z zzz)'z*

is chosen to be a proper orthogonal matrix.

(4.20)
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V. DISCUSSION

We have constructed and solved the integral
equation of the multiplicity generating function
within the Mueller-Regge model. The assumption
that there exists an isolated factorizable pole in
the "complex J plane" is shown to lead to the
short-range correlation picture. These results
are then identified with that of an equivalent Chew-
Pignotti multiperipheral model. These two ap-
proaches are shown to be related by a matrix
transformation, which can be chosen to be a prop-
er orthogonal matrix as demonstrated in Ref. 5.
Although this is done for the two-channel case,
generalization to the N channel is straightforward.

Our starting point is the Mueller-Regge assump-
tion on the inclusive spectra. From the exclusive
approach, the Mueller-Regge assumptions should
then follow from the input of Chew-Pignotti model.
For instance, the single-particle cross section
can be obtained directly within the CP MPM by
removing the integration over y from the diagram
in Fig. 4. This has been done in Ref. 5, and, not
too surprisingly, the result agrees with that given
by (3.2) and (4.18)-(4.20). We also note that we
automatically recover the 5-function terms from
the end diagrams with weighting fa,ctors g, =$, =1,
i.e., the leading particles near y, = 0 and y, =- F
contribute to dv/dy, :

d(y, )o,(1")+d(y, —y )o,(r ),
so that the contribution to J'~'~ i".

~(y, )Z,""(1-y, )+&(1'-y, )Z,' "'(y,).
In the CP MPM, 5 functions result from the ap-

proximation that end particles carry off all the in-

coming energy, while in the Mueller-Regge model,
5 functions emerge from the inadequacy of the
double-Regge expansion near the phase-space
boundaries. Their connection can best be seen
via the inclusive energy-momentum sum rules.
Without these 5-function terms, these sum rules
will impose an undesired constraint on inclusive
couplings g, , ; e.g., in the one-channel case, we
would obtain

After adding the 5-function terms, we then have

1 =g»(1 —e ")+h,e "+5&,

1 =g~~(l —e ")+t ~e "+(, .
In the weak-coupling limit where g»-0, these
sum rules are satisfied with g, =$, =1. Similar
results also hold for g-particle spectra. Conse-
quently, in both the inclusive and exclusive models,
the 5 functions, with g, =g„=l, provide, in effect,
a zeroth-order (in g~~') approximation to energy-
momentum conservation. One way to go beyond
the v eak-coupling limit is, therefore, to set
$, &1 and $, & l. (A convenient starting point is the
diagonalization of inclusive sum rules previously
discussed by us. )'

Because of the difference in the vertex structure,
the incorporation of the isospin could be done more
easily in the Mueller-Regge model than in the
MPM. In fact a set of Chan-Paton factors, "
which is compatible with the charge sum rules to
all orders, has been found for the asymptotic
terms of the correlations. These functions, being
less sensitive to leading-particle effects, provide
us with suitable candidates for a charge-sum-rule
bootstrap. "

The Mueller-Regge hypothesis is probably a

c, ci

(g'j c, = wv van
P P

(b) c = wwww
P M P

ci
(c) c, = wwwwwwww! ~ vw vw wwww ]

P M,'M P P P M P P M P P

P M M M P
~

'Ahh WhA WVv WW Ahh/

P M P M P

hhhh

P M P P P

~VIVV AhtV AhN' B'AV + VAh VAh 'AhA VWh V4V4

P M M P P P P M M P

WA V&A WW hhhl AW + ~VANE WW Ahba ~
PlP M P

c(

FIG. 4. The single-particle distribution from the
MPM.

FIG. 5. The coefficients a~ of C~(P) =a~F+b~ can be
obtained by calculating the coefficient of the term linear
in & from each diagram shown. (Higher order contribu-
tions from some of these diagrams are canceled by
other diagrams not shown here. )



INCLUSIVE AP PROACH TO THE MULITPLICITY. . .

meaningful notion if one is willing to accept the
approximate concept of a two-component picture,
where one separates the production mechanism
into the short-range-correlated (SRC) and the dif-
fractive components (Ref. 2). Since our present
analysis applies only to the SRC component, various
tests can be found to obtain limits on the diffractive
contribution. One thing of immediate interest is
the I -g correlation in the p-p collision. If the
diffractive component is negligible, the asymptotic
behavior of Q, is given by the diagram Fig. 5(b),
where the Pomeranchuk is excluded from the inter-
nal blob. If the concept of exchange degeneracy is

applied to this particular diagram, we have

-constant

as F-~. Violation of this prediction can either
be used to estimate the diffractive contribution or
be used as an indication for the breakdown of ex-
change degeneracy.¹teadded in Proof. After the submission of
this paper we received a report by W. A. Bardeen
and R. D. Peccei [Phys. Lett. 45B, 353 (1973)]
who have independently arrived at results very
similar to ours.
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