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The approach to Feynman- Yang scaling of single-particle inclusive spectra is discussed in
terms of the average fraction of c.m. energy per event carried off by each type of constituent.
Experimental values for energy fractions in pp collisions are presented and compared with
the results of a Mueller-Regge expansion for the invariant cross sections in the fragmenta-
tion region. By examining the behavior of energy fractions in an independent-emission model,
it is shown that known dynamic properties of the exclusive components of an inclusive process
provide a natural scale by which the energy fractions approach their asymptotic values. The
existence of such a scale is shown to explain the rapid approach to asymptotic behavior of the
inclusive pp —7I. spectra while the pp —p spectrum rises to an order of magnitude between
Brookhaven Alternating Gradient Synchrotron and CERN Intersecting Storage Rings energies.

I. INTRODUCTION

Ba,sed on the generalized optical theorem-' there
are two aIternatives in constructing a model for
an inclusive cross section. To describe a process
ab- c+ anything, one can either construct a model
for the various production processes which con-
tribute a particle of type c in the final state or one
ean construct a model for the 6-point amplitude
A.,„,—,~,—, the discontinuity of which is related
through unitarity to the invariant cross section.
In principle, either of these approaches provides
an adequate and complete description of the under-
lying physics. In practice, there are a great many
features of the data which cannot be described
naturally from one point of view or the other.
There is, however, a certain complementarity be-
tween the two approa, ches which can be exploited.
For example, a Hegge analysis of the 6-point am-
plitude can provide a great deal of information
about the dependence of cross sections on the
quantum numbers of a, b, and c.' However, one
thing which we do not have in a Hegge analysis is
an a priori estimate of the relative importance of
the leading poles and the correction terms in-

eluding cuts and nonleading poles (daughters). An-
other thing we do not have immediately is the ef-
fect of certain kinematic constraints in the ex-
clusive cross sections, such as the conservation
of . momentum and quantum-number conservation.
These have to be imposed at a secondary level in
the form of sum rules' which provide relations be-
bveen Begge parameters.

Making a. model for the production processes
guarantees that the kinematics and kinematic re-
flections of the known dynamic constraints are
incorporated properly, Because of the potential
complexity of many-particle final states, however,
the models whose consequences can be calculated
are usually quite crude. Typically, they neglect
clustering or resonance effects known to be im-
portant in individual exclusive cross sections. The
simple multiperipheral models and emission mod-
els" are not thought to provide an adequate de-
scription of each n-particle final state throughout
the accessible region of phase space. Instead,
the averaging process inherent in forming an in-
clusive cross section from the exclusive constit-
uents is relied upon to make it possible to recon-
struct a reasonable inclusive spectrum from sim-
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pie approximations to the exclusive production
processes.

In this paper we study a specific example of this
type of complementarity between the Mueller-
Regge approach and the exclusive component ap-
proach to inclusive cross sections. Using the en-
ergy sum rules to define "energy fractions, " we
examine the approach to scaling of pp spectra in
the fragmentation region. The behavior of these
energy fractions is found to be consistent with a
Mueller-Regge analysis. The Mueller-Regge anal-
ysis does not, however, provide a complete under-
standing. In particular, the question of the sign of
the leading nondiffractive Regge terms and their
relative magnitude does not seem to be particu-
larly well understood in terms of the proposed
generalizations' ' of the Freund-Harari hypoth-
esis.

To examine this feature we therefore construct
a microscopic model. The specific model for the
exclusive cross sections we use is the independent-
emission model (IEM)." It can be argued that
this model presents the most unbiased kinematic
reflections of the known dynamic principles. A
reasonable list of such dynamics extracted em-
pirically from data might include':

(1) Each exclusive process conserves the addi-
tive quantum numbers Q, B, I' and obeys momen-
tum conser vation.

(2) The average transverse momentum of final-
state particles is limited (0.3-0.5 GeV/c) and as-
ymptotically independent of incident energy.

(3) There are two particles of the same type as
the incident particles which carry off, on the aver-
age, half the available c.m. energy.

A more complete discussion on the way in which
these dynamic features are implemented in an IEM
can be found in Ref. 5. We here construct an IEM
for a process which can be labeled PP-PP+ n(m)

+m(PP pair). In studying the behavior of the en-
ergy fractions in this, essentially kinematic, mod-
el we see that the exclusive approach provides an
explanation of the experimental fact that pp- p
approaches its scaling limit from above while the
inclusive spectra of nonleading particles approach
scaling from below. The IEM also provides a
natural energy scale by which the energy fractions
for n and p approach their asymptotic limit. De-
fining v„=(m, '+Pr')' ', we see that s' '/2A. (~„)
and s' '/2A. (z,„) are variables which must be

large in order for pP- w and PP-P, respectively,
to be close to their scaling limit. The parameter
A. is related to the shape of inclusive X spectra
and is determined empirically to be near 5. The
existence of this type of kinematic scale seems
to be reflected in the data as it correctly explains
the order-of-magnitude rise in the P spectrum

between Brookhaven Alternating Gradient Synchro-
tron (AGS) and CERN Intersecting Storage Rings
(ISR) energies. The IEM therefore provides a
quantitative representation of the belief often ex-
pressed" that the slow approach to scaling of
PP-P is due to "threshold effects. "

The plan of this paper is as follows: In Sec. II
we discuss the energy-momentum sum rules and
their role in constraining a Mueller-Regge anal-
ysis of inclusive cross sections. We then intro-
duce data on the average fractions obtained, in some
cases, by using the energy sum rule on published
inclusive spectra. In Sec. III we discuss the IEM
and show how the energy-momentum sum rules
can be used to estimate errors produced in in-
clusive cross sections by the use of analytic ap-
proximation schemes. " We then examine the be-
havior of the energy fractions in the IEM and show
how a kinematic energy scale is established. In
Sec. IV we summarize our results and draw some
conclusions.

Define

II. THE ENERGY SUM RULES AND THE

REGGE-MUELLER ANALYSIS OF

INCLUSIVE CROSS SECTIONS

A. The Sum Rules

d 0'

fas(S~p )=Ccats +c dsPc
(2.I)

(P, +P,)"c„=Q ' (P ~) E, , (2.2)
C

This is one of a class of sum rules' which express
the effects on inclusive spectra of the conservation
laws operating on each exclusive component. Tak-
ing the p = 0 in (2.2) and evaluating the expression
in the c.m. frame yields

d3

E '«.)f: (s, P.) . (2.3)

The individual terms on the right-hand side of
(2.3) are recognized as giving the average amount
of c.m. energy per collision carried off by the con-
stituents of type c. We therefore define the aver-
age fraction of c.m. energy per event as

q, (s) = r fa(s p) ~S, ys
(2.4)

The sum rule (2.3) now is recast to give the con-
straint that the sum of the fractional energies

as the normalized invariant cross section for the
inclusive process ab- c(p,) +anything. Here, s
= (P, +P,)' is the usual Mandelstam invariant. Based
upon energy-momentum conservation, we have the
relation
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is one:

1= )),(s) .
behavior of the amplitude in various channels.
Taking particle c to be in the fragmentation region
of oars, icle b

&ng = dPC c
fob (s~ pc) )

C

(2.6)

The form of (2.4) is similar to that of the expres-
sions

s =(p, +p,)'- ~,
K' = (P, +P, —P,)'-- (1 —x,) s,

we have the asymptotic expansion

(2.11)

(2.7)

tk(s)= f«d'-',p r„(x,p, s) (2.8)

Finally, we take into account the fact that the dis-
tributions in transverse momentum are sharply
peaked for small ~pr ~

so that, although the limits
of integration over d'Pz nominally depend on s,
for moderate or high values of s this integration
becomes independent of energy. Since the limits on
t'h e x integration are independent of ene:.-gy, the
hypothesis of Feynman- Yang" ' " scaling yields
the result that the average fraction of e.m. energy
per event carried off by a particular particle type
approaches an asymptotic constant,

giving the average number of particles of type c
or the average charge carried off per event by
constituent c, respectively.

We now introduce Feynman's" sealing parameter
x, = 2P,~ s '~', write f,'„(s,p, ) =f'„(x,pr, s), and
reexpress (2.4) as

The expression is written down assuming the dom-
inance Gi po es because jest May ~)e that, as 1n 2= 2i

scattering, the effect of poles and their absorptive
cuts is approximated at a certain leve1. by "effec-
tive poles. " To the extent that the effective-pole
approximation is adequate to describe both the
asymptotic behavior of the total cross section and
the asymptotic behavior of the invariant inclusive
cross section in the fragmentation region, the sun'
rule (2.2) provides an important constraint on the
effective-pole couplings. '~ To see this we insert
a Begge asymptotic expansion for the total cross
section into the left-hand side of (2.2) and the ex-
pansion (2.12) into the integral on the right-hand
side:

a b
@ ~ (xq(o)-1

(2.9)

Because of the different shapes of inclusive spec-
tra, it is not always convenient to pick a "typical"
value of x and )pr j at which to study the approach
to scaling of the f,', (x, pr) for different c. The be-
havior of the energy fractions, however, enables
us to describe the approach to scaling of ab-c„
ab- c„etc., on a more or less equivalent footing.

B. Mueller-Regge Analysis

The asymptotic values of the energy fractions as
well as the energy behavior of the approach to
these values can be studied through a Mueller-
Begge analysis of the inclusive cross sections. '
The starting point is the assumption that the in-
variant cross section (2.1) is related to an absorp-
tive part of a forward 3, 3 amplitude'

E, ~
—=—

2 disc . [A,(„,(„(s,P—„'allb, =0—)I,
do' I
Sp A@2 gg"' +&C ~ +5C 0 CP

(2.10)

where K' =(P, +P, —P,)'. This relation is then
combined with the assumption of Hegge asymptotic

2P, P, —=—' ' +xm. '+O(x 's '~'), (2.15a)x

+
2P, P, —= sx+ ' — 'r—+O(x 's 'i'),

x (2.15b)

re(luires some structure in the p,',—(x, pr) (see
Ref. 15):

(2.13)

The number of terms in the asymptotic expansion
which are expected to be important depends on the
kinematic region. To study the energy dependence
of the terms on the right-hand side of the sum rule
(2.13), we must be careful to treat properly the
regions x —= 0 and x = 1. Near x = 0, a double -Hegge
expansion of the 6-point function (2.10) becomes
valid and we have

(p ) s(x)(0) s&g(0)d 0'
(2.14)

bc
C i j

where s„—=(P, -P,)' and s„—=(p, -p,)'. Consistency
of this expansion with the single-Hegge result
(2.12) in the small-x region where
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J.';(., p,);.g~; (p,').~"'-"'"'. (2.16)
j

The terms with o.,(0) & o.;(0) lead to singularities
in the PI;. To interchange the order of the inter-
gration with the limit in s in (2.13), we have to
assume that such singularities are integrable or
their contributions can be separated. Even granted
this can be done, we see a suggestion in (2.16)
that terms in (2.12) with low intercepts will be
important at x=—0 so that the expansion (2.12) con-
verges slowly in this kinematic region. Of course,
the isolated point at x=0 has anomalous energy
behavior

0'
(p 2)S C& 0 +(XJO 2 1 (2 17)d'p, „,

x = 1 —O(1/s) (2.19)

we can pick up a spurious s dependence from sin-
gularities in'P~~'(x, pr) in this limit. " Assuming
these spurious s dependences can be isolated, we
can interchange the order of the integral and the
limits on the asymptotic expansion and identify
similar powers of s,

Vi Xf & i ac +2 ~i bc

where
(2.20)

p,'; = d'pr dxP,';(x, pr) . (2.21)

There are limitations to the validity of these ex-
pressions. Cuts are known to be important in the
analysis 2-2 reactions where they invalidate fac-
torization properties of amplitudes predicted on
the basis of pole dominance. " The factorization
implied by the manner in which (2.20) is written
might therefore be wrong even if there is a match-
ing of similar powers of s in (2.13). An interesting
fact which follows immediately from (2.20) is that
if the contribution of a single Begge pole or of an

but this does not contribute a finite amount to the
integral.

Similarly, in the region x —= I, we have the triple-
Regge expansion

&(p ')(1-~)"'"' '"""'(s/s )"'"' 'd Q'

d p c

(2.18)

so that the coefficient P' (x, pr) can be singular at
x=1 as well. Practically, this is of interest main-
ly for the case when b and c are the same particle
so n& can be a Pomeranchuk singularity. Since

exchange-degenerate set of Regge poles to the total
cross section vanishes, we have

0 =g (r' P.';+ r' P';)—
C C

(2.22)

C. The Data on Energy Fractions

Published data" ' on invariant cross sections
as a function of the Feynman scaling variable
x= 2PLs' ' provide us with an opportunity to test

The sum over the contributions of that pole or set
of poles to all inclusive single-particle spectra
must then vanish. Some early analysis of discon-
tinuities of 3-3 amplitudes' '" ignored these con-
straints and predicted that each term in the as-
ymptotic expansion (2.13) would be positive so that
scaling is approached from above in all reactions.
From expressions like (2.22), we now know that
there are certainly some Regge terms which are
negative in the fragmentation region. '4 In some
reactions such as NN and EN scattering, the high-
est non-Pomeron exchanges, the p-f-&u-A„ap-
proximately cancel in their contributions to the
total cross section. For the sum of these poles,
the nonleading corrections of O(s '~') to the in-
clusive cross sections must satisfy the constraint
(2.22). If these meson exchanges produce the dom-
inant nonscaling contribution to (2.12), then the
sign of the meson term in (2.13) for a given con-
stituent c will determine whether the fraction of
energy carried off by c is increasing with energy
or decreasing with energy.

If there are some trajectories which decouple
from all total cross sections but which are impor-
tant in the approach to scaling of inclusive spectra
such as the Q trajectory proposed by Chan Hong-
Mo, then we again have the constraint (2.22) for
the couplings of these trajectories. Although
(2.20) and (2.22) are written down for integrated
quantities, the proposal has been made" that
(2.13) is satisfied "semilocally" in x and pz, so
that constraints (2.20) and (2.22) are approxi-
mately valid with P,',—replaced by P,',—(x, pr).

Finally, we point out that if cuts are not able
to be simply accounted for by "effective poles"
but the continuous spectrum of powers and (Ins)
factors are important in the Regge expansions of
Ed'o/d'p in the fragmentation region (2.12), then
we no longer gain any essential information by
requiring that the coefficients of a given s behav-
ior on the right- and left-hand side can be matched.

In writing the Regge expansion (2.12) we have
explicitly included energy scales by writing the
energy factors in the form (s/s, ), where s, depends
on the mass of c and other kinematic features of
the process. In Sec. III we will „I.ve an argument
based on the IEM fixing this s,.
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the Mueller-Regge ideas about the approach to the
asymptotic values of the energy fractions. The
integrals over d'P~ and dx can be done in order to
obtain the energy fraction (2.8). This provides a
simple estimate of the approach to scaling of the
various constituents. As is evident from the dis-
cussion above, it is not a substitute for a more
detailed study of the approach to scaling onspecific
regions of x and p» but it does provide information
which is useful because of the constraints of the
sum rule (2.3). We are now going to restrict atten-
tion to PP collisions where the widest energy range
of data is available. %ithin the errors on the
available data on inclusive spectra, it makes
sense to approximate o„, by

a„~(s) =40 mb

over the entire energy range, sw (13,3000) GeV'.
This simplifies the Hegge interpretation (2.13) and
allows us to divide through a o;„as in (2.8) and
still expect a Regge-like behavior of the energy
fractions (2.8). The energy fractions for P, v',

m, K', K, K„A, and P produced in PP collisions
are given in Fig. 1." ' The most striking feature
of this graph is the fact that only the proton frac-
tion is dropping to its asymptotic value. Since the
final-state protons take the largest share of the

energy, this fall is sufficient to account for the
rise in the share of energy for all the other par-
ticles. In Sec. III we will discuss a simple inde-
pendent-emission model which gives a "kinematic"
explanation of this facet of the data in terms of the
leading particle effect observed in the exclusive
components. Nothing in the Regge-Mueller anal-
ysis tells us that the approach to scaling for all
the produced or nonleading particles should be
uniformly from below.

Figure 2 shows the energy fractions for p, z',
and m plotted against s ' '. Under the assump-
tion that the dominant corrections to the asymp-
totic values are given by meson exchanges with
o.„(0)= —,', these fractions should approximately
fall on straight lines from (2.12) and (2.13). The
figure shows that it is possible that the dominant
corrections are of the form s ' ', but the errors
are too large to conclude that other terms are
negligible. In the analysis in Sec. III we will see
that we expect terms of O(s ') to be important.

%'hen a complete set of final particles has been
detected, we can "test" the sum rule (2.5). Since
in current data some particles cannot be detected,

0.4—
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0.2—
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O. l IO
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FIG. 1. Experimental values of energy fractions in
pp collisions. The data on inclusive X distributions can
be found in Hefs. 19-24. Errors include estimates of
extrapolation errors in instances where the inclusive
distribution was not measured over the entire kinematic
region. Hand-drawn curves are to guide the eye.

IO

I 3 5 IO

I/2
(Gev)

FIG. 2. Values of energy fractions for pp-p, pp —7I+,
and. pp & plotted against s . Under the assumption
that the approach to scaling in the fragmentation region
is predominantly controlled by meson exchanges with
o.'~(0) =—2, this should be approximately linear.
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TABLE I. Energy fraction carried off by neutrons in

pp collisions, assuming that 7t
's and n 's take off the

bulk of the unobserved energy and g„o =~(g„+ + g~-).

24 GeV/c ISR

0.10+ 0,02 0.12 ~ 0.04

a more meaningful utilization of (2.5) is to deter-
mine the energy dependence of the energy fraction
carried off by the unobserved particles. Assuming
that the only important omissions from Fig. 1 are
wo's and n's and that

as occurs in some models, we can determine 1I„(s)
from (2.5}. This gives q„(s} in Table I. The
errors are large but it appears likely that pp- n

approaches scaling from below or that there are
other important neutral constituents.

One point has to do with the variable in which
scaling is achieved. The inclusive spectrum
pp-1/' attains its asymptotic value very rapidly"
in terms of the variable

x'==~= p:.
P +max

PL
4 2)1/2

x
(I 4~ 2/s)1/2 (2.24)

However, it is clear from the definition of the en-
ergy fraction that we want the integration over x
rather than x' in order to define q, in (2.8), so we
do have an s dependence for the energy fraction
carried off by n" s.

Imf(s-channel resonances)

=—Imf(t-channel Hegge poles),

(2.25)
Imf (s-channel background)

—= Imf(t-channel Pomeranchuk exchange).

The equality is in the sense that at fixed t, semi-
local averaging over regions in s will produce
cancellations in finite-energy sum rules. " The
absence of resonances in exotic channels such as
PP and KP then leads to patterns of exchange de-
generacy among the non-Pomeranchuk t-channel

D. The Harari-Freund Hypothesis

Many features of 2-2 scattering data can be neat-
ly and simply expressed in terms of the relation
conjectured by Harari and Freund' between s-chan-
nel resonances and crossed-channel Regge poles:

Regge exchanges. This hypothesis leads to a
natural interpretation of the fact that for exotic
channels, the total cross section is approximately
constant over a wide range of energies. Since the
resonance contributions to total cross sections
should be positive, this also helps to explain why
total cross sections for nonexotic processes ap-
proach their asymptotic forms from above. In ex-
otic channels the Regge-pole contributions are pre-
dicted to be largely rea~ and incoherent with the
Pomeron so that little structure in do/dt is expect-
ed, while in nonexotic channels dip structure is
expected. The systematics of this prediction are
also verified by experiment. " Finally, the form
of elastic polarizations constitutes another success
of this scheme.

All of the predictions of the duality scheme are
not successful, however. Polarization in w p-g'g
and KV-mA, wZ presents problems. The necessity
of bringing in exchange-degeneracy breaking ef-
fects, usually Pomeron-Regge cuts, at some level
is recognized. The empirically observed system-
atic pattern

do' do'—(real channel) & —(rotating phase channel)
dt dt

(2.26)

rules out simple models of absorptive cuts but
these relations can be understood in certain "uni-
tarized" dual models. "

The success of the predictions in 2-2 scattering
while not unqualified" has led to attempts to gen-
eralize or extend the scheme into the analysis of
inclusive cross sections.

The first suggestion presented was based on the
idea that the K2 discontinuity in (2.10) could be
separated into resonance contributions and back-
ground in a manner similar to (2.25). This sug-
gests that a criterion for "early scaling" might be
that abc have exotic quantum numbers. ' However,
this suggestion was questioned by others who

pointed out that resonances in other channels could
produce some energy dependence. ' The general-
ization of the Freund-Harari hypothesis to inclu-
sive distributions has proved therefore to be not
completely straightforward. The only complete
formulation of duality incorporating some form of
diffraction is the generalization of the Veneziano
model to dual loops. This led to attempts to use
dual-loop diagrams to keep track of the quantum
numbers and formulate appropriate criteria for
early scaling. There are two slightly different
interpretations of the loop-graph model for vac-
uum exchange which lead to slightly different con-
clusions. It should be noted that Tye and Vene-
ziano" have combined this type of analysis of dual
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graphs with a study of the constraint of the sum
rules and shown that the apparent negative sign of
the leading correction terms for nonleading par-
ticles in PP scattering can be accommodated within
the framework of dual models.

In terms of an analysis of the quantum numbers
of abc, we note that both PPP and PP n channels
are nonexotic. If the original consideration of
Chan Hong-Mo et al. ' about the contributions to the
discontinuity in SK' remains valid for nonexotic
channels, these distributions should both drop to
their asymptotic values in the fragmentation region.
The behavior of the fraction q~(s) supports this for
the proton, but the fraction q„(s) obtained by as-
suming the unobserved particles were predom-
inately m" s and n's, and q, o=-,' (g,+ +q, -) in Table
I is consistent with being constant or rising. The
errors are, of course, large. A more accurate
analysis and a test of the assumptions seem
appropriate as well as experiments detecting neu-
trons directly.

III. THE ENERGY SUM RULE IN
INDEPENDENT-EMISSION MODELS

To supplement the analysis of the approach to
scaling in terms of the Begge behavior of a 3-3
amplitude, we can try to understand the energy
behavior of the exclusive components from which
an inclusive cross section is constructed. The
model for the exclusive processes which will be
discussed here is the independent-emission mod-
el."This model consists of phase space weighted
to reflect well-established dynamical features ex-
tracted from data. The treatment of energy-mo-
mentum conservation in an IEM constitutes one
concrete advantage of the approach over other
simple models for exclusive processes. For ex-
ample, a simple multiperipheral model (such as
that discussed, for example, by Arnold)" can be
manipulated analytically to give inclusive distribu-
tions only in the strong-ordered limit. In this
limit the leading particles take almost all the mo-
mentum and the produced, or secondary, particles
are in the central region. If one wants to obtain
inclusive distributions outside the central region
in order to discuss the energy-momentum sum
rules, then Monte Carlo calculations' are nec-
essary in the multiperipheral model.

In contrast, in the independent-emission ap-
proach, the use of analytic approximation
schemes" enables one to incorporate energy-mo-
mentum constraints without the use of Monte Carlo
calculations. In the limit of high incident momen-
tum one can obtain analytically inclusive distribu-
tions valid in the bulk of the kinematically allowed
region. We are, therefore, in a position to dis-
cuss the behavior of the energy fractions(2. 4), (2.8)

A. The Energy Sum Rule and Errors
in Analytic Approximation Schemes

One problem in the straightforward use of ana-
lytic approximation schemes" to obtain inclusive
distributions in an IEM is how to handle the errors
that these schemes contain. The approximation
formulas used involve statistical estimates valid
when the number of produced particles is large
and the effect of the correction terms cannot
strictly be neglected even at the highest available
energies. For example, Chen and Peierls" have
done a detailed comparison of Monte Carlo cal-
culations of transverse phase space with the avail-
able approximation schemes. They find such
schemes introduce important errors in the transi-
tion region between low energies, where the phase
space available is essentially three-dimensional,
and high energies where the phase space is essen-
tially one-dimensional. The energy range over
which this transition occurs depends on the multi-
plicity so there are some consequences for ex-
tracting inclusive distributions. What we would
now like to show is that, in spite of the errors in
the approximation schemes, a simple IEM with
only one type of particle produces a single-particle
inclusive distribution which, at high energy, sat-
isfies the energy sum rule within terms of
O(1/n(s)'). This gives us an estimate of the
accuracy to which we can believe the results on
energy fractions in a system of many constituents.

To illustrate the use of the analytic-approxima-
tion scheme and the energy sum rule, we first
form the generating function

(3 1)

where

We take the Laplace transform of (3.1) to get

Q(z, o.) = exp [ze ( nr, o.~)j, (3.3)

where we have exponentiated the sum in (3.1) with
the understanding that terms in z and z' are not
actually present. In (3.3), a~=(a,' —n, ')' ' and
o.r =(n, '+ u, ')'~' and

and relate this to the approach to scaling of the in-
clusive distributions. From the IEM, we then have
some idea of how scaling is approached as a con-
sequence of kinematic reflections of known features
in the data on exclusive cross sections.
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o(~r, ~,) ~j=~(e~')f(~~I) (~~e,l

XK (n (m'+q ')'~'} (3.4)

so that

P~ P~

The basic approximation in the analytic estimate
of (3.1} is a steepest-descents approximation to
the inverse Laplace transform. In a frame where
P~ is small and P, is zerowe find e~ and 0.»
which give a stationary phase by solving the equa-
tions

(
(cg,)'exp[g, }(P,/cg, )'o '

(2s)'( qr') ln(P„/cg, )

-1—
g,( q ') in(P, /cg, )

(3.10)

(3.11)

In@(1, o.r, c(~) =
( Pr ( .

~ Cl&
(3.5b) The sum rule (2.3) reduces in the case of a single

component to

Q(z, P)=. . .—exp[z4(n, (). j
exp((xg P —o(rP )

x [1+8(z a'r o(l)] ((3.8)

The inverse transform then is approximately
d'q q(i, m~, Pr)
2 r Q(1 )/ 0)

dq, n)( /s c/g, ) m, ')"~' '
2 ln(m ~/cg, ) s

(3.12)

where a~ and n~ are implicit functions of P through
(3.5) and detB= B4» B»B»', where

g,( q„') ln(m ~/c g,)

(3.i3)
(3.Vb)

(3.Vc)

We will evaluate the sum rule (2.3) in the case
where f(qr') is peaked sharply enough near qr'=0
and P, is large enough so that we can use the small
argument expansion of the I, and K, inside the in-
tegral to write

C'(o' r, o.~}= —(g, Incn~+ -,' (xr'g, (qr') Inco.~),
(3 8)

where

ln = ln —+ —,ln(i —x),m, Ws

C8'o Cgo
(3.14)

we have

dx(i- x)'0/' '
g, ln(&s/cg, )

ln(i- x)
2 n()&s/c ))))rP(&s/cg, ))-

(3.15)

In view of (3.8a) and (3.8b) the integral over d(qr')
canbe evaluated. Using (m~'/s} —= (1-x) and

Cr Cr

a;(e ') «f4~m')/(Sr') ~r

golnc= n d q~' q~' y+ln —,
' rn'+@~

The solution to E(ls. (3.8} is then

2P
g, (qr') ln(P, /cg, )

g, (qr') ln'(P, /cg, ) P, '

(3.8a)

(3.8b)

(3.8c)

(3.9a)

(3.9b)

and the terms of O(1/In(v s/cg, )) cancel so the
sum rule is satisfied. To match up terms in
higher powers of (1/lns) we would have to make
more explicit assumptions about the q~' behavior
of f(qr') and solve more complicated expressions
in the E(ls. (3.8). If we are interested in the prop-
erties of strict one-dimensional phase space where
the Laplace transform can be inverted analytical-
ly, Campbell" has shown that the energy sum rule
is satisfied with corrections of O(i/s).

These considerations lend substance to our be-
lief that the normalized inclusive single-particle
distributions in an IEM from analytic approxima-
tion schemes correctly integrate to reproduce the
energy fractions. This has consequences for the
numerical calculation of distributions in more
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complicated IEM's, "'"but it also means that we
can indeed learn something about the approach to
scaling in this model by examining the energy be-
havior of the energy fractions and we now turn to
this problem.

B. A Multicomponent IEM and

Kinematic Features in the

Approach to Scaling

Having examined the energy sum rule in a simple
IEM, we now want to discuss the behavior of the
energy fractions in a more realistic model with
more than one type of particle. As an example,
we will construct a model for the production of
m's and p's and examine the scale for the s be-
havior of g, (s}and qp(s). To simplify, we will
neglect isospin and the production of strange par-
ticles. We will enforce baryon conservation
by constructing a matrix element for the process
PP-PP+nv+m(pp). Since the results will be sim-
ple kinematic reQections of the dynamic features
we input into the matrix element, we have to be
explicit what these features will be. The conditions
we impose here will be:

(1) Each exclusive process conserves the addi-
tive quantum numbers Q, B, 1' and obeys energy-
momentum conservation.

(2) The average transverse momentum of final-
state particles is limited (0.3-0.5 GeV/c) and as-
ymptotically independent of incident energy.

(3) There are two particles of the same type as
the incident particles which carry off, on the av-
erage, half the available c.m. energy.

An additional approximation we make for com-
putational simplicity is to neglect the integrations
over the relative momenta of the pp pair and char-
acterize this process as the production of a mas-
sive particle with Mp„-=2 GeV/c. The modulus
squared of the matrix element will then be of the
form

IM. ,
I'= g f (P; )

'" D f„(q,,)

e.( ) -=g&.( &..&),

&pR«) -=gpRK. (n&K.R&}.

(3.18b)

(3.18c)

Since we are studying the approach to scaling we
do not yet make the small-argument approximation
of K,(x). In (3.18) K, =(m, '+P, r')' ' is the trans-
verse mass and (K,. ) is some average value of this
mass. The important kinematic distinction be-
tween the production of n's and the production of
heavy pairs is just given by

(K,) =0.3 GeV,

(KpR) ™,„2GeV .
(3.19a)

(3.18b)

The behavior of the energy fractions now comes
directly from the equation

n =2k.s ' '[1+c/Ins+O(l/(1ns)')] . (3.21)

The scale o'f the energy fractions

q, (s) -=' ' K,(n(K, )),g.&K.) (3.22a)

n„()-=- ~ K,( &.„&)gpR&KpR&

S
(3.22b)

is therefore roughly determined by 2&(K,)s '~' and
2A(KpR)s

' ', respectively. Asymptotically

2«, («K.&)&K.& „
( ( ))

+g (K )Ky(n(K ))

+gpR(KpR)K, (n(KpR)) = v s, (3.20)

analogous to (3.8) which is used to determine the
stationary phase point for the estimate of the in-
verse Laplace transform. The terms in (3.20) are
readily identified as the c.m. energies carried off
by the leading protons, the m's, and the massive
pairs, respectively. We see that in order for the
leading particles to carry off a nondropping frac-
tion of the energy, we obviously must have $»n.
As discussed in detail in Ref. 5 the solution to
(3.20) is given by

m

x g fpR (Pqr) ~

4=1
(3.16) so

where the f's are again sharply peaked near Pr
=0. In place of the generating function (3.3) we
then have

(~) gpR
PR

(3.23a)

(3.23b)

Q(g„, gpR, n) = [@„(5)]'exp[a,4,(n)+ ppR ppR(n)],

(3.17)

where $ =(n —2&s '~'). We use the sharply peaked
f, (qr) and (3.4) to write

The parameter ~ which sets the scale of energy
not surprisingly appears in the limiting inclusive
distributions for the Vt's and pairs. In this model
(2.1}is

(3.18a) f (x, s)--,'g, e-'~"~ (3.24a)
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yPR (x &) &+ e-x (x[ (3.24b)

Using (2.8), we see that Eq. (3.24) can be inte-
grated to give (3.23) provided e «1. The empir-
ical observation of steep slopes for inclusive p',
m, K, K„and p distributions then indicates that
A is very large. The best value is around X= 5.'
This means that 2A(g, ) =3 GeV and 2A(g~„) =20
GeV. We have to reach a c.m. energy much above
20 GeV before we can expect an approach to the
asymptotic value of gp„.

Figure 3 shows the behavior of g and g~„when
(3.20) is solved numerically. The fractions are
normalized to q, (~) = 0.1 and q „(~)= 0.013 and
are compared with the data on q, =-,'(q, ++q, -) and

g „=2@~ taken from Sec. II.
We see from Fig. 3 that these simple kinematic

considerations are all that are needed to explain
the order-of-magnitude change of g~ from P„„=24
GeV/c to ISR momenta, while being consistent
with the rough features of the energy dependence
of q, (s). Certainly, at this level of sophistication
we do not expect to understand more complicated —= 100(g,) ' . (3.25)

features such as the difference between the ap-
proach to scaling of m' and m . The production of
KI7 pairs ((~xr)~ 1 GeV) can also be treated in the
same way as pp pairs in this approach and we get
the right magnitude of the scale for the approach
to asymptotic behavior of pp-K.

An interesting point to note from Fig. 3 is that
q~ (s) is roughly 60% of its asymptotic value at
ISR momenta. This is consistent with estimates
of the s- ~ value of f~~~(x, pr, s) obtained by re-
quiring f~~~(0, pr, s) —f~»(0, pr, s) -0 and noting that
at 1&R f',,(0, pr, s) =2f~»(0, pr, s). A tentative con-
clusion is that the observed approach to asymp-
totic behavior of f~~~(x, pr, s) is completely con-
sistent with what is expected as a kinematic re-
flection of known dynamics, namely limited trans-
verse momenta and the leading-particle effect.

If we write the nonleading corrections to q, (ne-
glecting logarithmic factors) in the form (s/s, ) ',
we then have

s, = 4x'(~, )'

O. I

w2
10

10

—C PC
I h4 I I I

The leading-particle effect represented by the pa-
rameter A, crowds produced particles into the cen-
tral region and the phase space available to them
grows slowly. The fact that this simple para-
meterization gives a reasonable description of the
leading-particle effect is therefore crucial to our
argument of the existence of a scale. We note here
that this method of incorporating the leading par-
ticle effect has been found to give a good descrip-
tion of the average proton energy as a function of
charged prongs. ' The form of the inclusive dis-
tributions (3.24) is in approximate agreement with
data and therefore it is perhaps not surprising that
we get such a dramatic energy dependence for pp-p purely from kinematic reflections.

IV. SUMMARY AND CONCLUSIONS

10
4

10

I ( I I I tll

I/2
s (Gev)

100

FIG. 3. The curves are the energy fractions for m's

and pp pairs calculated by solving the IEM equation
(3.20). The coupling constant gpR is determined by
matching with g& at P»b =24 GeV/c. The data shown
are p„=2 ( Z„+ + Z~-) and ppR = 2&@ from Sec. II. The
order-of-magnitude rise of g& between P»b =24 and
ISR momenta is understood in terms of the kinematic"
features of the IEM.

The main result of this paper was the presenta-
tion of the c.m. energy fractions for pp collisions
extracted from data on inclusive cross sections.
These energy fractions are useful in discussing
the approach to Feynman-Yang scaling. In our dis-
cussion of the behavior of these energy fractions
we found an example of the complementarity of the
Mueller-Regge and the exclusive component ap-
proach to inclusive reactions. The features of the
data are consistent with an analysis assuming
forms of Regge behavior in the discontinuity of a
forward 3-3 amplitude but we do not have any
feeling for the comparative size or the sign of the
various terms in the asymptotic expansion. Turn-
ing to a model for the exclusive cross sections we
find an explanation of the fact that pp- p is falling
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to its asymptotic value while other spectra are
rising. The leading particle effect observed i.n ex-
clusive final states is shown to set an energy scale
for the approach to asymptotic behavior of the en-
ergy fractions. This scale explains quantitatively

the approach to scaling of both pp- r and pp- p.
Note added in proof. A similar discussion of the

threshold rise of the P yield has been presented by
H. Jengo, A. Krzywicki, and B. Petersson, Phys.
Lett, 438, 397 (1973).
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Energy Commission.
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