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We study the large-momentum-transfer limit of electromagnetic form factors and the high-
energy, large-momentum-transfer limit of exclusive and inclusive scattering under the phys-
ical approximation that hadronic states are composite systems which can be decomposed in
this kinematic regime into two finite mass and spin constituents. One of these constituents
(the parton) is pointlike in accordance with the results of deep-inelastic scattering, while
the other (the core) is not. We study in this work only the constituent interchange contribu-
tion to scattering, as in a previous work by Gunion, Blankenbecler, and Brodsky. Our ap-
proach is to use a general, covariant decomposition of the composite-particle vertex, and
then to study relations between the form factors and scattering amplitudes. Rather than
taking a phenomenological approach, our aim is to make a careful study of the theoreticalunder-
pinnings of such relations. We find that the Drell-Yan-West relation between elastic form
factors and deep-inelastic structure functions holds in general, and that the inclusive cross
section is proportional to a deep-inelastic structure function. The power dependence of the
exclusive and inclusive cross section on elastic form factors is not uniquely determined and
we classify various theories according to this dependence. Basically the reason for this is
that the elastic and inelastic form factor sample the off-shell behavior of the composite
system only in the parton momentum, whereas scattering amplitudes depend intimately on
the off-shell behavior of the hadronic vertex in both the core and parton. We also examine
a noncovariant integral equation first given by Weinberg to study these problems.

I. INTRODUCTION

The area of strong-interaction physics which
has perhaps been subject to the greatest neglect
by theorists is the subject of high-energy scat-
tering, both exclusive and inclusive, at large
transverse momentum. At the same time such
reactions may be the most significant ones as far
as unveiling the underlying dynamical structure
of hadrons. Large-transverse-momentum colli-
sions involve small transverse distances and one
begins to probe the inner core of the particles
involved in the collision. Thus, even though the
corresponding cross sections are extremely small,
the rewards which would follow an experimental
and theoretical effort are extremely great. In the
last few years, an excellent example of this phe-
nomenon has appeared in the form of deep-inelas-
tic electroproduction. "

We may contrast this situation with the more
intensely studied fixed-momentum-transfer high-
energy collision. Cross sections for such reac-
tions, which are governed by a peripheral or
Regge description, are quite large and numeri-
cally account for almost the entire cross section.
While we understand the qualitative systematics
of such reactions comparatively well, they have

d0' 1—=—f(e)dt s" (1.1a)

where

f(g) =(sin0) ", (1.1b)

and where N=12, I~10. With regard to inclusive
scattering, as shown in Fig. 1(b), where data' are
in a, preliminary stage, there are theoretical rea-
sons' for a scaling-type behavior of the form

(1.2a)

where

XJ s (1.2b)

not, in our opinion, given us a very deep insight
into underlying hadronic structure.

The first question we may ask about large-trans-
verse-momentum processes concerns the system-
atic behavior in the invariants. With regard to ex-
clusive scattering, as shown in Fig. 1(a}, it has
been suggested' ' that the data' for PP elastic
scattering may be characterized by scaling laws
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The power behavior of Eqs. (1.1) and (1.2) is
in contrast with the exponential behavior familiar
in finite-momentum-transfer experiments. Since
exponential behavior of scattering is typically the
property of a "soft" extended system, it is clear
tha, ',. there may be an important qualitative change
in going to large momentum transfer. Indeed, it
is a power behavior which is suggestive of point-
like structure within the hadron, which strengthens
our feeling that we may learn something of value
about the underlying structure of hadrons.

The possibility of relating large-angle scatter-
ing to properties of the electromagnetic form fac-
tors of the scattered particles has been of interest
for some time. It was first suggested by Wu and
Yang' and then developed further" that the (purely
absorptive) large-s, t exclusive scattering cross
section behaves like

—-[G (f)]'
da'

(1.3)

where Gs(t) is the hadronic charge form factor.
In this picture the scattering is both entirely dif-
fractive and local within hadronic matter. %hen
the matter distribution is equal to the charge form
factor, Eg. (1.3) emerges. At large angles it is
the overlap of the nuclear "soup" which determines
the cross section.

More recently, it has been suggested" that the
composite nature of the hadrons is crucial to the
interpretation of form factors and deep-inelastic
scattering experiments. Therefore it is tempting
to apply these same ideas of compositeness to the
large-s, t region. In particular one framework for
the study of such reactions envisions hadrons as
being primarily composed of two virtual compo-
nents ofjiuite mass and sPin at large momentum
transfer. One of these components is the point-

like object which leads to large deep-inelastic
cross sections, the parton. The other component
is simply referred to as the core. Two courses
of development now are open: The constituents
can interact [as in Fig. 2(a)], or they can simply
be exchanged [as in Fig. 2(b)]. There is no a Pro~i
way to decide which (or which mixture) of these
approaches may describe the real world.

The first approach is basically the one taken by
Berman, Bjorken, and Kogut. ' Although they were
interested mainly in electromagnetic contributions
to the scattering of the constituents, it is a very
small step" to imagine the scattering is strong
and to make guesses for the interactions of the
constituents.

The possibility of constituent exchange was put
forth in a primitive form by Wu" many years ago.
In our context, this approach was initiated and
followed vigorously by Blankenbecler, Brodsky,
and Gunion"~ (referred to as BBG herein) in a
series of papers. They used the Weinberg" rules,
i.e., a form of old-fashioned perturbation theory,
with a special ansatz for the composite hadron
structure (the hadronic "wave function"). For
large-angle elastic scattering they are led to a
characterization of the amplitude by the relation

A(s, t), ,~ „sG~(s) G~(t) Gs(u)+perms. (1.4)

for the exclusive amplitude, and for the inclusive
scattering cross section,

xG~' -P~' + perms. ,S+0 (1.5)

where I', is the deep-inelastic form factor, ex-
hibiting Bjorken scaling, and where G~ has a
power-type falloff in its argument. Of course when
the various scaling factors are included, the rela-
tions (1.4) and (1.5) feed into the phenomenological
form of Eqs. (1.1) and (1.2) with different values of

s = (PI+ Pp) t=(PI Pp)
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FIG. 1. Scattering diagram for (a) the exclusive pro-
cess 1+ 2 3+ 4 and (b) the inclusive process 1+ 2

3+X.

FIG. 2. (a) Four-point function in the case where con-
stituents interact. (b) Four-point function in the inter-
change mendel without constituent interactions.
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FIG. 3. Diagrammatic representation for the bound-
state vertex function I' with hadron of momentum p and
core and parton of momentap -k andk.

N and functions of 0. Moreover, they represent
an extension of the Wu-Yang idea' that the large-
s, t scattering amplitude can be related to the elec-
tromagnetic form factor. Note, however, that in
the BBG approach, six powers of the form factor
appear in the exclusive cross section rather than
four.

The details of the BBG approach depend upon a
bound-state wave function which follows from a
Bethe-Salpeter-like wave equation in the infinite-
momentum formalism. In Appendix A we examine
this equation, which is unfortunately not covariant,
in some detail. Another approach which remained
within the two-component picture and constituent
exchange was made by Landshoff and Polkinghorne
(LP),"this time using a covariant picture of the
bound-state vertex. They found that the details of
their angular distributions did not agree completely
with those of BBG.

With these results in hand, we decided to re-ex-
amine the whole question of the dependence of such
relations on the details of the bound state vertex
in a covariant approach. We retain the idea of a
finite mass and spin parton and core as constit-
uents, and of constituent exchange as the dominant
process We fi.nd that in exclusive scattering not
only the angular dependence but also the porkier
dePendence (i.e., the number ofform factors ap-
pearing) as zvell are highly model-dependent; sim-
ilar remarks apply to inclusive scattering. Nore
precisely, we find that the results depend crit-
ically upon the details of the off-mass-shell be-
havior of the hadronic vertex.

Our approach is to characterize the behavior of
the hadron-core-parton vertex with core and par-
ton off-shell by the Deser-Gilbert-Sudarshan"
(DGS) representation. Such a representation, while
not generally proven in axiomatic field theory, is
known to be valid order-by-order in perturbation
theory. Label the hadron line with momentum p,
the parton line with momentum k, and the core
line with momentum p —k, as in Fig. 3. Then for
all spinless hadrons, the irreducible vertex is

given by

r(k, p-k;p)

CS' dQII 0', (X

x[k'(1 —n) +(p -k}' o. —o'+is] '

-= Jt dh(o', o.}

(1.6a)

K(o, o.} is the DGS spectral weight depending on a
spectral mass variable 0' and a variable of finite
support n. The support properties of Il ensure
the known singularities at normal and anomalous
thresholds given by Feynman graphs. In Eq. (1.6b)
we have defined a convenient abbreviation for the
integration weight. We shall adopt the convention
of associating the factor u with the core line and
the factor 1- n with the parton line.

While Eq. (1.6a) represents the original form
of the DGS representation, specific properties of
the spectral weight can change the form. For ex-
ample, if II obeys some superconvergence rela-
tion in 0', i.e.,

do'K(o', a)(o')'=0, j &n, (1.7)

then successive integration by parts of Eq. (1.6)
allows us to write the vertex in the form

We shall use this form quite frequently. Other ex-
amples of the apparent transmutation of the rep-
resentation will be seen in the remainder of the
paper.

The results of LP follow from a special case of
the representations we study. Since they devote
a good deal of effort to phenomenological fits to
the data, we feel that it would be repetitive to try
to fit the data again. Instead, our emphasis will
be on the credibility of these results in so far as
they presume to represent a fundamental property
of hadronic matter.

The results of BBG can be obtained only if the
singularities in the relative energy variable kp
(or k in the infinite-momentum language), are
neglected when loop integrations are performed
with Eq. (1.6}. (See the discussion in the last

r(k, P-k;P)= dh(a', a)

x[k'(1 —o.) +(p —k)' o- 'oi+c] ~""' .

(1 6)
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paper of BBG in Ref. 14.) This, as we discuss in
Appendix A, corresponds to a static approxima-
tion to the bound-state vertex. In general, how-
ever, the k, dependence is important and leads to
results which, even if in agreement with the re-
sults of BBQ as far as the power dependence in
s, t, and u is concerned, are in disagreement with
the specific forms obtained by BBQ.

In general we find that the power dependence of
Eqs. (1.4) and (1.5) in the asymptotic variables is
not obtained unless the DGS weights have very
special behavior. As an independent exercise we
examine under what conditions generalizations of
Eqs. (1.4) and (1.5) are obtained when

G (t),„„,n o.I

We find among other results that in general the
Drell- Yan-West relation" between the asymptotic
behavior of the elastic form factor and the thresh-
old dependence of deep-inelastic scattering holds
since in the model as defined these two observ-
ables sample the same feature of the bound-state
vertex functions (namely the cutoff in transverse
momentum).

We hope that our results serve as a guide for
cataloging possible relationships between electro-
magnetic form factors and structure functions and
scattering cross sections, at least within the inter-
change picture. In particular the power dependence
of BBQ, in which the exclusive cross section is
given by six powers of the elastic form factor, is
satisfied under the assumption of a condition (see
Sec. II) on the DGS weight which insures a strong
symmetry of the bound-state vertex function in the
off-shell behavior of core and parton. In our opin-
ion the justification of this requirement seems to
be questionable in view of the very different phys-
ics the core and parton are supposed to manifest.
We also examine this question in light of a scaling
behavior for the vertex function in Sec. II.

In Sec. II we study the elastic form factor, the
exclusive cross section, and their various possi-
ble relations. In particular we study the case of
general power behavior of the form factor,

G(t) - t-&""' n o .
Several examples are worked out explicitly. Al-
though either a momentum-space technique or a
Feynman parameter technique can be used here,
we employ the latter.

In Sec. III we continue by studying deep-inelastic
scattering (scaling properties, the Drell- Yan-West
relation, etc.) and the inclusive process. Applica-
tion of the interchange picture with the use of the
vertex in Fig. 3 generally restricts one to the
limiting case of inclusive scattering where the

detected particle is mell separated in momentum
from the undetected particles. In this section we
employ a momentum-space technique, although
again the Feynman parameter method can be used
as well.

Of course, all such calculations are sensible only
if the constituents of hadrons actually exist as par-
ticles in appropriate asymptotic states. We feel in
the absence of real constituents the calculations
described here using such devices are highly aca-
demic. However, for a possible contrary point of
view see the recent work of Johnson. "

II. ELECTROMAGNETIC FORM FACTORS AND

EXCLUSIVE SCATTERING AMPLITUDES

We consider, in detail here, the calculations of
the electromagnetic form factors and the scatter-
ing amplitudes in a model where the scattering
is dominated by the parton-exchange process of
Fig. 2(b). The calculations are performed in the
approximation where a hadron. is composed of a
parton and core, both of low mass and spin. This
section is written with all particles spinless; we
briefly indicate in Appendix B how the formalism
is changed by the inclusion of spin. The qualitative
conclusions we draw are completely insensitive
to spin. While we employ a Feynman-parameter
technique in this section, the connection between

FIG. 4. (a) Electromagnetic form factor in a com-
posite model with constituents parton and core. (b)
More general representation for electromagnetic form
factor in terms of parton-hadron scattering amplitude
M.
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this technique and momentum-space methods is
by now well understood, and all the results we de-
rive can be equally well derived with the latter
procedure.

As we stated in the Introduction the bound-state
vertex function which describes the hadron in
terms of parton and core components as in Fig. 3
is given by a DGS form, Eq. (1.6a). This expres-
sion or the form in Eq. (1.8) can be inserted into
expressions for the three- and four-point functions
and the momentum integrations over the loop vari-
ables can then be performed analytically using the
Feynman-parameter method. The Feynman-pa-
rameter technique is particularly well suited when
DGS forms for the bound-state vertices are in-
volved; in fact the DQS parameter n is itself one
of the Feynman parameters in the integration over
the parameter space if the DGS representation is
derived in perturbation theory. The immediate
advantage of Eqs. (1.6a) and (1.6b) is that an in-
finity of assumptions, all of which can be supported
in perturbative models, can be made about the
asymptotic behavior of the vertex function in the
core and parton momenta by making a correspond-

ing infinity of assumptions about the spectral
weight H. In general the DGS representatio~,
which respects analytic properties, is mute on the
question of asymptotic properties until H is spec-
itied.

%e now proceed with the electromagnetic form
factor G(t), where the photon attaches to all charge-
carrying constituents and with a summation over
such constituents. The leading behavior is the re-
sult of attachment to the parton line (or the sum of
such parton lines), as in Fig. 4(a). We note in pas-
sing that in the more general framework shown in
Fig. 4(b), where the leading behavior follows only
from photon attachment to the parton lines, the
gauge invariance of the hadronic "urrent is as-
sured by the simple requirement that the off-shell
parton-hadron scattering amplitude M satisfy a
simple exchange symmetry in the parton momen-
tum,

M(k, k+q; p, p+ q) =M(k+q, k;p, p+q) . (2.1)

The more specialized model we study of course
obeys this requirement.

The expression corresponding to Fig. 4(a) is

I', (k, P —k;P) I;(k+q, P —k;P+q)
(k' —g'+i@) [(p —k)' -m'+is] [(k+q)' —t(,'+i@] ' (2.2}

In this expression (and in all the following) the parton and core masses are t], and m, respectively, and
all external particles are on the mass shell, p' = (p+ q)' =M'.

Use of Eq. (1.8) for the vertices I'; in Eq. (2.2) yields the result up to an over-all constant
2G(q')=, dk(a„a ) fd h{(k' —d'-+iq)[(q-k)' —a'+qq]

—s=l

x[(k+q)' —][(,'+ic](k' —2p k n, -o,'+M' n, +is)"&"

x[(k+q)' —2(k+q) ~ (p+q) n, —v, '+M' n, +is]""'}',
and use of the Feynman identity allows the 0-integration to be done analytically. %Ye find

2

G(q'. )= f '[ ( deka&') adk)h"'h. "'{q,'[h. (( —a)+1,][1,(1 —a)+1,] —a, 'h, —q, '1, -M'] ' "

(2 8)

(2.4)

In this expression, dA is the usual Feynman-parameter measure, dA=g, dA. ; 5(QA. ; —1). There are five
parameters involved; these are labelled in Fig. 4(a). In particular A. , and X, combine the DGS denomina-
tors associated with the vertices 1 and 2. The numerator factor A. ,"l A. 2"2 appears because of the higher
powers of the DGS denominators. Finally M is a finite nonvanishing term involving the external, parton,
and core masses whose precise form is not required here.

The corresponding expression for the scattering amplitude in the interchange model is given for the
A(u, t) graph (we follow the nomenclature of BBG in this) indicated in Fig. 5 by the expression

d(a h)=(hq) f d k 1(h, h„—kk ) ( +)kh q—k —q P )1 (k+q k„—k k„+q)1'(kh —k —qk —q)

x((k' —t['+ ie) [(p„—k)' -m'+i s] [(k+ q)' —][],'+ ie] [(ps —k —q)' ' mie+] }', - (2.5}

where as usual s =(P„+Ps)', t=q', u=(Ps —P„-q)'. The hadronic vertices I'; are again to be given by Eq.
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+ u(X 8 + A4c(4 .+ A. 2 et~) (t(. 8 + t].~ n~ + t[.3 its) -M —Q 0'g l))

(1.8). Once more we use the Feynman identity to perform the loop integration over k, and we obtain again
up to an over-all constant

t((M t)=ldA [dh(a, I7, )X
'

{t[X +X (1 Q )+X (1 N)][X +1 (( a)+ll (( 0)]

)
-6-Z~-1 n

As indicated in Fig. 5, A.;, i= I, . . . , 4, combine
the DGS denominators, while X„..., A., combine
the appropriate propagators. M' is (another) finite
nonvanishing function of M', p,2, and m' whose
explicit form we shall not require.
If the so-called "s-t graph" is labelled as in Fig.

6, then we find that A(s, f) is given by Eq. (2.6)
with the replacement of u by s and the interchange
of A, 6 and A, Similar results hold for the remain-
ing permutations of parton and core lines in which
t8 ~P2 2

With Eqs. (2.4) and (2.6) in hand we can turn to
a discussion of asymptotic behavior and possible
relations behveen the electromagnetic form factor
and the four-point function. Asymptotic behavior
follows from the application of the usual end-point
considerations for the Feynman parameter inte-
gral. Such techniques are well-known in the liter-
ature; the text' by Eden et al. is an excellent
survey. Before proceeding with the general case
we illustrate the technique by considering the case
n; =0, i=1,2, in the form factor. From E(1. (2.4)
the asymptotic behavior in q' is G(q') - (q') ' in
all regions of Feynman parameter space where
the coefficient of q' is not zero. However, when

[X,(1 —o.,) + X,] [&,(1 —n, ) + X,] = O(1/q') (2.7)

the integral can be enhanced. It is maximally en-
hanced if any of the following sets of parameters
are O(1/q') (vanishing):

(2.8)

From the vanishing of any single set from Eq.
(2.8) we obtain the result

~ (1 —~)a~1 (2.10)

where P and q are both & 0, then the relative im-
portance of the second and fourth and the first and
third sets of parameters in Eq. (2.8) changes. We
shall see this in more detail below, where not
only logarithms but also powers can be affected.

To complete our discussion of the form factor,
we consider n& &0. The numerator factors x,"~A.2"2

in E[l. (2.7) are now important. The enhancement
of E(l. (2.7) that is most significant is that associ-
ated with the smallest exponent of the full numer-

(2.9)

The simultaneous vanishing of four scaling sets
from E(l. (2.8) adds logarithms to the above re-
sult (see Ref. 20):

G(q') -(1/q')' ln'(- q') .
In giving this result we tacitly assumed the DOS
spectral weights did not vanish near u = 0 and
+=I. If on the contrary

l

�do'H(n,
u') ~ o('

CX +P

FIG. 5. The (u, t) four-point function for elastic scat-
tering in the interchange model.

FIG. 6. The (s,t) four-point function for elastic scat-
tering.
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a = min(n„n„p„p, ) . (2.12)

The power in Eq. (2.11) is a+2 because there
are always at least two parameters which must
vanish to make the coefficient of q' vanish, as in

Eq. (2.7). If of the set (n„n„P„P,j from which
a is chosen, I values can all give a, then Eq. (2.11)
is augmented by l —1 powers of logarithms, as in
Eq. (3.4.9) of Ref. 20. (See Appendix C for more
details. ) Primarily we shall be concerned with
the power behavior in the asymptotic region.

Anticipating the computations of Sec. III, we re™
mark here that the Drell-Yan-West relation" [if
the asymptotic behavior of the elastic form factor
is (I/q')", then the threshold dependence of the
structure function E, in the Bjorken scaling vari-
able is (1 —&u)'" '] will hold automatically within
the physical context of the covariant core-parton
picture.

There is one further qualification that is neces-
sary before leaving the form factor. Namely, un-
less there are some special circumstances all
regions of the Feynman-parameter space contrib-
ute additively. We take the region that contrib-
utes the dominant asymptotic behavior. It is pos-
sible that regions of comparable importance could
cancel; however, this would require quite re-
strictive conditions on the DOS weight function.

We next proceed with the four-point function, Eq.
(2.6). We are interested in the kinematic region
of large t, u, and s. We work at fixed angle, so
that t= cu, where c is a nonzero constant. Then
both factors

and

x[3., + X, (1 —o,,) + A. , (1 —n~)] (2.13)

(X~+A~ R4+A2~) (KB+X~ Q~+XsQ3)

ar'e coefficients of t and each must be of order t '
to enhance the asymptotic behavior from
(1/t)" i=i"~. In this case there are many different
possible scalings of the Feynman parameters.
When the numerator factors II4,A.&"~ together with

ator

(1-a, ) & (1 —u, ) 2 x "~x "2 .
Note that the behavior of H near n =0, which is
associated with the off-shell behavior of the core
line, is not of interest, since o.

&
is by itself not

a coefficient of q'. In other words, a& is not con-
tained in any of the scaling sets in Eq. (2.8). We
obtain up to logarithms

(2.11)

where

the numerator factors in H, Eq. (2.10), are taken
into account, then there will only be some partic-
ular subsets of scalings which minimize the fall-
off of A(u, t).

The fewest possible parameters which go to zero
to make the coefficients of t and u in Eq. (2.13)
vanish are five. In any case at least one of the
pairs

(2.14)

must be zero; these parameters are not assoc-
iated with numerator factors. To minimize the
effect of the numerator we choose the quantity 5

as follows:
b =min(nx+n2+n4 n1+ 3+ 4

+y++2++, +2++ +nq,

g4 +rgy + q2 rgb +n2 +Py g4 +Py + q2

+ Pg $ + Q3P g $ + g 3 +P4$ Pg $ +P4 + g3 P

Pg2 +tg3 +Q'~~ g2+ S~+P3~ Pg2 +P3+ Q'~ )

n ~ + n q + q~, n ~ + n ~ +p2, n ~ +pq + g~]'

(2.15)

When b is chosen to be particular set, then the
scaling set referred to which vanishes is that set
associated with the parameters in b plus the cor-
responding set in Eq. (2.14). For example, if
b = n, + n, + n „ then the scaling set is (A. „X„X„
A. „A.,). [This procedure defines a "d line" in the
sense of Ref. 20 although in our work some of the
parameters refer to vertices. ] Once we have
chosen b, then up to logarithms the asymptotic
behavior of A(u, t) is

If several of the 16 sets in Eq. (2.15) are of the
same size, then simultaneous scaling sets occur
and logarithms are possible. The maximum num-
ber of simultaneous scaling sets is five with a
corresponding maximum number of logarithms of
four. We refer the reader to Appendix C for de-
tails.

The remaining four-point graphs are treated in
a similar fashion. We remark that for the (s, t)
graph in Fig. 6, which is essentially the same as
for A(u, t) with the replacement u- s, it appears
that because s and t are of opposite sign for phys-
ical scattering angle, the two terms of Eq. (2.13)
can cancel for nonzero values of the various
Feynman parameters. However, this is a simple
pole, not two pinching singularities, so it can be
avoided by suitable distortion of the contour in

(u, A) space. Once again, only the end-point singu-
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G (t) ~ (I/t)ng+2 (2.18)

larities contribute.
We now turn to the physical implications of these

results for phenomenological relations of the type
Eqs. (1.1)and(1. 4). A striking fact is that, in gen-
eral, the asymptotic behavior of the four-point
function involves not only n and P but q as well.
The quantities q; govern the behavior of the var-
ious vertices F; in the asymptotic off-shell mo-
mentum of the core line, since a; is the coeffi-
cient of the off-shell core mass in I'&. This is in
striking contrast with the form factor, where only
the quantities P&, which govern the off-shell be-
havior of the vertices in the parton momentum,
come into play. In other words, the large-q' be-
havior of the form factor only samples the be-
havior of the bound-state wave function in the par-
ton line. Moreover, the quantity 5 which appears
in the four-paint function, Eqs. (2.15) and (2.16),
always involves at least one n&, the power of the
DOS denominator, while the quantity a which ap-
pears in the three-point function, Eqs. (2.11) and

(2.12), can involve either P; or n;.
Therefore we obtain a result like Eq. (1.4) if

and only if

(2.17)

modulo logarithms. In other words, the asymp-
totic behavior of the vertex function must be the
same in both the parton and core momenta, when

the off-shell variables are taken large one at a
time. In view of the different roles the core and

parton play in this theory, this is a rather strong
restriction. In particular, if Eq. (2.17) holds,
then up to logarithms we obtain

ical assumptions than Eq. (2.17), which insures
the BBG results, Eqs. (2.18) and (2.19).

%e would like to emphasize the role played by
the off-shell behavior of the core line. This be-
havior is not involved with or determined by the
asymptotic behavior of the elastic form factor
(nor, as we shall see in Sec. IH, of the inelastic
form factor). However, it plays a role equivalent
to that of the parton line in the behavior of the
four-point function, and hence must be considered
carefully when relations between form factors and
cross sections are under consideration.

We can examine the relative importance of the
asymptotic behavior of the bound-state vertex
function in parton and core line in a more quantita-
tive manner. If we introduce a scaling variable
p=k'/k", k" =(k -P)' in Eq. (1.8), we obtain the
result for large 0' at fixed p of the form

I'(k', k") = dh(o 2, u) [k'(I —u) +0" u -o'+ ie] '""l

1l+1 I dug u)
g2 QI2 jp(l u) + u o 2p//2]N+1
P fixed 0

(2.20)

which is well defined for p & 0 and where g(u)
= Jdo'11(o', u), which is assumed to be convergent.

Now it is obvious that Eq. (2.20) defines a scal-
ing-type behavior for the function (0')""I'(O', P").
What is important for the question of the validity
of phenomenological relations like Eq. (2.19) is
the behavior of the asymptotic form in Eq. (2.20)
as p approaches 0, k" »k', or o approaches ~,
A'»k~. In particular we have the following re-
sults neglecting mass terms:

A(s, t, u) ~ t (1/t)"~'"&'"~"f(8)
t

(2.21)

where i 4j &k and i,j,k are chosen to label the three
hadrons with the slowest falloff in their form fac-
tors.

If Eq. (2.17) does not hold, then the relation ex-
pressed by Eq. (2.19) is broken in a variety of
ways. The four-point function can either fall off
faster than or slower than I; times three powers
of the form factor. For example, if n& =10, P; =q;
=0 for all i, then a=P, and G, (t) -(1/t)', while
b = 10 and 4 -t(1/t)". On the other hand, if n, = 5,
P, =10, q, =0 for all i, then a =n; and G, (t) -(1/t)',
while b =10 and A -t(1/t)". While these examples
are purely fanciful in the sense that we have not
written a field theory which leads to them they are
basically not more arbitrary without further phys-

If conditions like those of Eq. (2.17) are valid,
x.e.,

g{u) ~ u', g(u) ~ (1-u)', P, e&n

then the integrals in Eq. (2.21) are well defined
up to perhaps logarithmic corrections of the form
In(o'/k') if p, @=n This const. itutes the special
requirement that insures Eq. (2.19) and gives
the symmetric off-shell behavior (one variable
large at a time).

For the particular case of v=0, the results of
Eq. (2.21) imply the existence of a free-field light-
cone product for the sources of the parton and
core Z~(x) and J,(0), respectively, at x'.-0, if
they exist, by rather standard arguments:
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Zp(x) J,(0), . O(x)
1

0

+ less singular terms, (2.22)

and the expressions in Eq. (2.20} and in the vari-
ous p limits of Eq. (2.21) are the matrix elements
of the local operator O(x) on the light cone. For
n& 0 the 1/x' term in Eq. (2.22) is absent and we
are relying on the less singular behavior of the
expansion in Eq. (2.22) to give the first nonvanish-
ing term.

The upshot of this discussion is that those field
theories that have the possibility when treated in
a bound-state approximation of yielding a mean-
ingful light-cone expansion with well defined
(0!O(x)!p) will give relations of the type given by
Eq. (2.19) with G(t)- (1/t)' for s=0. The result-
ing scaling in electroproduction and Drell- Yan-
West relations etc. will all follow. We are well
aware that all of this assumes that the core is
described by a local operator and probably is much
more complicated itself.

We would also like to add that when the corn™
posite hadron system is a boson composed only of
a quark-antiquark pair, it becomes more reason-
able that the vertex function is symmetric in the
core and parton off-shell behavior, insuring Eq.
(2.19). From our point of view, and given that
nucleon form factors seem to fall off more quickly
than those of bosons, the phenomenology of BBG
then equivalently becomes more reasonable when
(at least one) pion or kaon is involved in the large-
angle scattering.

III. DEEP-INELASTIC AND INCLUSIVE

SCATTERING

Within the assumptions of our approach, the deep-
inelastic (DI} scattering cross section, e+p- e+X,
is described by the imaginary part of the forward
Compton amplitude with photons of mass —Q'
=q', q'& 0. We find it convenient to discuss this
matter in momentum space" rather than Feynman
parameter language. Notation and variables are
defined in Fig. V. In general, the Bjorken scaling
variable $ = &u

' runs between 0 and 1 in the phys-
ical region, and in the deep-inelastic region
g» O(M '/q').

The graph of Fig. 7 commits one to a picture in
which the parton and core ("a"and "b" respectively
in the figure) appear in the asymptotic state. To
avoid this one would have to go to a picture as in
Fig. 8. This approach would take us out of the set
of assumptions we have set for ourselves in that
a new vertex is necessary to describe a final state
which is not a simple bound state of parton and
core.

The invariant decomposition of the amplitude

M„, into invariant form factors W, ,(q', v) is too
well known to repeat here. A convenient frame"
for evaluation of the form factors is as follows:

p =(w, 0,M'/w),

q = (o(1/w), q„2M&/w), .

k =(xw, u„y/w),

sep ELECTRON PROTON ENERGY

Q2~ ~ 2

Mv = p. q

where W' = s,~ » Q ', 21l&»M', and we have written
the four-vectors in a (+,&,-}notation. The form
factor W, is uniquely projected in this frame by

computing the p. = v=+ component of M&„. If A. is
the coupling strength of the parton to the electro-
magnetic current,

!

ql
V-k+q I

I

FIG. 7. The diagrammatic representation for the off-
shell Compton amplitude W»tq, p) in the parton-plus-
core model.

I

I

I

I

I

FIG. 8. Off-shell Compton amplitude with final-state
interactions.
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)q(q', a) =a~ constant x f dhd'k dha(t —h) II(k'-m') S((k-k+q)' —a')

&&[(p k)' p, '+ gq]
' dk(u„o, ') [u,. k'+(1 —u, ) (k —p)' —u, '+is] ~""~ . (3.2)

In this expression a factor 4(1 —x)' is due to the plus-component coupling of the (spinless) parton line to
the electromagnetic current, and we have used the vertex function as given by Eq. (1.8). In addition d'k
= ~ dgdyd &i& and a vector & has mass v = v+ v

We now proceed to perform the y integration by using 6(k'-m') to set y=(k~'+m')/x. We then have

W, (q', v) = const x dx(1 —x)' x'"" d'k~,
0 jk, '+m' 1-xj+p.'x-M'x 1 —xj]'

dk(u„c', ') [k,'(1 —u;) + (1 —u;) (1 —x) (m' -M'x) —u&m'x —a, 'x] '""~

( u2+ 2

x 6I(1-x) 2Mv- +M' -(kd -Qd)'- p,
'

i (3 3)

The k~ integral now converges regardless of the behavior of the H ' in 1 —a& near a& =1. We may then
ignore the k~ (and mass) dependence in the 6 function. Define

I" x, M' -= 1
[k,'+m'(1 —x)+ p, 'x-M'x(1 —x)]'

2

dk(u, o ') [k '(1 —u, )+(1 —u, ) (1 —x) (m'-M'x) —u, m'x-o, 'x] I""~ (3.4)

which is a regular and nonvanishing function of x and masses (generically denoted by M'). Then

1

W, (q', v) = const x«dx(1 —x)x'""6((1-x)2Mv- Q') I"(x,M') .
0

(3.5)

This result exhibits Bjorken scaling, with the 5
function setting 1-x=Q'/2mv=g and no indepen-
dent Q' or v dependence in vW, :

vW, ($) = const &&(I —$)'""t'I ((1 —g), M') .
(3.6)

The crucial factor in obtaining the scaling result
is, of course, the convergence of the transverse-
momentum integral.

We note two features of Eq. (3.6):
(i) The threshold behavior, for $= 1, is given

by (1 —()'"', where a = min (P, n), and where p is
defined by Eq. (2.10). To see this, note that in the
definition of ID', Eq. (3.4), the integrand is un-
defined at x=0 (corresponding to )=1) when 1 —u,
= 0. Instead, only the quantity x'""J ' is defined.
If P &n, then the region 1 —n& =0 causes no dif-
ficulty at x=0, and the threshold dependence x'""
is retained. If on the other hand P &n, then corn-
putation of the integrals in Eq. (3.4) near u =1
changes the threshold dependence to x'~". Recall
from Sec. II that the elastic form factor is given
by G(t) - (I/I)"' [see Eqs. (2.11) and (2.12)]. The
combination of these two results is precisely the
Drell-Yan-West relation, which we now see follows

automatical/y within the context of any covariant
core-parton picture.

(ii) As t'- 0, which corresponds to Regge be-
havior in the Compton amplitude, vS', vanishes
as g'=(Q'/2Mv)'. This corresponds to the famil-
iar leading pole at J= -1 when spinless particles
are involved.

We note that the other inelastic form factor
W, (q', v) is given by

W, (q', v) =0, (3 7)

in accordance with the Callan-Gross relation" for
spinless particles. Of course inclusion of spin-~
partons will change the result in Eqs. (3.6) and
(3.7) because of changed numerator factors. We
shall not go through this exercise in detail, as it
is well known in the literature (see, e.g., Ref. 22).

In this last respect and in others, we do not
attempt to make this approach into a complete
theory of deep-inelastic scattering. For example,
for a description including Regge behavior (moving
poles), one would have to relax our assumptions
about the core and treat the core in a more gen-
eral way. " Instead we are content with the treat-
ment as it stands, for it is sufficient to ead us
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to comparison with the inclusive scattering pro-
cess.

The inclusive process 1+2-3+1at large mo-
mentum transfer and high energy can be computed
only at a kinematic boundary within the framework
of the core-parton assumptions we have described.
Figure 9(a) shows the nature of the pseudo-iwo-
body process (we refer to this as the "unassoci-
ated" inclusive process) which can be computed,
in one of core-parton permutations which is al-
lowed. Figure 9(b) shows by contrast what the
calculation of the full inclusive cross section (we
refer to this as the "associated" inclusive pro-
cess} entails within the core-parton framework;
we see that a new vertex is required to describe
core+parton- particle+I. Fortunately the kine-
matics of the detected particle allows us to iden-
tify the unassociated case. We simply require
that in the center-of-mass system the detected
particle, which we recall has large transverse
momentum, carry the same energy as the incident
particles, namely —,

' s' '. If we denote the unde-
tected mass by M, then this is the limit where
M '/s«1, which for small transverse momentum
is known as the triple Regge region.

There is no a Priori argument to see that the

amplitude represented by Fig. 9(a} is larger (or
smaller} than that given by Fig. 9(b). At least
for spinless particles one may argue that in the
construction of the new vertex for Fig. 9(b) more
denominator factors are required and that in the
limit of all kinematic variables large these factors
may damp this contribution. But even if one be-
lieved this argument it loses force when spin is
introduced.

In the usual fashion, the unassociated inclusive
cross section of Fig. 9(a) ec[uals, up to kinematic
factors, the discontinuity of a forward 3-to-3 am-
plitude, as shown and labelled in Fig. 10, and the
vertices also labelled by number in that diagram.
The vertices 1, 3, 4, and 6 are distinguished from
the vertices used in Sec. II in that two lines are
on-shell. This only indicates that some of the
e& will become ineffective as far as the asymp-
totic behavior of the expression IK I' correspond-
ing to Fig. 10 goes. In our discussion of the deep-
inelastic cross sections such a vertex appears,
but it is only the core which goes on-shell (cor-
responding to an n& factor in the DGS representa-
tion), whereas here the core is on-shell on one
side of the graph while the parton line (corre-
sponding to a 1 —n, factor) is on-shell on the other
side. We shall see the consequences of this below.

A convenient frame for computation is

M M

u M'a (tu}' ' M' —t+M'b)

(3.8)

fs+u M'c (tu)' ' M' s+t+M'd&
4 ( W W ' W s ' W

pl

p)
p-k

I

FIG. 9. (a) Unassociated inclusive scattering. (b)

Associated inclusive scattering where the detected par-
ticle 3 and system X overlap kinematically.

FIG. 10. The six-point function for the inclusive pro-
cess in Fig. 9(a) in the parton-plus-core approximation.
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in the (+,i, -) notation. a, b, c, d, and 5 are finite
functions of s, t, and u. We assume for conve-
nience that the scattering plane is fixed, so the &

components are fixed in, say, the x direction. We
have W ' = s = (P, +P,)', t = (P, —P,)', u = (P, —P,)'. lt
is convenient also to define the variables x, = —f/s,
x, = —u/s lying between 0 and 1. Then a, k, c, d,
and 5 are finite functions of x, and x2. Unlike the
exclusive scattering case these are now indepen-
dent, and x, +x2~1; x, +x2=1 is the exclusive
scattering limit. The angle at which particle 3

is detected is

t —Q
cos8 =

t+u ' (3.9)

which is, of course, the same form as in the ex-
clusive case.

As for deep-inelastic scattering, the fact that
we are dealing with a discontinuity makes it con-
venient to work with momentum-space techniques
rather than Feynman-parameter methods.

With these preliminaries over, we have

6 ~

(k)t)'=coast f d'k dk(s„sg)
5=1

x([(1—n, ) (p, - k)'+ n, m'-o, ']"k"[n2 (k+p. -p.)'+(1 —n.) (p, -k)'-o. ']""'

&& [ns (k+p2 -p»)'+(1 —n. ) V' —&,']""'[n» (k+p. -p.)'+(1 —n, )u' —o,']""'

x [n, (k+p, —p,)'+(1 —n, ) (p, —k)' —o,']"&"[(1—n, ) (p, —k)'+ n, m' —o,']"()"

x [(p, —k)' —p']' [(k+p, —p,)' —m']') ' 5(k' —m') 5((k —p,)' —)((,'), (3.10)

where as usual all denominator factors have a small imaginary part. Recall d'k = —,
' dxdy d'ki. Then per-

form the y integration by using the first 5 function to set y =(ki'+ m')/x. We also have

(P, —k)'- - [k,'+ m'(-1- x) -M'x(1- x)],

k 2 t x/2
(k+(k —(r )' (x+x —1)(-1+ —k + — + mass terms,

k ' tg X/2

(k p»)'-(x+-x, —1) —s —f — kd + — +mass terms.

The integral over k~ converges without reference to the second 5 function. This convergence already is
sufficient from the (p, —k)' —(o,

' propagator factor alone. As in the deep-inelastic structure function, the

e, and n, vertex factors also enter into this convergence, depending on the behavior of H ' or H ' near
n, = 0 or a, = 0, respectively.

We can then ignore ki2, v 2, mass terms, etc. compared to the large variables s, t, and u. For example, i

n, (k+p, —p,)'+(1 —n, ) (p, —k)'-o, '= n, [(s+ t) (1 —x) +u —(1 —x )s]+M",

where M" is a generic mass term, a finite nonvanishing function of e&, 0, and rest masses, which we
shall sometimes include as a reminder that n, integrations (in the above expression we refer to n, ) all
converge. The remaining ki dependence can then be written as an integral which, including the Jdk(n„o; )
and Jdk(n„o, ') factors, we recognize as precisely Io' (x,M'), E(l. (3.4).

Furthermore, we then have

ll(( ) —k X. k)-S (1 —x —x)(s-+t)- —= il x-1+ ).2 2 tQ 1 X2

S S+/ 1 +i

Combining our results, we have

(3.11)

(kR (' = dxx'"" 5(x-1 e *'
)
("(xkt') ][dk(s si )

1 4=2

x([n,(1 —x) t+M"]" [n,2(1 —x) (+M"]"s+'

x [n~(1 —x) t +M'2]"»" [n,(1 —x) t+M"]"5"[ (1 —x) t +M"]') ' . (3.12)
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We recognize in this expression the structure function for particle 1, vW, ($), as in Eq. (3.6), evaluated at

2

1 XJ
(8.18)

and divided by a factor $0 . This factor in yW, (go) is directly traced to the electromagnetic coupling of the
current. Clearly such a factor is absent in the inclusive cross section. This factor, which gives the be-
havior of vW, as g, - 0 and therefore reflects just the Regge behavior, is spin-dependent. A treatment of
vW, which included diffractive behavior would give vW, - const as g, —0, and there would then be no func-
tional difference between vS', and the factor appearing in the inclusive distribution. Thus

5

(8g ('=const x, , vW, (g,)
'

J dI (n, , o, ') (a, g,t+SS')-'"»"'
s+t got $o

=const x ' "
g

&s"»+'& "
dI»(o o ')(o t+~') &~'+'~vW(

(s+ t)t' j
j=l

(3.14)

In this remarkably simple expression we have thus
far been required to make no assumptions at all
about the behavior of the H~'~. Note that the lead-
ing behavior (the t dependence) of the denominators
comes from the (0+P, —P4)' factor in the vertex
functions 2 through 5. Since this corresponds to
a core line, only nj is involved, not 1-nj.

To characterize the actual asymptotic behavior
of Eq. (3.14}, we note that again the dependence of
H '.on ej is crucial, as enhancements from nj
= O(1/t) are possible. Since the region 1- o»»- 0
contains no new features, write as in Eq. (2.10)

(3.15)

where H is nonvanishing and finite as uj —0.
(Recall also that vertex 2 is identical to 5, and 3
to 4.} Then let

r, =—min(q», n;) .
We have

(3.16)

dh(o» o ')(o» t+M') '"""=constx t i"»+'&

X( -(zn»+8) W (g ) (3.18)

where g, is given by Eq. (3.13). (The full answer
comes from summing the above term with a, cor-
responding term with t—s, as well as another
pair which exchanges the role of P, and P„so that
deep-inelastic scattering of particle 2 is also rel-
evant. }

To compare the power dependence of Eq. (3.18)
to the elastic form factors, me note that a priori

(3.17)

in the manner discussed in detail in Sec. II. To get
the inclusive cross section Ed' /do'P we divide
the quantity (3g (' by a single power of s. Thus

I

there is no connection, because r„Eq. (3.16), re-
quires knowledge of the off-shell behavior in the
core line, whereas according to Eqs. (2.11) and
(2.12) the off-shell behavior in the parton line is
of importance for the form factor. If, comparing
Eqs. (8.16) and (2.12), we have

Pj =qj oy P;,qj & nj,
then Eq. (3 ~ 18) becomes for fixed angle

3
E ds

= const x G,'(t) G,'(t) vW~,'1($0},

(3.19)

(3.20)

where the subscripts on G and the superscript on
vW, labels the particle referred to. Equation
(3.19) again expresses a strong symmetry in par-
ton and core lines. If it did not hold, then although
the power dependence of the cross section is well
defined, the relation expressed by Eq. (3.20) fails.
Equation (3.20) is in agreement with the work of
BBG' and LP.~

If one were to decide that the rather special type
of inclusive scattering we are studying, as in Fig.
9(a}, were an important component of the total
single-particle distribution at large s and t, then
one could ask about two-particle spectra, , etc.
This would entail "opening up" the on-shell core
or parton line. For example, referring to vertex
1 in Fig. 10, one might require knowledge of the
full amplitude parton + particle 1 —particle +X.
Alternatively, partial knowledge of the discontinu-
ity in the parton + particle elastic scattering am-
plitude mould suffice. Since the imaginary part of
the parton-particle elastic scattering amplitude
occurs in deep-inelastic scattering, and in partic-
ular partially inclusive deep-inelastic scattering,
e+P- e+hadron+X, picks out the required dis-
continuity, one may be able to relate the two-par-
ticle distribution to quantities appea, ring in the
partial deep-inelastic process. Such a relation
would presumably be subject to the caution we
prescribe for the entire subject of this payer.
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Furthermore, referring to vertex 3 of Fig. 10,
one also requires knowledge of the more unfamil-
iar core-particle amplitude. Landshoff and Polk-
inghorne' have noticed that if particle 3 is a me-
son, then in the usual quark model it is not un-
reasonable that the core itself be a parton (quark).
They have then gone on to make a more detailed
picture of several-particle inclusive reactions
at large s and t based upon their ideas of parton-
particle scattering. We shall not pursue this sub-
ject further in the present work.

APPENDIX A

In this appendix we review and discuss the wave
equation and corresponding solution —the "wave
function" —used by BBQ to describe the vertex of
Fig. 3. Consider the T matrix for a '*parton" of
momentum k and mass p, and "core" of momentum

p - k and mass m (both spinless for simplicity) to
scatter into a state p (not necessarily a bound

state),

If we define

x&oi(J, (x,) ~, (x,)), ]p& . (Ai)

T(k, p —k;P) =—(2w)~ 5(P —k —(P —k)) t(k, P —k;P),
(A2)

then we shall assume that t satisfies a (covariant)
Bethe-Salpeter equation of the form

t (k, P —k; P) = V(k, P —k; P)

—i (2w) fd qa, (q)'a. (p'—v)

x V (q, p - q; p) t (q p —q' p)
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(A5)

This equation can be the starting point of a full
theory of the vertex function. For illustration we
shall take the potential to be a single (spinless)
particle exchange,

V= [(k —q)' —m, '+ie] '; (A6)

a spectral decomposition of the full V into the form
of Eq. (A6) is always possible.

Although Eq. (A5) is written in a Feynman-dia-
gram form, we can easily rewrite it in the language
of old-fashioned perturbation theory, or alterna-
tively in the language of the infinite-momentum-
frame perturbation theory, better known" as
steinberg's rules. The work of BBG is carried
out in the infinite-momentum-frame formalism,
so we shall concentrate on this approach.

as shown in Fig. 11. h~ and 4, are the propagator
functions for parton and core, respectively.

The vertex function is defined as the residue of
the dynamical bound-state pole at p' =34',

F(k, p - k; p) -=lim (p' -~') f (k, p k; p)
P ~El

(A4)

and this function satisfies a homogeneous equation,

().)(- ;)))=- (i') fd 'ei, '(e)ii. (p-e)

xV(q, p-q;p) T'(q, p-q;p) .

(AS)

P

////////

FIQ. 11. Bethe-Salpeter equation for parton-core am-
plitude.

FIG. 12. Noncovariant equation for the bound-state
vertex keeping nonoverlapping time orderings.
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It is now well known that the rules of old-fash-
ioned perturbation theory in the infinite-momen-
tum frame follow from picking up poles in the q
variable, where d'q = —,

' d'q~ dq, dq . Define the
four-vectors in an appropriate frame by

P =(W, 0,M'/W),

k =(xW, %, (R'+ p, ')/(«W)),
(A7)

p-k=((1-x)W, —k, (k'+m')/[(1-«)W]),

q = (yW, q, q/W),

where we use a (+, &, -) notation. To perform the
q integration we would now need full knowledge of

v + v

FIG. 13. Bethe-Salpeter equation in the one-meson-
exchange approximation for the kernel.

the singularities of I'(q, p-q;p). However, if we
arbitrarily ignore the singularities of the vertex
function, then the q singularities are explicitly
displayed. We find, according to well-known
application of Cauchy's theorem,

z 1 1
2(2«)' . ' y(1-y)(y-«) M' (q '-+u')6 (q '-+m')/(1-y)

(AS)

where

q 2+p2 &k — &2+ '
A 2+~2

X P x

e( )
(~J. ql. ) +m(\ qi™~J. ™2

x 1 p 1 x (A9)

In Eq. (AS} we have recognized that in infinite-
momentum language only kj and x are independent
variables. Equation (AS) is precisely the form of
equation used by BBG, when we define the particle
"wave-function" g(k„x) by

(A10)

Equation (AS) has a precise graphical meaning.
Figure 12 shows this equation, where the two terms
of V(ki, qi; x, y) in Eq. (A9) correspond to the
two + —component order ings shown in the figure.
This equations was first put forth by Weinberg"
in his paper on the infinite-momentum rules. He
fully recognized its noncovariant nature.

Of course a noncovariant equation can still be
very useful if it is approximately true in some
kinematic regime. Therefore we investigated
various limits of this equation. To begin with, let
us for completeness consider the full Bethe-Sal-
peter equation, as shown for spinless particles
in Fig. 13. The fourth-order time-ordered graphs
which we included in the modified equation [anal-
ogous to Eq. (AS)j are shown in Figs. 14(a}-14(d).
At the same time the remaining graphs are shown
in Figs. 14(e)-14(f). If we label the lines of all the
graphs as in Fig. 14(a), and if the energy of the

line labeled by i is E&, then according to the rules
of old-fashioned perturbation theory, the denom-
inator structure of each graph is

(a) (E.+E» -Ei) (Ea+Ea -Ex Em) «.+E-a Ea)-
(b) (E.+Ea-E.)(E(+Ea-Ei-E2)(E~+E.-Es»
(c) (E.+Ea E&) (Eo+-Ea Ei E2}-(E.+-Ea E.) ~-
(d) (E.+El-E$)(E(,+Ea E1-Em)(~b-+E. -ES}

(e) (E, +Ea —Ea) (E,+E, +E,—Es) (E(,+E, —Es),
(f) (Ea+E(, Ei) (Ea-+E. +Ea Ea) (Ea-+Ea Ea) ~-

(A11)

A convenient infinite-momentum frame for com-
putation is

m2
P~ = xP+, 0, xP

m'
P, = 1-xP+,0, 1-~P,

m'+ q~' "*.)

where we have labelled a four-vector by (energy,
perpendicular component, «component), and
where we envision P- ~. We have
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s =(pc +p2)

=m'[x(1 —x)j ',
t=(p, -p.)'

9','+m'
= —q, '+ — ' (x —x),

(A13)

and we label the integrated loop 3-momentum by

(p~i, p~, ) =(ki, k,) =(ki, Xp) (A14)

The other 3-vectors are determined by 3-momen-
tum conservation, and the energy of the internal
lines is determined by putting them on the mass
shell.

We can now directly compute the energy denom-
inators (All) in terms of external and internal
momentum variables. We find that only graphs
(b), (c), (d), and (e) have denominator factors of
order P' for a finite range of y; therefore the
corresponding terms are the only ones which sur-
vive when I'- ~. Equivalently we can start with
the Feynman graph for the box and perform a k
integration. The analytic expression we find is
exactly the same as the form given by the old-
fashioned perturbation theory.

We can now distinguish various limits of the ex-
ternal var iables.

(1) s, t finite. All graphs contribute here T.he
analog to Eq. (A8) for the scattering amplitude
fails in this order.

(2) s- ~; t, q~' finite. This is the high-energy
small-angle limit. In this limit the finite inte-
gration range of y in Fig. 14(e) vanishes. Thus the
Eq. (A8) analog is approximately true in this order,
since graphs (b), (c), and (d) are consistent with
the equation.

(3) s- ~; t/s, q~'/s finite. This is the large-
angle scattering limit. In this case the y integra-
tion range for graph (e) remains nonzero. How-
ever, the integration over d'A~ gives a result of
order (ins)/q~' compared to O(1/q~') for the re-
maining three graphs. Thus the analog of (A8) is
approximately true in fourth order.

(4) s finite, )q~')-~. This is a limit which is
appropriate for the applications of the body of this
paper. We envision q~- ~ within a graph (such as
the form factor or four-point function) while s is
fixed at the binding energy of the composite sys-
tem. The same remarks hold here as for the
limit (3). Thus in fourth order the equation used by
BBG would appear to be justified.

In any application to strong interactions we must
go beyond fourth order. We find when we do this
that the equation faOs in any limit. For example,
in sixth order we compared the contributions of
the old-fashioned perturbation graphs represented
by Figs. 15(a) and 15(b). Figure 15{a)is not con-
tained in the equation, wherea's Fig. 15(b) is. We
found that in the various limits the contributions
of each graph were of comparable size, including
logarithms.

As we mentioned earlier we can uncover exactly
the form of BBG with regard to the expression for
the four-point function [e.g., Fig. 6j or three-point
function [e.g., Fig. 5(a)j if we neglect the k (or k,)
singularities of the vertex function I'(k, P —k; P) in
performing the loop integration. More precisely
if we see a form like

,n( )k~, ( p- )kr(k, p-k;p)

(A15)

(c)

FIG. 14. Time-ordered graphs in fourth-order corre-
sponding to the energy denominators in Eq. (A11}; (a}
through (d} are contained in Eq. (A8); (e} and (Q are not
contained in Eq. (A8).

(b)
FIG. 15. (a} Time-ordered graph in sixth order not

contained in the integral equation. (b) Time-ordered
graph in sixth order contained in the integral equation.
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as in Eqs. (2.4), (2.6), or (AS), we keep the poles
of the Green's functions &z, (k) and &, (P —k) but
neglect the poles of I'(k, p —k; p) in the k, or k .

We now examine the physical nature of that ap-

proximation and its limitations. It is useful to use
the Low equation which follows from completeness
to evaluate the time-ordered product for I'(k, p —k;
p) of Eqs. (A1) and (A4) (p, k are three-vectors here)

2 z~ 5'(p. -k)(ol&. (o)lzz&(nl~. (o)lp& ~ &oI z. (o)lm&(m(J, (0)lp&
ko —E„(k)+it ~ ko+E„(k) —E(p) +i@

(A16)

where

E(5}=(p'+iIf')",
E„(%)=(k'+m„')'", (A17)

M„being the mass of the intermediate state in Eq.
(A16). The nature of the approximation necessary
to recover the wave function of BBQ is the same
as to obtain the bound-state integral Eq. (A8).
Namely in the loop integration the most important
contributions come from the region where

E„»k, and E(p)-E„(R)»k, . (A18)

The energy denominators associated with the ver-
tex function itself are neglected; this amounts to
a static approximation for the bound-state wave
function in which the relative time variable in Eq.
(A1) is set to zero. Within the spirit of this ap-
proximation the most important singularities in
the k, plane are those associated with the product
of the two propagator functions in Eqs. (A15) and
(A5) and are given by the form

1
X

ko —
u&~ (k) +ze

1
k, —E(p) —(u, (k p) + z e—'

(A19)

(u~ (k) =(k'+ Zz')'~',

(u, (p-k) =[(p-k)'+m']'~' .
It follows then that the most important energy
denominator is the form

E(p) —~& (k) —~.(0—k) .
This type of approximation of keeping the energy
denominators from the Green's function is cer-
tainly good in the nonrelativistic limit and indeed
this is the manner in which the nonrelativistic
Schrddinger equation is derived from the Bethe-
Salpeter Eq. (A5) in the static limit.

In the work of BBQ a similar set of approxima-
tions is made in the infinite-momentum limit.
These approximations do not lead to results of the

same form as in Sec. II; however, these arguments
do not preclude numerical accuracy in some kine-
matic regions. In particular they have neglected
terms which contain the hadron bound-state bind-
ing energy compared to rest masses of hadrons as
a measure of the numerical accuracy.

APPENDIX B

We want to very briefly indicate how the proce-
dures are amplified by the inclusion of spin. For
example, consider the vertex of Fig. 3 when the
hadron is spinless but the core and parton each
has spin —,'. Such a situation may be appropriate
when the hadron is a pion and the core and parton
each have quark quantum numbers. We decompose
the vertex of Fig. 3 into the irreducible form

F(k, P —k; P) =F,(k, P —k; P) + IAAF, (k, P —k; P)

+PF,(k, P —k; P) + [k', P'] F,(k, P —k; P) .
(B1)

The procedure is now to write a separate DGS de-
composition for each one of the F, .

The form factor 6, for example, is then ex-
tracted from the irreducible pion electromagnetic
vertex function l „(tf') by

1"„(q')= (2p+ V)„G(V'),
as in Fig. 4(a). The loop integral now involves a
trace over the spin- —,

' constituent momenta. Be-
cause of the large number of cross terms in the
F;, it is clear the algebra quickly escalates.
Nevertheless, it is also clear that the physical
principles we have discussed in this paper con-
cerning the off-shell behavior of core and parton
continue to be true, so that our general conclu-
sions are unchanged. Corresponding assumptions
about the F& of Eq. (B1) can be made which retain
the essential model dependence of our results in
the text.

It may also be appropriate to rema, rk that if the
hadronic states themselves have spin, then there
may be added requirements, e.g., scaling between
the electric and magnetic form factors of a spin-~
particle. As BBG have correctly pointed out, such
requirements only affect the choice of spin for the
constituents. Our general conclusions are again
unchanged.
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APPENDIX C

In this brief appendix we list a complete set of
scalings of the Feynman parameters associated
with the asymptotic behavior of the form factor
and box graphs of Figs. 4 and 5.

1. Form Factor.

x f q'[X,(1 —n, ) + X,] [1).,(1 —n, ) + X,]

-o A. , —o,'A, -M'3 ' (C1)

Here we suppress numerator effects and set n, =0
since we merely desire to discuss d lines of com-
parable importance; as far as the power depen-
dence of Eq. (2.11), see the discussion after Eq.
(2.11).

The techniques we follow are exactly those of
Ref. 20. The technique of letting groups of Feyn-
man parameters vanish simultaneously is called
scaling. Our first scaling will be defined by the
change of variables

1 Pl I& 3 Pl 3

where

+A1=1 .3

This variable transformation has the Jacobian

dh. ,dA. , = p, dp, 5(X', + X', —1) dA. ', dX', (C3)

and the scaling operation is indicated by the nota-
tion

Pl. h. l, A. (C4)

Recall that the form factor in parametric form
is given by Eq. (2.4) which we write here for com-
pleteness:

2

G(q')= f [ dh(a;, a,')dA

The single parameter ~ going to zero sets A. , and
A, 3 to zero.

Next we perform the scalings

x(P,P, T, r,kq'+h) ',
where dA is the appropriate Feynman measure for
the irrelevant Feynman parameters, defined by
expressions like Eq. (C3), h is a function whose
details need not concern us, and g is a nonvanish-
ing function of the parameters after the scale
transformation has been made.

The expression in Eq. (C6) immediately enables
us to read off the relevant asymptotic behavior
for the case p, =. p, =T, =r, =0. From Eq. (3.49) of
Ref. 20 we immediately have from the region of
small p„p„v;, and 72 the asymptotic behavior:

G(q')- 1 1'
dh(n„o )dA ——, (lnq')' . (C7)

i=1

Of course the reader should remember that such
fussiness about complete sets of scalings and the
number of logarithms is irrelevant if a single p
or n of Eqs. (2.4) or (2.10) is smaller than any of
the others. Then one scaling gives a result which
dominates asymptotically by powers.

2. Scattering Amplitude

The box graph of Fig. 5 is only slightly more
complicated than the form factor of Fig. 4. Recall,
from Eq. (2.6), that at fixed angle the expression
for A(u, t) is given by (suppressing numerators
and setting n; =0)

p2 2P 4p 1 +1p 3p T2 1 Q2p 4 ~

(C5)
We finally obtain therefore for the form factor

the expression
2

Q(q ) = dh(n)) o( ) dA p) dp) p2dp2T) dT~ T2dr2

4
~

A(u, t) =
~

dh(n, o; )dA t([A. , +A. (1 —n, )+A (1 —n )][A +A. (1 —n )+A (1 —n )]

(C8)

where c =u/t, and we denote the terms in square
brackets as factors 1, 2, 3, and 4, respectively.

The cardinal rule of the scaling trick is not to
violate the 5 function of the Feynman-parameter
integration, Eq. (C3), yet still simultaneously set
as many parameters to zero as possible until the
remaining coefficient of t is nonzero.

Firstly, the sets of Feynman parameters of Eq.
(C8) that can simultaneously vanish must exclude

one of the factors 1, 2, 3, or 4 of Eq. (C8). This
follows from the fact that 1 =Q; A.; is a constraint
on the parameter integration. As an example, we
consider in detail the set of scalings that gives
vanishing factors (1, 3, and 4). The number of
parameters that can simultaneously vanish is five.
A complete set of scalings are defined by the nota-
tion of Eq. (C5).
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Pe:

X1, A2, A4, A5, Ae,

1 1 I 1
A1, A4, A5, Ae, a2,

2 2
A. 1, A, 3, A. e, 1 —a1, Q2,

3 2 2 1
1p

A 4P X 5P A 8P Q3P

X ~, Xs, X 5, A. ~, (1 —u~),

&i ~s ~8~ o.a~(1- o.4).

The scalings p4 and p, are connected by ox since
the scalings cannot be implemented simulta-
neously. The superscripts in Eq. (C9) merely indi-
cate the fact that the variable has been part of
more than one simultaneous scaling set and in-
dicates the number of times that variable has been
part of variable transformation of the type given

explicitly for the form factor in Eg. (C2).
The resulting structure then takes the form:

A(u i) f=dh(a„trp)f dA" (p~}"'dp,
4=1 S

( APIPsP~, SP6 g+&)

where g and k are the scaled functions of the pa-
rameters. This expression has the asymptotic
behavior

A(u, t)- , A,
dh(n„o, ') dA x ——,(lnt)~. (C11)

&=1

There is completely similar asymptotic behavior
for the other sets leaving 1, 3, or 4 finite and
their treatment is exactly the same.

*Work supported in part by National Science Foundation
under Grant No. GP-3299X and in part by U. S. Atomic
Energy Commission.

)Permanent address: Physics Department, University
of Virginia, Charlottesville, Virginia 22901.

~Cf. H. Kendall, in Proceedings of the 1971 International
SymPosium on Elect~on and Photon Interactions at
High Energies, edited by N. B. Mistry (Cornell Univer-
sity Press, Ithaca, New York, 1972).

2J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
3J. F. Gunion, S. J. Brodsky, and R. Blankenbecler,

Phys. Lett. 39B, 649 (1972); Phys. Rev. D 6, 2652
(1972).

4P. V. Landshoff and J. C. Polkinghorne, Phys. Lett.
44B, 293 (1973).

5D. Horn and F. Moshe, Nucl. Phys. B48, 557 (1972);
J. B. Kogut and L. Susskind, IAS report, 1972 (unpub-
lished); and W. R. Theis, Phys. Lett. 42B, 246 (1972)
C. Rubbia, in Proceedings of the XVI International
Conference on High Energy Physics, Chicago-Batavia,
Ill. , 1973, edited by J. Jackson and A. Roberts (NAL,
Batavia, Ill. , 1973), p. 157.

CERN-Columbia-Rockefeller collaboration, in Proceed-
ings of the XVI International Conference on High Energy
Physics, Chicago-Batavia, Ill. , 1973, edited by
J. Jackson and A. Roberts (Ref. 6).

S. M. Berman, J. D Bjorken, and J. B.. Kogut, Phys.
Rev. D4, 3388 (1971).

9T. T. Wu and C. N. Yang, Phys. Rev. 137B, 708 (1965).
~

¹ Byers and C. N. Yang, Phys. Rev. 142, 976 (1966);
T. T. Chou. and C. N. Yang, iM. 175, 1832 (1968);
L. Durand and R. Lipes, Phys. Rev. Lett. 20, 637
(1968); F. Cooper and G. Schonberg, Phys. Rev. D 6,

1082 (1972).
~1S. D. Drell and T. D. Lee, Phys. Rev. D 5, 1738 (1972);

T. D. Lee, Qid. 6, 1110 (1972); C. H. Woo, Phys. Rev.
D 6, 1127 (1972).
D. Cline, F. Halzen, and M. Waldrop, Nucl. Phys.
B55, 157 (1973).
T. T. Wu, Phys. Rev. 143, 1117 (1966).

~4R. Blankenbecler, S. J. BrodskJJ, and J. F. Qunion,
Phys. Lett. 42B, 461 (1972); J. F. Gunion, S. J.
Brodksy, and R. Blankenbecler, Phys. Rev. D 6,
2652 (1972); 8, 287 (1973).

5S. Weinberg, Phys. Rev. 150, 1313 (1966).
~6P. V. Landshoff and J. C. Polkinghorne, Nucl. Phys.

B53, 473 (1973); Phys. Rev. D 8, 4157 (1973).
~VS. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys.

Rev. 115, 731 (1959).
S. D. Drell and T. M. Yan, Phys. Rev. Lett. 24, 181
(1970); G. B. West, ibid. 24, 1206 (1970).
K. Johnson, Phys. Rev. D 6, 1101 (1972).
R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C.
Polkinghorne, The Analytic S-Matrix (Cambridge
Univ; Press, Cambridge, Mass. , 1966).

218ee Ref. 15. Also L. Susskind and G. Frye, Phys. Rev.
165, 1525 (1968); 165, 1547 (1968); 165, 1553 (1968);
K. Bardakci and M. B. Halpern, ibid. 176, 1686 (1968);
S. J. Chang and S. Ma, ibid. 180, 1506 (1969); 188,
2385 (1969); S. J. Chang and P. M. Fishbane, Phys.
Rev. D 2, 1084 (1970); 2, 1104 (1970); P. M. Fishbane
and J. D. Sullivan, ibid. 4, 458 (1971); 4, 2516 (1971).

22S. J. Chang and P. M. Fishbane (first citation in Ref. 21).
23G. C. Callan and D. J. Gross, Phys. Rev. Lett. 22, 156

(1969).


