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We discuss the behavior of the e*e™ total annihilation cross section into hadrons in a class
of non-Abelian vector gluon theories. Using the quasi-free-field behavior of these theories in

the deep Euclidean region, we show that the asymptotic behavior of 65t "

is that of the parton

model. Nonleading corrections fall off relative to this leading term like inverse powers of
logarithms with calculable coefficients. The problem of making more detailed statements

about the final state is discussed.

A very interesting calculation has recently
been done by Politzer,' Gross and Wilczek,? and
’t Hooft.> They have demonstrated that for a large
class of non-Abelian gauge theories, the point g=0
is an ultraviolet-stable fixed point of the renormal-
ization group.* This means that these theories can
exhibit quasi-free-field behavior in the deep Euclid-
ean region. Scaling up to logarithmic corrections
occurs with the leading terms given by a one-loop
perturbation theory calculation.

These theories are obviously attractive models
for strong interactions providing some mechanism
can be found to avoid the catastrophic infrared
problems® of the gauge-symmetric theory while
preserving perturbative renormalizability. Spon-
taneous breakdown via the introduction of scalar
mesons and the Higgs mechanism is one obvious
solution, but the necessary additional coupling
constants can lead to a destabilization of the ori-
gin.® The possibility of a dynamical spontaneous
symmetry breaking” is an attractive alternative
but cannot be discovered perturbatively. In ultra-
violet-stable and hence infrared-unstable theo-
ries, this is a strong-coupling problem probably
as difficult as the calculation of short-distance
behavior of theories with an ultraviolet-unstable
origin.

In this note, we will discuss some physical con-
sequences of ultraviolet stability which depend only
on the short-distance behavior and not on the de-
tails of the spontaneous symmetry breaking and
the mass-shell structure. In particular we dis-
cuss the behavior of the e*e” total annihilation
cross section into hadrons: the leading scale-
invariant term and the calculation of the next-to-
leading corrections. We also discuss the problem
of making more detailed statements about the final
states in this process and the extension of this
work to electroproduction.

Consider a non-Abelian gauge theory of the
strong interactions involving multiplets of fer-

mions as in the colored-quark model.® We assume
that the generators of the strong gauge group com-
mute with the electric charge, so that the strong
gauge fields are neutral. If the weak interactions
are described by a unified gauge model, we re-
quire that the full weak and electromagnetic gauge
group commutes with the strong gauge group. For
example in the colored-quark model, we can take
the strong gauge group to be SU(3) on the color
indices.

As discussed in Refs. 1 and 2, the renormaliza-
tion-group equation for the gauge coupling constant
gy defined by renormalizing at momentum X is
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where m is the mass scale of the fermions. The
constant b is positive for a large class of Yang-
Mills theories. In a theory without Higgs mesons,
b ist

1
b =i‘g;z'(13-501 - 3c5), (2)

where ¢, and ¢, are defined in terms of the struc-
ture constants of the strong gauge group ¢ and
representation matrices 7%, of the fermion mul-
tiplets:

facdfbcd = Claab ] TrTaTb = Czéab . (3)

Integrating Eq. (1) gives
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providing that the Gell-Mann-Low function® re-
mains negative up to g, =g =strong coupling con-
stant.

To connect this behavior to 0%,°”, we consider
the renormalized hadronic vacuum-polarization
tensor

D, (k) =(kyk, - g, F)D(K*/m?, &%),
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with
< dM? T(M?)
n2 M2 BB =MP+ie’

D(kZ/mz’gz) =k2

The absorptive part l'I(Mz) is proportional to o%,°”

161r o? Ll (6)

ot (k%) =
We begin by writing a renormalization-group equa-
tion® for D(K*/m?, g%). If D(K*/A%, m%/A%, g,?) is the
analogous function computed by renormalizing at
some Euclidean momentum point A, it can easily
be shown by making use of the electromagnetic
Ward identity that

¥ ¥ m? m?
D(W,gl) =D<F’F’gka> +K ?)7 (7

where the momentum-independent term K is sim-
ply the difference between making the over-all sub-
traction at #* =0 or k*=-2% Differentiating Eq. (7)
with respect to £* and setting 2% = -2%,

3 A2 m?
AQWD<—;n—5,g2> =ll)(gx2)+0<‘{z'> ) (8)
where

W) =3=D(=%,0, £,) ©)

%=1

and use has been made of the existence o_f the zero-
mass limit when renormalization is performed at
a Euclidean point.’° In perturbation theory

P(x) =A(l+Bgy*+:-+), (10)

with the constant A being given by a simple one-
loop calculation. The calculation of the constant B
involves the two loop graphs of Fig. 1 and is non-
trivial. This, however, is essentially the old Jost-
Luttinger calculation'! in quantum electrodynamics.
The result is

3
B =T6_172 Cg, (11)
where
T%,T%,=Csbsp (12)

By using the asymptotic behavior of g,% given by
Eq. (4), the large-)® behavior of D(-2*/m?, g2) can
be found by integrating Eq. (8). This is in turn
related to the asymptotic behavior of 02,°” through
the spectral integral representation. Alternative-
ly, one can simply take the discontinuity of Eq. (7)
and evaluate it at 22 =+A%. The result is

H<>\:,g> (1, 0 gx)+o<7;>

yvo(22),

(13)

=constx(1 +Bgy? +
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FIG. 1. Graphs contributing to the constant B.

where B is the same constant that appears in Eq.

(10). The leading and nonleading terms in ¢2}¢~

can now be written down using Eqgs. (4) and (8):

® (%) ’4;:;2 (E @ )l: ln(kz/mz) } ’
(14)

where 3; @, is the sum of the squares of the fer-
mion charges in units of ¢ and
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Thus one finds a slow (logarithmic) approach to
an asymptotic scale-invariant form given by the
naive parton model.’? Note that the positive con-
stant C is coupling-constant-independent and
(thanks to the Jost-Luttinger calculation) given
purely by group theory. For the example of three
triplets of fractionally charged quarks

ZQ{2=23

c, =3, Cz=;'7 03'—'%, (16)
=4
5.

Additional corrections to of:te- can be calculated
with enough work. The next correction is of the
form In(ln%?)/In®k? with a coefficient given by the
2»° (two-loop) correction to Eq. (1). Sitting under
the logarithmic corrections are polynomially sup-
pressed terms starting out like [(k?/m?) In(%?/m?)] %
Thus the picture that emerges here is one of three
energy regions: first the low-energy region where
E? <m? (with m taken to be on the order of hadronic
masses), then a region of logarithmic energy vari-
ation, and finally the scale-invariant result emerg-
ing at high energies.

Can one say anything about ¢*e~ hadrons beyond
the behavior of the total cross section? In general
the answer is no, at least not without learning (or
postulating) a great deal more about these theories,
since statements about n-particle cross sections,
multiplicities, momentum distributions, etc., de-
pend upon their long-range or mass-shell struc-
ture.

One feature of the final states which is part of
the traditional parton-model folklore is the exis-
tence of jets. In our results, the leading, scale-
invariant term in 0%,°” corresponds to the produc-
tion of two “bare” partons which subsequently de-
velop into physical hadrons. It seems reasonable
to conjecture that each bare parton is the nucleus
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of a jet, but details of transverse-momentum dis-
tribution and the quantum numbers of the jets are
beyond the scope of short-distance physics.

Even if an asymptotic two-jet structure does
emerge, it will probably only do so at very high
energies. The logarithmically suppressed terms
in 0¢;°” correspond to the production of more than
two bare partons. For instance, the graphs in
Fig. 1 may contribute to a three-jet structure. It
seems very unlikely that in this “logarithmic” en-
ergy range any sort of jet structure would actual-
ly be observed.

An analysis similar to the one given here can
also be applied to inelastic lepton scattering. This

is a more complicated problem and not as directly
accessible by these techniques since it is not a
short-distance effect. It involves one on-shell par-
ticle (the target hadron) and large longitudinal dis-
tances. Progress can be made by using Wilson’s
operator-product expansion for the two lightlike
separated currents. Renormalization-group equa-
tions can be written down for each term in the ex-
pansion which in turn is related to a structure-
function moment. This formalism has been de-
veloped for example by Christ, Hasslacher, and
Mueller® and can be used to analyze these theories
with ultraviolet stability at ¢=0.

*Work supported in part by the Air Force Office of
Scientific Research under Contract No. F44620-70-C~
0030.

4. David Politzer, Phys. Rev. Lett. 30, 1346 (1973).

’David J. Gross and Frank Wilczek, Phys. Rev. Lett.
30, 1343 (1973).

3G.’t Hooft, unpublished paper announced at the Mar-
seilles Conference on Gauge Theories, Marseilles,
France, June 1972.

4For a general discussion of the role of renormalization-
group fixed points in strong interactions, see K. G.
Wilson, Phys. Rev. D 3, 1818 (1971). The only other
known examples of ultraviolet stability at the origin
are theories with no lower bound to the spectrum such
as the ¢? theory in six dimensions and the ¢* theory
with negative coupling constant.

5Unlike quantum electrodynamics, these problems can-
not be solved by simply taking care to calculate only
measurable things. S. Weinberg, Phys. Rev. 140,

B516 (1965).

8A discussion of this point can be found in Ref. 2.

"H. Pagels, Phys. Rev. D 7, 3689 (1973); R. Jackiw

and K. Johnson, Phys. Rev. D 8, 2386 (1973).

8. Bardeen, M. Gell-Mann, and H. Fritzsch, CERN
Report No. TH1538, 1972 (unpublished).

M. Gell-Mann and F. Low, Phys. Rev. 95, 1300 (1954).
One can equivalently use the language of the Callan-
Symanzik equations [C. Callan, Phys. Rev. D 2, 1541
(1970); K. Symanzik, Commun. Math. Phys. 18, 227
(1970)]. -

10T, Kinoshita, J. Math. Phys. 3, 650 (1962); T. D. Lee
and M. Nauenberg, Phys. Rev. 133, B1549 (1964).

UR. Jost and J. M. Luttinger, Helv. Phys. Acta 23, 201
(1950). -

12N, cabibbo, G. Parisi, and M. Testa, Nuovo Cimento
Lett. 4, 35 (1970).

3N. Christ, B. Hasslacher, and A. H. Mueller, Phys.
Rev. D 6, 3543 (1972).



