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It is shown that the spin structure of a given reaction with a dynamics of one-particle or one-Reggeon
exchanges can be reduced to a few simple cases, and hence one can easily devise experimental tests for
the validity of all such dynamics in terms of specific and simple polarization experiments.

Various versions of one-particle or one-Reggeon
exchange models form the most prevalent simple
dynamical schemes in present-day particle phys-
ics. The purpose of this note is to provide a meth-
od for experimental tests of such models. It per-
tains to polarization experiments in four-particle
reactions, which have recently received increas-
ing attention as it becomes more and more evi-
dent that differential cross sections alone provide
only very weak constraints on various models.

We are going to prove the folloming very power-
ful theorem: In the scattering of four external
particles of arbitrary spins, with the exchange of
a particle of arbitrary spin, the amplitude struc-
ture of spin-j exchange is identical to that of spin-
(j+1) or spin-(j+2) exchange having the same
normality at the respective vertex.

By "ampiitude structure" (or "spin structure")
we mean which of the spin amplitudes in the reac-
tion matrix are zero and which are not.

The wide-ranging implications of the theorem
are obvious: For a given reaction one can devise
tests of all tQe infinite number of one-particle ex-
changes (no matter what the spin of the exchanged
particle is) by simply looking at the spin structure
of spin-0 exchange and spin-2 exchange (or in
some cases spin-1 exchange or spin-2 exchange).
Furthermore, since Reggeons can be pictured as
representing a series of particles with spins two
units apart, the same tests mill also apply to them.
Their polarization structure will be the same as
the structure of the exchanges of any of the par-
ticles lying on that Begge trajectory. The tests
themselves can be easily constructed once it is
known which of the spin amplitudes vanish. Exam-
ples for this will be given at the end of this note.

Furthermore, the deviations from these predic-
tions of the one-particle or one-Reggeon exchange
also give us a handle on the additional terms com-
ing from the cuts in the complex plane. The large
class of predictions offered here thus gives us a
large variety of ways to study the nature of these
cut contributions.

Theorems ~~.milar in spirit to the present one
have been formulated before in connection with

specific processes. ' The present theorem is
much more general in scope.

The proof of the theorem will use a notation sim-
ilar to that of Scadron. ' The type of coupiings used
will be similar to the ones used in the literature, '
and we mill use the same coupling at the vertices
for all exchanged particles except for the obvious
modifications due to the different values of the
spin. This assures us that we can consider a
Regge trajectory as a sequence of exchanges of
these particles.

The proof then rests on the following reduction
procedure: I.et us write, using the Rarita-Schwing-
er formalism,

(s)—~. . . ( )ev v . . (k),
h

where T is the numerator of the propagator of a
massive particle, and we have

e„„.. . „(k)=e„„.. . „(k),

where J = [j ] (integer part of the spin) and A is the
polarization along some axis.

:&en by complete symmetry of the p's (or v's)
; have

P1 P2. . .T
P P ~ ~ o ~ V V ~ ~ ~1 2 ' 1 2

= ~it'1~. ~ 2 ~ ~ ~ TF11~2,V1V 2

+PPTPP ~ ~ ~ ~ VV ~ o ~
2 1 ' 1 2

and so, by the anticommutation relations for the
y matrices,

~i'1~.& 2 ~ ~ ~ TP1fL2' ~ '; V1V2'

= cr~1i'2 ~ ~ ~ TP1P2' ' ,'V1V2'

The degraded expression has two fewer y ma-
trices. This can be repeated until there is no
more y matrix, or only one (excluding y'). Thus
contraction with y matrices reduces the rank by
two. We also note that contraction with momen-
tum reduces the rank by one. Let us denote by
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N, the number of indices coupled to the external
particles at vertex 1, and to the y matrix at that
vertex (if there remains one after reduction). We
can then contract J"-N, indices with momenta and

by the g""'s generated by the reduction and group
into classes the various terms in the A sum ac-
cording to the resulting spin-function polarization
A. of the following contraction:

Doing similarly on the other vertex, we get new
classes from the present ones with an extra label
A. . For spin-(j+n) exchange we repeat the pro-

ceduree.

Let us denote the classes thus obtained by
6)(X, 7) and 8) '"(A., A). We see immediately that
there is a one-to-one correspondence between
these classes:

e'(x, X) -e""(z, X) .

Therefore the total amplitudes A~ are "identical"
in the sense used in the statement of the theorem
[this identity being denoted by (=)]

A' =- g a'(X, X)e'())., 7) (=) g a""(X,Pe""(i,X)

This completes the proof. The presence of charge-
conjugation matrices does not alter the proof. The
above proof is given in terms of the Rarita-Schwing-
er formalism. The result is, however, intuitively
obvious in other languages also. For example, the
result is really the basis of the assumption that
Regge trajectories exist, and without it the idea
of grouping particles into trajectories would make
little sense. The theorem, however, does not de-
pend on the Regge model being right. The theo-
rem is implicit in work done previously, 4 and so
the contribution of the present paper is mainly to
make the result explicit and to relate it to the
problem of finding experimental tests for dynami-
cal models.

%e will now illustrate the usefulness of the theo-
rem by considering first the reaction 2+ 2- 2+ 2,
where the —,"s denote spins. The spin structure of
this reaction has been discussed" in the context of
the study of the general polarization structure of
particle reactions with arbitrary spins. ' %e will
use the terminology of those studies, which is al-
so summarized in the Appendix for quick refer-
ence.

We will write the parity-conserving M matrix as

Oo XX
V=~ +a ~~'~ i F'~ i+~ o&'& mf ~'~ e22

+A g"' ~ na"' ~ n33

+B+(g"' ~ m+o"' 4)+ B (o"' )ft-g"' m)

+ C+(g") ~ l g") ))+g"' ~ )sg") ~ l)

+ C (g-() ) . l g (2) . )) g () ) .))g (2) . l )

In the case where all four particles are identi-
cal, ' for 0 exchange B'=0, for both the forward
and the backward pole. Thus only the product
sets' with signature' eee remain, and hence all
observables other than those in subclasses' eee
and Ooo vanish identically.

According to our theorem, this result also holds
for the exchange of 2, 4, etc, and hence also
for the Regge exchange containing these quantum
numbers. This immediately opens up a huge class
of experiments that can test the presence, ab-
sence, or dominance of such exchanges. For ex-
ample (for notation see Ref. 6),

L(0, 0;O, m) =L(0, m;0, 0) = L(m, o;0, 0)

=L(0, 0;m, O) =O,

L(n, l;o, o) =L(n, o; l, o)=L(i, n;o, o)

= L(l, o;n, o) = L(l, o; O, n) =etc. =0

(that is, all observabies with some combination of
one l and one n vanish) if the reaction proceeds
only through such exchanges. The first of these,
namely that the polarization vanishes, is already
well known.

Now we turn to a different example: 0+ —,'- I+ —,',
which is, for example, vector-boson production
in pion-nucleon collisions. With parity conserva-
tion this reaction has six amplitudes:

M=A, S ~ lg l +A,S lg ~ ))+A,5 ~ ng ~ l

+A,% ~ ng ~ n+AP m+A, % ~ mg ~ m.

A direct calculation of the one-pion-exchange
contribution to this process shows that for that
dynamics A, =A, = 0. To explore the consequence
of this on the 144 experimental observab1es ap-
pears a formidable task, but it is in fact easy in
terms of the once-factorizable subclass-produet-
set structure' of this reaction. %'riting out the
component-term-set combinations, and imposing
on them A, =A, =O, one finds that the subclasses
indicated in Table I vanish. The simplest observ-
ables which vanish are therefore

L(0, n; )),, 0) = L(0, 0; n, n) = L(0, l; n, 0)

= L(0, 0;n, l) = L(0, l; l, 0)

=L(0, 0; l, l)=L(o, n l 0)

=- L(0, 0; l, n) = 0 .
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TABLE I. Observable subclasses vanishing in one-
pion exchange for the reaction 0+~ 1+2.

Mo (=)M, SM2, (A4)

Over-all subclass Component subclasses

eee
eee
eoe
eoe
oeo
oeo
ooo
ooo

eoo eoo oee oee
ooe ooe eeo eeo
eoo eeo oee ooe
ooe oee eeo eoo
eoo ooe oee eeo
ooe eoo eeo oee
eoo oee oee eoo
ooe eeo eeo ooe

According to our theorem these are then also tests
for higher-spin boson exchanges and correspond-
ing Reggeon exchanges.

These examples, however specific, demonstrate
that the theorem in this note can serve as a basis
for a far-reaching development of complete ex-
perimental prescriptions for the testing of various
exchange processes. Further work along this line
is in progress and will be reported elsewhere.

APPENDIX

Though the formalism used in this paper has
been used extensively in previous papers, we sum-
marize it here for convenience.

The M matrix M, of a reaction

where (=) means equality for all purposes which
are independent of the dynamics of the reactions,
and denotes outer product in spin space.

The M matrix of (A2) can then be written as

M = a~ S«j s, s': T&"~j, (A5 )

~l
A g q

where Sr-~~ is an irreducible spin tensor of rank J
in the space spanned by particle A with spin s and
particle C with spin s', the T~~~ is a momentum
tensor of rank Z (and within a given rank indexed
by r), depending on the momenta which describe
the kinematics of the reaction; the colon means
complete contraction over all tensorial indices;
a~ is an amplitude, a rank-zero tensor (indexed
by J' and r), depending on the rank-zero tensors
one can form out of the momenta that describe the
kinematics of the reaction, and containing all of
the dynamical information. The values of J run
from

~

s' —s~ to s'+ s. The form of (A5) also holds
relativistically, though not manifestly so.

The description of the kinematics of the reaction
can be done in terms of various different sets of
momentum vectors. The set used here is

can be factorized in terms of M matrices M, and

M, of the reactions

q'xq

n=-l

xnan,

(A6)

A, +0- C+0 (A2)

(AS )

where q and q' are the center-of-mass momenta
of .A and C, respectively.

The experimental observables for the reaction
(A2) are defined as

L(SLY(]:T[zl]i S[Jp]:T[zp]) = Tr{MS[J)]:T[z~] M S[z ]:TL~~)I ~

~ l ~, E
(AV)

t
where SL~ j.T~~ j is the spin-momentum tensor contraction specifying the preparation of the initial beam
of A particles, and SL~„~.Tt-~ ~ describes the polarization to be measured for the final-state particle C.
Observables for the composite reaction (Al) can be synthesized by a simple product of observables for the
constituent reactions

r r r r
Lz l~ LJ j L~ 1l Lac) Lect~ LJD) Lz Jj

(=) L{S[q )'. TLq j,'SLY] .'TLJ' 3jL{SLqsj'.TL~ 3,' SLq j.'Tl q 3j. (A8)

For simplifying the notation, the arguments of
the observables will be given only in terms of the
momenta in the T's. Thus, for example, we will
write

L{SL,j.TL,j(m);SL,p. TL-,)(ln)j =—I (m; ln) .

The 0 argument will represent an unpolarized
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=L(0, 0;0, 0), (A10)

state.
These experimental observables are identical

with, or simple linear combinations of, the actual
quantities measured in real experiments, for ex-
ample,

lar to the reaction plane;

c„„=L,(0, 0; m, m), (A12)

the spin correlation perpendicular to the reaction
plane; etc.

In terms of (A5), the observables (A7) can be
written as

the differential cross section;

P=Z, (0, 0;m, O), (A11)

the (vector) polarization of particle C perpendicu. — where the X's are the four-traces
(A13)

r j r2 rj.rI r2 rFL{SL~ 3
'.TL ~q 3 i SL-~~j '. TL q 3 & QJ QJ XJ

Jx J2 "F2

(A 14)

which are dynamics-independent numbers, tabulat-
ed for a variety of cases in Ref. 9.

If we denote x—= II', ,(2s,. + 1}, where s, is the spin
of particle i in the four-particle reaction (Al), the
number of az's in (A5) (assuming for the moment
only rotation invariance and no other symmetry} is
x. Thus (A13) can be viewed as an x'-by-x' ma-
trix, in which x' experimental observables are
related to the x' bilinear combinations of ampli-
tudes by the x coefficients XJ JgJ Jg Due to the
judicious choice of the spin tensors and of the mo-
mentum tensors characterizing the kinematics,
the matrix of X's contains mostly zeros. In fact,
this large matrix is thus decomposed into small
matrices along its main diagonal, thus breaking
up the problem into many independent smaller
problems. The observables within one of these
small submatrices are said to form a subclass,
and the bilinear products of amplitudes within
one of these small submatrices are said to
form a product set. For a reaction that cannot
be further decomposed into smaller constituents
along (A4) (i.e., for irreducible reactions) there
are eight subclass-product-set pairs. For a re-
action decomposable once into two irreducible

constituents, there are 32 subclass-product-set
pairs. In this latter case about 97% of the X ma-
trix is thus zero. There are easy rules to deter-
mine which of the observables belong together in
a subclass and which amplitude products belong
together in a product set. In particular, what
matters is the signature of the subclass or prod-
uct set, which tells whether the number of l's,
m's, or n's (respectively) contained in the argu-
ments of the observables, or in the terms of the
M matrix belonging to the two amplitudes in the
bilinear products, is even (e) or odd (o). Thus
there are eight signatures: eee, ceo, eoe, oee,
coo, oeo, ooe, and ooo. For once-decomposable
reactions the signatures of both constituents mat-
ter, but the 64 different pairs of signatures are
grouped pairwise into 32 different sets.

The recognition of the subclass-product-set
structure greatly simplifies the relationship be-
tween the observables and the amplitudes, and
hence facilitates the study of tests of conserva-
tion laws and of specific dynamical models, as
well as of the value of a new proposed experiment.
More details on these topics can be found in the
already published papers. "
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We discuss the ratio R (s) = o.(e+ e —hadrons) /a. (e+ e —p,
+

p, ) in stagnant (asymptotically free)

field theories. The leading correction to the scaling limit is determined.

There has been a great deal of interest recently
in stagnant (asymptotically free) field theories. ' '
These are field theories in which the origin in the
coupling-constant plane is ultrav iolet-stable. "
Indeed, there are indications" that if Bjoiken's
scaling phenomenon" is to be understood in the
framework of field theory at all the field theory
would have to be stagnant. It appears now that the
only" stagnant theory is the non-Abelian gauge
theory of Yang and Mills. "

In this paper we would like to discuss the anni. -
hilation process e'e -"y"-any hadrons within"
the framework of local field theories. The appro-
priate object to study is the vacuum polarization
tensor

w „(q)—= -i d4xe""(0~ T*J'„(x)Z,(0)~0)

=—(CpVy
—gyp' )&(0 ) ~

where J„denotes the electromagnetic current.
The total annihilation cross section o~ is given by
the absorptive part of m:

cr(s) -=(32m'o. '/s) Absm(s) .

It is customary to consider the ratio

R(s) =o(e'e -hadrons)/o(e'e -g'p, ) .

We will discuss this process in the language of the
Callan-Symanzik equation. ' The discussion dif-
fers from the usual analysis of the asymptotic be-
havior of Green's functions in two important re-

spects.

(A) The vacuum polarization function is sub-
tractively renormalizable" while Qreen's functions
are multiplicatively renormalizable. This leads to
an inhomogeneous Callan-Symanzik equation in the
asymptotic region rather than a homogeneous one
as is appropriate for Green's functions.

(B) The experimentally measured total annihila-
tion cross section is the absorptive part of n.

We will be concerned with the consequences of
these two facts.

For definiteness let us consider a Yang-Mills
model" of three quark triplets with a global sym™
metry SU(3) xSU(3)' and a gauge symmetry SU(3)'.
The eight gauge bosons are massless at the La-
grangian level but are presumed to become mas-
sive due to some miraculous nonperturbative"
mechanisms (which are not understood at present).
The electromagnetic current is an SU(3)' singlet:

~
p

=Q 0a'Y
p QVg ~

Q is some charge matrix. We treat electromag-
netism only to lowest order but strong interaction
to all orders. " The unrenormalized vacuum polar-
ization function is a function of four variables:
&0(0/m, p/m, A/m, g). Here m is the quark mass,
A is the cutoff, and g is the Yang-Mills coupling
constant. The massless gauge boson propagator
has to be renormalized at some arbitrary mo-


