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General and rigorous methods for testing ordinary and average mÃ forward-dispersion relations using

experimental data at finite energy are given. Using the total cross-section data up to 60 GeV, it is found that
the energy variation of the real part of the symmetric forward amplitude is compatible with experimental
data in the 8—20-GeV region. The magnitude of the real part in this energy range cannot be strictly tested
without total cross-section data from the National Accelerator Laboratory. An average upper bound for the
sum of m+p and n p total cross sections in the range of 60-500 GeV is given, which can be used as a
rigorous test of the dispersion relation. General and rigorous methods are also given for the determination of
low-energy parameters. It is shown that the m2V coupling constant can be determined in principle to better
than 1%. Low-energy data with great precision are required from pion factories for an accurate
determination of all mlV low-energy parameters.

I. INTRODUCTION

One of a few physically interesting results in
particle physics which can be derived from axiom-
atic field theory is the forward dispersion rela-
tion. It is of great importance therefore to con-
front the dispersion relation with experiments.
However, it is difficult to test the dispersion rela-
tion for the following reasons:

(i) The total cross sections must be known at all
energies from the threshold energy up to infinity.

(ii) An assumption of a smooth behavior for the
total cross sections is required in carrying out the
principal-part integration.

The second point can be minimized by consider-
ing instead an averaged forward amplitude over an
energy interval. The result is essentially the
same as that obtained from the ordinary dispersion
relations, assuming smoothness for the total cross
sections. Depending on the situation, in this paper
we shall use both the ordinary and average dis-
persion relations.

The first point is much more difficult to handle.
From the axiomatic field theory we know very
little about the high-energy behavior of the for-
ward scattering amplitude. Although the Froissart-
Martin upper bound' for the total cross section,
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is reasonably good, it tells us neither at what en-
ergy this bound becomes effective nor what the
scale in the ln's term is. The lower bound is
much worse; all we know is that
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For the above reasons, we cannot use these
bounds directly to analyze the dispersion relation.
The usual method of testing the dispersion rela-
tion consists of using the experimental data for
the total cross sections up to the maximum avail-
able energy and of extrapolating the total cross
sections to infinite energy by some model, e.g.,
the Regge-pole model. Judging from the published
results ' obtained with wildly different high-energy
assumptions for the total cross sections and with
the same input for the real part of the forward
amplitude, we can conclude that these results re-
flect more a test of the acceptable assumptions on
the asymptotic cross sections than a test of the
dispersion relation. This will become clear as
discussed below.

In this article we shall not make any assumption
on the total cross section beyond the maximum en-
ergy which can be attained by accelerators. The
Froissart-Martin bound is used only to establish
the maximum number of subtractions needed.
Making use of positivity of the total cross sections,
we give obvious but strict inequalities which can
be used to test the dispersion relation without any
ambiguity. The method used is quite general and
is suitable for planning future experiments at the
Serpukhov and National Accelerator Laboratory
(NAL) accelerators.

The paper is organized as follows. In Sec. II we
give different methods for testing the m'p forward
dispersion relation at high energy. Starting with
the dispersion relation for Ref '(ur) we show that,
for the case in which the real part of f'(~) is mea-
sured at energies which are small compared to
the maximum energies at which the 71'p total cross
sections are available, strict lower and upper
bounds for the high-energy dispersion integral (to
be defined below) at one energy can be obtained in
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terms of that at another suitably chosen energy
(i.e., tests of the energy variation of the real
part). This enables us to test the dispersion rela-
tion for f z(to) [defined as 2f'((d}+ 2f ((d)] or for
both f'(~) and f ((d) separately by expressing the
lower and upper bounds of Ref z(&u) or

Ref�'((d)

in
terms of the finite dispersion integrals and the ex-
perimental value of Ref'(&u) at another suitably
chosen energy.

The above method can be applied at present to
the case where

Ref�'(v)

have been measured in the
region 8-20 QeV and the m'p total cross sections
measured up to 60 GeV.

We next show that a more stringent test of the
dispersion relation is to compare the predicted
energy-weighted average total cross sections in a
high-energy interval, say, between 60 and 500
QeV, with the future experimental data to be ob-
tained at NAL. We then extend the above analysis
to the energy-weighted average amplitude taken in
some energy interval to avoid the difficulty with
the principal-part integration.

In Sec. III, we give a similar analysis of the dis-
persion relation in the low-energy region. Ap-
proximate sum rules with predetermined pre:-
c isions (i.e., bounds) for Ref2 (&u) and Ref„(~)
(Ref„((d) = ,'[Ref'(—(d)—Ref (~)]) are given in
terms of finite dispersion integrals. These sum
rules can be used to determine accurately the m'N

s -wave scattering lengths and the pion-nucleon
coupling constant.

Ref'(~) =Ref2(i1)~ —Ref„(p)

q' d (v &'((d') cr'((u') '

4K
p g —(d 4P +(d

where i1 is the pion mass and f' is the charged
pion-nucleon renormalized coupling constant.
o'~((()} are measured in units of mb, Ref '((d) and
Imf'((d) in units of p,

' (1p, ' =1.41 fm and 1p. '
=20 mb).

Let us introduce the following notations
[Ref2, ~(&) = f2, ~(&}]:

Ref '((d) =f (P)+ f (P)

2 f2 i12 -1 —
q2

P,
2 4M' &1) W (i12/2 M)

+ z'((o) +I'((d), (2)

As a consequence of analyticity, crossing sym-
metry, and the Froissart-Martin bound, f'(v)
satisfy dispersion relations with at most two sub-
tractions. Thus Ref '(&u} are given by

II. TEST OF DISPERSION RELATION AT HIGH ENERGY

A. Dispersion Relation for m' p Forward Scattering Amplitude

Consider the w'p forward scattering amplitude
f '((11) in the laboratory system, defined as

f'((o) =Ref"((u)+i Imf'((d).

The imaginary parts Imf '((d) are related to the
m'p total cross sections by the optical theorem:

Imf'((d) = q v'(~),
4m

where ~ is the energy of incident pion with mo-
mentum q [~ = (q'+ p2)'i'] and o'((d) are m'p total
cross sections in the laboratory system.

We now introduce the crossing-even and -odd
amplitudes f2 and f„, defined, respectively, as

+ Z2 (u) ) +I2 ((d),

2~f, (~) =(—„)If,(~)

2f 2 ~2 -1 —
q2

p, 4M' (()2 —((L12/2M)2

(4)

+ J'„(&u) +I„(&u)

In terms of the crossing-even and -odd amplitudes,
we have similarly

f2 i12 -1 q2

M 4M' &u' —( '/2M)'

f&(~) =2[f'(~)+f (~}].
f&(~) =-'[f'(~) -f (~)],

and the corresponding quantities

~, (~) =2[~'(~)+~ (~)],

V„(ur) =-2' [V'(~) —V (ur)] .

12((()) =2 2 ~ ~I2 ~2 & S(~ }~

g„(al) =—.p Jr (—,) „,tr„(ld'),

(6a)

(6b)

(6c)
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q p. dq4((u) =2„2 ~i ~12 ~~op((u ) ~ (6d)
Equation (7) implies that

where co&~ and N is the maximum energy at
which the data on o'((u) are available (cutoff ener-
gy). Z((u) and I((u) are called the cutoff and high-
energy dispersion integrals, respectively. For
convenience, we have made a change of variable
(u'- q'= ((u" —p')'" in the integrals.

Having these preliminaries out of the way, we
now have to find a method for testing m'p forward
dispersion relations given above.

I ((u, ) I ((u, )
2

—
2 (Sa)

and

I, (~.) I.(~,) q.' —q,
' I.((u, )

q2 qg cv —qg q2

Is~ ~ls~x ~~ Is~2 ~

Hence it follows from (Sa) and (Sb) that

B. Bounds on High-Energy Dispersion Integrals

1. Bounds on Is ((u)

Consider the high-energy integral Is((u). It is
easy to see that Is((u)/q' is a monotonically in-
creasing function of the variable q. More ex-
plicitly, we have' for q

I, (~,) Is(~, ) (q,
' —q, ') " ~.(~')dq'

(7)

2. Bounds on I'((u)

Similarly, one gets the lower and upper bounds
for the high-energy dispersion integral I'( ()uby

noting that I'((u)/q is an increasing function of q
since a's a ((u/(u')o„ is always positive in the range
of integration ((u&(u'). For (u in the high-energy
region ((u» )((,}, one can set (u =q. Now consider
the expression

I ((u~) I ((u~) q2 —q~ dq, 2 ~ q~ +q2
(~(2 ~ 2)(~i2 ~ 2) q +q)q2)os +

q, N 2

which can be written in the following form:

I'((u, ) I'((u, ) q, —q,
" dq'[(q, q, —q")os+2q"o, + (q"/(u')((u, +(u, )o~]

For ~, ~ ~, , since

—qg

q=q q2
q —q Zv —q

we obtain

I'((u, ) I'((u ) I ((u, ) I'((u, ) I'((u, )

q2 q) — A q2

I'((u, ) I'((u, ) N' I'((u, ) A I'((u, ) Is ((u ) q, (q —q, ) Is ((u, ) (12b)

Hence it follows from (12a) and (12b) that

y(~) ((
0 A)(C )

I'((u, ) & —' —' I'((u, )+ 1 ——' Is((u, ) . (13b)
V2 q2.

From here onward let us define

2 2

e ((u„(u,) = q2
N -q,

2 2
C02 —QP~

N -q»

Inequalities (13a) and (13b) are valid for both the
m'p and n p high-energy dispersion integrals. By
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applying (13a) and (13b) to the symmetric high-
energy dispersion integral

Is(s), ) =2[I'((o,) + I ((o,)]

we get back inequality (9).

3. Bounds on I„(u&)

Strict inequalities similar to Eqs. (9) and (13)
cannot be derived for the high-energy dispersion
integral I„(&u}since there is no positivity condition
for o„(&u'). However, I„(&u) can be bounded in
terms of measurable quantities as follows:

where we have used the obvious fact that ~o„(&u) [
& os(g).

Between two points +,& ~, one can also have the
following inequality:

I~(+i) Ix(+2)
&

t Iz (w2)

from which we deduce that

I~(~,) & I„((o,) — —e ((u„(u, )Is ((u,),A I
q

A 2

I„(+,) & —' I„(&u~) + —e (&u» cu, )Is (&u2)

(16b)

As will be shown below, inequalities (14)-(16)can
give a useful limit on I„(&u) in certain cases,
especially when y/N«1 and &u is not too large.
This is particularly important since there is no
alternative way of learning about I~(&o) except by
measuring the total cross sections up to infinity,
which cannot be done.

C. Application

1. Test of Energy Variation of Is(&u) and I'(&u)

as Predicted by DisPersion Relation

The usefulness of inequalities (9) and (13) lies
in the fact that for ur, , ~,«N, e (e, , ~,) becomes
very small compared to unity, so that the differ-
ences between the lower and upper bounds for
Is(&u, ) and I'(&u, ) are small. More explicitly, this
difference [Ms(e, ) or M'(~, )) satisfies

4 Is (4pq) 6 ((dq, (d2)

Is(&o, ) 1 -e (e, , &u, )

and

ai'(~, ) e (&u, , &u, )
I ((d~) 1 —t (~A~, hl~)

(17b)

[1 —e (~, v, )J — &Is(&v) & —Is(&u, ) . (18)

Similarly, for I'(v},

where e (&u, , u&, ) = (v2' —~,')/(N' —q, ') is a mono-
tonically decreasing function of co, (~, held fixed)
and has a maximum when ~, is smallest. To have
an idea of the order of magnitude of aIs (&u)/Is (&u)

[or gi'(e)/I'(&u)], let us take N =60 GeV and
choose ~, co, in the region 8-20 GeV. At 8 GeV,
e(v, e,) =9%, hence in this region e(a&, u&, ) & Ã&&.

Thus in all practical applications, for ~ lying in a
narrow interval, inequalities (9) and (13) enable
us to determine Is(e) or I'(v) in terms of its value
at another suitably chosen ~„depending on the
accuracy required and on experimental consider-
ations. Thus, if the dispersion relation is valid,
the high-energy integral Is (~) should lie in a nar-
row region defined by the straight line Is((u, )(q/q, )'
and the curve Is(&u, )[1 -e (tu, ar, ) (q/q2)'] plotted
against (q/q, )', with ~& u&, and ur, held fixed. We
have

P I 2

[1-e(~, (o,)] — —I'((u, )+ 1-—Is(u), ) &I'((u) & q q I'((u, )+ 1- q Is((u, )
q2

(19)

One can now test the dispersion relation either by comparing the experimental values of Is(ar) and I'(~)
with the limiting values determined by inequalities (18) and (19) or by comparing the measured values of

He fs(&u) and Ref '(&u) with the lower and upper bounds given by

f2 q
2

Hefs(&) ~ fs(p)+ —+ Js(&)+[1-e ((u, (u, )j — Is(&u, ), (20a)

f2 q
2

Refs(cu) - fs(p)+I + Zs((u.)+ —is(&, ) .

Similarly for Ref'(tu) one gets

(20b)

Ref'(~) ) f (p, )y —f (p)y — 1 -— + J'((o)+[1 —e((u, (u, )] — —I'((ar, )+ 1 -—Is((u,),(2la)
Q'2 q2

Ref'(~) & fs(p)+ —f„(p)+ — 1 —,+g'(~)+ — —I'(&u, )+ 1-—I (&u, s) . (21b)
p,

"
p, p, 4M' q2 q, ' q,
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Since e (~, , ~,) = (&u,
' —&u, ')/(N' —~,') is a de-

creasing function of the cutoff energy N when

~„&,are held fixed, the more we increase the
cutoff energy by measuring the total cross sec-
tions at higher energies, the closer are the lower
and upper bounds for Refs(~). For example, with
N =300 GeV (the NAL energy), ~ in the range
10-20 QeV, co, =20 Qe7, one gets

e(&u, &u, ) ~0.3&&10 ',
which shows that the lower and upper bounds on

I~ (e) and I'(ar) differ at most by 0.3%.
At present the data on Ref '(~) are available' at

energies & in the range 8-20 QeV and the total
cross sections o'(&u') are measured' up to N=60
GeV. The factor e (~, tu, ) at worst is less than 9%,
which is smaller than the errors of the experi-
mental values of Ref '(ar). With these data we have
compared the experimental values of

Re&s(&)
lm fs (~)

and

with those predicted by inequalities (18) and (20)
in terms of the cutoff dispersion integral J'~(tu)
and the value of Re f~(&u) at ~ =20 GeV. The re-

suits of the calculation show that az(u&) lie well in-
side the two limiting curves representing the lower
and upper bounds of nz(~) (Fig. 1) and that Is(&)
approximately lie on the straight line (q/q, ) Is (+,)
(Fig. 2). These results can be considered a con-
sistent test of the validity of the dispersion rela-
tion and that to an accuracy of better than 9'%%uo one
can write approximately

where

f~(~) = —+f ~ (p) + - (~) +~' —,', (
q,

'

I~ (co,) 1 " cs (e') d ~'
2 2 t2 2

q~ 2p ~ 4) —Qp~
(23)

The values 0.08 for f' and -0.002+ 0.004 for fs(y, )
have been used. The results are insensitive to the
uncertainties in the determination of f and fs(p, )
[these quantities give a negligible contribution to
the bounds of

Ref&�(m)]

and to the low-energy total
cross section measurement.

In terms of the experimental quantities at 20 QeV,
the lower and upper bound of Ref~(~) for v&20
GeV can also be predicted from (18); in this case,
due to the factor (&u' —u, ')/(N' —&u'), the differ-
ence between the bounds is as large as 20%%uo at
~ =30 GeV, reaching 60%%u~ at 40 GeV, making the
bounds useless in determining Ref~(&u); further-

&u (PiON LAB ENERGY in GeV)
)4 16 q9 ao Z6

- 0.05

»OXO-

FIG. 1. Experimental. data (') on e&(cu) =Ref&(~)/Imf~(cu) and the theoretical lower and upper bounds of o.'&(~) nor-
malized at u =20 GeV. The curves (a) and (b) are theoretical upper and lower limits for N= 60 GeV; the curves (a')
and (b' ) are the theoretical upper and lower limits forN=30 GeV.
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FIG. 2. Experimental values (~ ) of the high-energy dispersion integral E~(~) and the theoretical lower (X ) and upper
(solid curve) bounds for E&(~) normalized at 20 GeV, N= 60 GeV.

more, for u» id, , because of the factor (q/q, )',
the errors of Ref&(id, ) cause the errors of these
bounds increasingly large with increasing ~.

As me lower the cutoff energy X, the differences
between the lower and upper bounds for Re fe (&o)

and Ie(&u} become larger so that Eqs. (18) and (20)
become less effective in the analysis of the dis-
persion relation for Refs(~). As an example, we
give in Figs. 1 and 3 the results of calculation for
%=30 GeV, pretending that there mere no data on
cross sections beyond 30 GeV. The results show
that the lower and upper limits of nz (&u) and Iz (&u)

become rather loose and the experimental points
clearly lie within the two limiting curves (Figs. 1
and 3).

Thus, in order to test the dispersion relation
it is necessary to have the total cross sections
measured at energies much higher than the ener-
gies at which

Ref�'(&d)

are measured.

2. Remarks on the Test of Dispersion Relation
for f„(id) and f'(&u)

It is apparent from the once-subtracted disper-
sion relation for f„(~) [Eq. (5}]that one cannot
test the dispersion relation for f„(~)at high ener-
gy in the same way as for f~(id) since there is no
positivity condition for v„(u&') which enables us to
study the energy variation of I„(u&); furthermore,
in contrast with the case of the unsubtracted dis-

persion relation, since the contributions to
Bef„(&u) from the subtraction constants [f' and

f„(g)]are very large compared with (p/&d) Re f„(&d)
at high energy (8-20 GeV), an accurate knowledge
of f' and f„(p)is requ, ired in the analysis of the
dispersion relation. An alternative may is to look
at cases in which i„(~) is small compared with
(ii,/~) Ref„(&u) and to study the energy variation of
(p,/v) Ref„(~). As will be shown below (Sec. III),
the present Serpukhov data up to 60 GeV give the
upper bound of ~I„(&u}~ a value (1.0~ 0.2) x10 '(1/p)
which is 30%%uo relative to (y/&u) Ref„(u&) at 8 GeV
and larger at other energies in the 8-20-GeV re-
gion. This shows that one cannot neglect i„(&d) in
the analysis of dispersion relation for f„(~)with
present data on total cross sections. However, if
the data on the total cross sections are available
up to 300 GeV, then ~I„(~)~

will be much reduced
[less than 0.2%%u~ relative to (g/id) Ref„(v)], so that
one can neglect I„(&u) and test the energy variation
of (p/&u) Ref„(~)without requiring an accurate
knowledge of f' and f„(p}. This will be clear
later when we come to Eq. (39) of Sec. III.

As for the f '(&d) amplitude, provided that
[2f'/p, + f„(iii,)] is determined with high precision
by some independent methods, an analysis similar
to the one for f~ (id) can be carried out in a
straightforward way with the help of (19) and (21).
This is not possible with the present determina-
tions of f2 and f„(ti.). [The experimental errors
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FIG. 3. The same as Fig. 2 with X =30 GeV.

of f' and f„(U,) are appreciable and, due to the
presence of the factor ~/p, »1, are comparable
to the errors of Ref'(&).] For this reason we
shall not make an analysis for f '(u&). As with the
case of f„(u&) discussed above, to test the energy
variation for f'(&u) one must reduce the high-en-
ergy contribution (~/p)I„(~) relative to Ref'(~)
by measuring the total cross sections up to energy
much higher than that at present; in fact the data
at Serpukhov give (~/p)(I„(~)(/Ref'(~)=10-30%%uo
for ~ in the 8-20-GeV region; this relative con-
tribution will be reduced by a factor of 25 with
NAL data. Thus one can test the dispersion rela-
tion to a reasonable accuracy by ignoring I„(~).

(PION L.AB In GeV)

10 'Jp 14 20 22

The data on Reft(tu) in the range 8-20 GeV show
that (24) ls easily satisfied and that as Qp varies
from 8 to 20 Geg the discrepancy between the ex-
perimental values and the right-hand side of (24)
becomes larger, as can be seen in Fig. 4. This
discrepancy represents the value of Is(cu), which
increases approximately quadratically with ~.
Thus the lack of knowledge of Is{&@)makes it im-
possible to have a sensitive test of dispersion
relation in the 8-20-QeV region with present data

UPper Bound on the Total Cross Sections at
Energies Above the Cutoff Energy

The method of analysis discussed above does not
provide a stringent test of the dispersion relation
since it does not impose any condition on the total
cross sections beyond the cutoff energy. In fact
without a measurement of the total cross sections
beyond the cutoff energy, all one can tell from the
dispersion relation is that

5-

Refs(~) ~ I +fs(p)+ Js(~) ~

FIG. 4. Contribution to Re f&() (.) from the cutoff
dispersion integral J~ (co) (solid curve).
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on total cross sections up to 60 GeV.
A sensitive test can only be done with more data

on total cross sections so as to reduce the con-
tribution of 12((d) to Re fz((d). To have an idea of
the magnitude of Iz ((d), let us take &u =20 GeV; at
this energy 12((d)=2~Refz((v)~ for %=60 GeV; as-
suming that v(&u') is constant from 60 to 300 GeV,
a simple calculation shows that Iz(u&) is reduced
by a factor of 5, i.e., I2(&o)=0 4~R.ef~((u)~ at. 20
GeV; below 20 GeV, I s(&o) becomes very small
compared with Re f2((d). Conversely, assuming
the validity of the dispersion relation, one can
learn about the total cross section in an energy
interval above the cutoff energy by considering the
quantity

( )" ( ')
~2 2~2 ~I2 ( 2

N

For any energy interval (M, , M, ) (with ¹ M, & M,),
it is obvious that

Is ((d) 1 ""2 us (&o')

(d 2F

Thus experimental data on12 (&u) give predictions
on 0'z((o') in (M, , M,). This is a more stringent
test of dispersion relation for M, high enough

(M, ~ 300 GeV), since the right-hand side of (26)
gives a dominant contribution to

Reft�

(v), as seen
in the above example. A better way of handling
(26) by using the averaged dispersion relation will
be given in the next sections.

D. Average Dispersion Relation

As pointed out in the Introduction, in the analysis
of dispersion relation one usually encounters the
principal-part integration. In practice, in order
to carry out the principal-part integration, it is
necessary to assume a smoothness for the behav-
ior of the total cross sections in the neighborhood
of the singularity co'= ~ of the integrand.

This can be avoided by considering the disper-
sion relation for the energy-weighted average am-
plitude(f'), (fz g over an energy interval
((d, , (d2) defined as

tion of (Ref& „(~,, (d2)) or

(Ref�

'(&u„(d2)) using the
dispersion relation (2)-(5), one encounters only
the logarithmic singularity in the expression for
(,Is „((d, , &u2)); for example, with p(~) =1, one gets
((u= q)

N

dq o'g g((d )

1x- q lnq ,
'q' q,-q 1. (26)

2(q, —q ) q'-q, q'+q,

Conse(luently the resulting integral (Jz „(&u, , (d2))

is less sensitive to the assumption on the smooth
behavior of v'(v') than the ordinary dispersion in-
tegral J, „(~). A practical usefulness of this
energy-weighted dispersion integral is that the
error of (Zz „(~,, (d2)) due to the experimental
errors of c'(&u') is much reduced.

We now apply the above energy-weighted dis-
persion relation to the experimental analysis of
th- dispersion relation.

1. UPPe~ Bound on Total Cross Sections

The prediction for the bound on total cross sec-
tions given in the previous section ca.n now be ob-
tained in the following way: Consider the expres-
sion for (Re f2(~„(d2)) with p((d) =1 [for a reason
which will become cl'ar below we have chosen-
p(~) =1] (~,=q„~,=q.):

f2 p2
(R ~8 (~1 ~2)) = ~8 (&) +

M
1 —

4M2

+(Jz(v, , (d, ))+(I~((d, , (d,)),

N

(Z2((d, , (d2)) =, dq'K(u)'; (d, , (u2)(X2((u'),
7T

Q

I
oe

(I2 ((o, , &u2)) =,Jl dq'K((d'; (d„(u2)o 2((d'},
N

f.,'f'(~) p(~)d~
( '&u, , (d,

f.' p(~)d ~

f 'f2 „(~)p(~)dv
0

f 2p(&O)d~

(27a)

(2Vb)

r I+rc(~'~„~,)= ~ (n ~, ~ ~ ~' )-( .
A/2

—gg 2 g —g2 g +gg

For I(I& M, & M, , because of the positivity of v2(~'),
it is obvious that

This procedure was first pointed out' by Khuri and

Kinoshita, and Martin, who set (, =-p. .
The reason for working with this weighted aver-

age amplitude is that in carrying out the calcula-

(12 ((d, . v2)) =, dq'K((d'; v, , (d2)oz(&u') .
Af

(30}

For the experimental evaluation of (30), we shall
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K((v'; (v, , (v, ) & —,((((,'+ (d, (v, + e,')
CO

Hence we obtain the following inequality:

s2 2o (v
— d u&'& 0.74 + 0.04 mb GeV ' . (31')

If the experimental values for Refs((d) were
available for energy higher than 20 GeV, inequality
(31') would become loose and lead to a poor bound
for os. In this case, we should use inequality (31).

In contrast with previous considerations, ' we
want to amplify the high-energy contribution of
Is((v) to improve the accuracy of (31). This is so
because the experimental relative errors of Is((v)
decrease with increasing co. Hence the choice
p((v) =1 was made.

To have an idea of the magnitude of the total
cross sections inferred from (31), let us suppose
that between'60 and 500 GeV os((v') stays constant;
then (31) implies that

2os((d') ~ 50.1+3 mb,

to be compared with the value of 47.4+0.4 mb at
60 GeV. This rules out any appreciable increase
in os (v') between 60 and 500 GeV.

To test the usefulness of (30), let us pretend
that there were no data on the total cross sections
above 30 GeV. The right-hand side of (31) now
with &=30 Geg gives 359.7+ 8 mb Geg, which is
larger by approximately a factor of 2 than the
right-hand side of (31}. Because the Serpukhov
data obey this new inequality, we can conclude that
they are a test of the dispersion relation.

choose ~, =8 GeV, ~, =20 GeV. In particular, to
get a strict inequality we choose M, =N. From the
experimental data on Re f'(v) in the 8-20-GeV re-
gion and the total cross sections up to 60 GeV, we
deduce from (30) that

Af2

dq'K((d'; (d, , (d, )2os ((v') & 154+ 8 mb GeV.
N

(31)

A more transparent but somewhat less strict
bound than (31) can be obtained by noting that in
the range of integration the following inequality is
valid:

experimental value. For example, for p((v) =1,
we have the inequality

1 a +ah +52-I, (a, b)) &-, —(I, (c, d)),

and we have similar bounds for (Refs(a, b)) in
terms of (Refs(c, d)) and (Js(a, b)) and (gs(c, d))
obtained from the above inequality.

As an example, we have applied the above meth-
od to the analysis of averaged dispersion for
(a, b) = (8, 16), (c,d) = (18, 20). The results of the
calculation show that the experimental data on
(Refs(a, b)) are consistent with dispersion rela, -
tion.

III. TEST QF DISPERSION RELATION AT LQÃ
ENERGY QR THE DETERMINATION OF

LOW-ENERGY mW PARAMETERS

A. Determination of the Pion-Nucleon Coupling Constant

Determination off svith Present Data

lt has been shown in the previous section [Eq.
(14)] that the high-energy dispersion integral
I„((d) can be bounded in terms of measurable quan-
tities:

One can now make use of the above upper limit on
lI„((v)l to determine f'. We first note that
Ref„((v} is experimentally small at high energy
and furthermore its contribution is suppressed by
a very important factor p/(v=1. 8x10 ' ((v =8 GeV).
Consequently, at high energy, Eq. (5) does not de-
pend much on Ref„((v). Equation (5) reads

We shall now prove that I„((v) gives a negligible
contribution to f' when (v& 10 GeV. In terms of
Re fs((d) and Js((v), li„((v)l is given by

2. Test of Energy Variation of the Averaged
Dispersion Relation

By straightforward integration of inequality (9)
in the variables (v, and (d, over (a, b) and (o, d),
respectively, with a, b & c,d, one could also derive
the strict bounds for (Is(a, b)) in terms of
(Is (c,d)). The test of dispersion relation consists
of comparing the limits for (Refs(a, b)) with the

(34)

with

(35)

To see that the bound of li„((v)l does not effectively
depend on f' and fs(p, ), we note that the pion-



RIGOROUS VESV OF THE FORWARD DISPERSION RELATION. . .

nucleon coupling constant f' on the right-hand
side of (34) is multiplied by p/N, M, whereas it is
multiplied by 2/p. on the right-hand side of (33).
Thus to an accuracy of iJ.'/2M%=1. 7X10 4

(M
=nucleon mass) we can neglect it on the right-
hand side of (34}; similarly the neglecting of

Ref~~

(p.) on the right-hand side of (34) represents
a loss of an accuracy of

u f&(v)
& f~(~)

one gets

e =(1.00+0.2}&&10 'p. ',
which agrees with the value found above. Since the
experimental value of 2e/X(~) is 2/0, it is clear
from (36) that the upper bound for f' differs from
its lower bound by about 1/o. Within this accuracy,
we have the sum rule

2f IJ P1+— (a —a,) + —Ref„(v)

using

fg(p)
f,(I )

Allowing a very considerable uncertainty in the
determination of this last ratio, w'e can safely
conclude that to an accuracy better than I part in
1000, f' is given by

~2 +1 2f2 ~2 +g

[&(~)+e],

q, p, dq 0 —o

4w ~ (d 4) —(d
(38)

which is valid for ~ ~ 8 QeV and»& p, . By the
method of partial fractions, (38) can be written in
terms of a cutoff integral and a small correction
term in the square bracket:

2f' V ~ 'dq'
1+—(a —a, )+—, , (o'-g )M - ' 4g'

where

,P,» (v' —v )-—Ref„(v),
477 0 GO —(d EO

~(~) = —Ref&(~) -f,(u ) -&,(~)

Thus the bound on ~I„(&u)
~

is just e. ln order to
make inequalities (36) as strict as possible, we
must minimize e. %ith the available data on
Ref'(&u) from 8 to 20 GeV and the total cross sec-
tions measured up to 60 GeV, since I~(~) is an in-
creasing function of ~, e is smallest at 8 QeV.
Hence we set + =8 QeV; at this energy, the mea-
surement of Foley et al.' gives Ref+(~)
= (—1.16+0.12)g ' and the value of the dispersion
integral J& (&o) is numerically computed to be
(-1.54+0.01)p, ', which leads to

e =(0.9+0.3}X10 'p '
(in units of p, '=1.41 fm).

Alternatively we note that it is possible to get
the bound for II„(&o)~ without involving fs(p, ) and f'
by making use of the experimental data on Re f~(&o)
at two points w and ~ far away from each other
(ur & ~), since fs(g) and f' disappear in the ex-
pression for the difference Re fs(v) —Ref~(~).
Equation (36) then becomes rigorously valid except
that c is now given by

Res~ —Res

to be compared with the Qoldberger-Miyazawa-
Qehme sum rules '

d co
+ . ,-(o'-a )4m'

„,
q'

derived long ago from an unsubtracted dispersion
relation for f„(v).

To the extent that one can neglect I„(v}, Eq. (39)
shows that the correction term (the square bracket)
is constant over the energy range where I„(~}is
small compared with (p/v) Re f„(&u). When this is
the case„one can test the energy variation of the
dispersion relation for f„(&u) without requiring an
accurate knowledge of the pion-nucleon coupling
constant and the s-wave nII scattering lengths.
As discussed in Sec. II, this happens when %=300
GeV. At this cutoff energy, I„(v) becomes very
small compared with (p/~) Ref„(~).

The integral on the right-hand side of (38) can
be calculated numerically using the available data
on 0'(u'). We find that at (u =8 GeV

J„(~)= (-0.0548+0.002) p, '.
The data on Ref '(~) of Foley et al. give

+ &&(~) —&&(~)] (37) —Ref„(~) = (—0.003+0.0015)p ' at ~ =8 GeV.
For &@ =8 GeV, ~ =18 GeV, using Ref+(1&)
= (-1.57+0.18)p, ' and Zz(18) = (-3.77+0.02)p ', Putting these values into (38) we arrive at
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2f2 p1 + — (a —a,) + (0.0518 + 0.0015)p ',
p,

(41)

A convenient choice for p(~) is I/uP. Equation
(36) is now replaced by

which is a relation involving the pion-nucleon cou-
pling constant and a —a, . A similar relation has
been obtained by H5hler and Strauss. ' Using the
charge-exchange data and assuming an asymptotic
Regge behavior for the total cross sections, they
showed that f' can be determined accurately in
terms of (a —a,). Our result indicates that it is
not necessary to make such an assumption. Equa-
tion (41) should be used with other relations de-
rived in the next section to determine f' and a, in
terms of low-energy data. At present, the value

2f2 ' p2- -- ~ 1----.— [&X(~„~2»+&~&],

where

(36')

2 d(d —Ref„(~)-f„(p) -&„((o)

(X(V, , ~2)& =

I d~
QP

1

a —a, = (0.090 + 0.0023) p '

given by Hamilton yields

f' = 0.077 a 0.003,

which agrees more or less with the previously de-
termined value. "' Of the total error (4%) in the
determined value of f', 1.5% comes from the
determination of the scattering lengths, 1.2% from
the measurement of Ref„(v) at 8 GeV, and 1.2%
from the total cross section measurement. Un-
doubtedly these figures will be much reduced once
new measurements of nN parameters become
available at the new pion factories.

To reduce the errors of the dispersion integral
due to the principal-part integration, and to im-
prove the statistics, one should use all the avail-
able data on Re f„(&u) in the region 8-20 GeV. This
again can be done by using the energy-weighted
average amplitude (Ref„(&u, , &u2)& with an appro-
priate energy weight function p(&u). Since the up-
per bound on ~I„(e)] increases quadratically with
q', [for example, this bound increases from
(1.0+0.2)x10 'p ' at &u =8 GeV to 4x (1.0q 0.2)
x10-'p, ' at 16 GeV] and the difference in the lower
and upper bounds for f' becomes larger, render-
ing Eq. (36) less effective in the determination of
f', we must choose p(&u) so as to have the con-
tribution to &Ref„(~, , w2)) mainly coming from
Ref„(&u) at the lower end of the energy interval.

Cf &d

Re fs((u) -ds((u)
Cd

j dw

(dy

(d (d

Z. Improved Determination off with ruture
ExPerimental Data

Possible reductions of the high-energy disper-
sion integral I„(~) to increase the precision can
be obtained as follows:

(a) Using available exPerimentaL data on

Ref„(e) at more than one energy in the region
8-ZO Ge V. By this method one can determine
quite accurately i„(&u) in terms of other mea-
surable quantities in a similar way as for Is(e).
From Eqs. (16a) and (16b), one derives for v, , ~2
far away from each other

In this way one gets better statistics at the ex-
pense of losing some accuracy in the determina-
tion of f'; for example, for ~, =8, ~2=20, &e&

= 2.5e =2.5x (1.0+ 0.2) x10-2p, -' and the lower and

upper bounds of f' differ by 2.5%.
We have made a calculation for &X(&o, , IJ2)&; the

result is that to an accuracy of better than 2.5%
(actually better than this figure since here we used
a very loose bound for ~I„(tu) )) we get

f2 = 0.077 a 0.002 .

(42)

where

S (&o, , &u, ) =,', —Re f„(&u,) —J„(&u,) +J'„(&u,) ——Ref„(e,) (43)

(44)

It is clear from the definition [Eq. (44)] that 5(w, , &u2) is smallest when both Cd, and w2 are the lowest en-
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ergies at which Ref„(~) are measured. Since &u, and &u, must be sufficiently far away from each other, to
have an idea of the magnitude of 5 (&o, , &u,), let us choose &u, = 8 GeV, ~, =16 GeV; 5 (&u„&o,) is then equal to
(0.6+ 0.1)x 10 ~ (N =60 GeV), which is only 0.04/0 relative to f'. More explicitly the discrepancy between
the lower and upper bounds of f' in (42) [25(~, , e,)] is only 0.08% relative to f'. Therefore to an accuracy
of better than one part in a thousand, one can neglect this discrepancy and write

= 1—,-f„(p,)+—Ref„(&o,) -J„(&u,)+ —,', —Ref„(&u,) ——Ref„(~,)+Z„(&o,) -d'„(&u, ) [.

(39')

It is easy to see that Eq. (39') in principle should give a better determination of f' than Eq. (39) since the
high-energy dispersion integral i„(e)has been taken into account considerably by a small correction term

~((o„(u,) =,'; —Ref„(~,) ——Ref„((u,) + J„((",) -Z„(~,)
q2 —

q& (a)
&

QP

which can be written in the following form:

However, this apparent improved accuracy of f'
due to a better bound of I„(&u) is not easily real-
ized in practice since the evaluation of a(&u„~,)
introduces more experimental errors of Ref„(u&)
and I„(e) into the determination of f' [although
these errors are somewhat suppressed by the fac-
tor q, '/(q, ' —q, ')]. For example, for u&, =8,
~2=16 qx /(q2 qx }=

&

~(&u, , ~,) =(0.6~0.5)&10 'p '.
This correction term changes f'.to

f' = 0.076 + 0.003 5 .
The above method can be applied to the energy-

weighted average amplitudes in two energy inter-
vals (a, b} and (c, d) such that (c,d) is far away
from (a, b).

(b) Reduction of the bound for ~I„(e)~ by mea
spiring the total cross sections at higher energies.
We recall that the bound for g„(&u)[ is (p/N) is (&u).

For ~ fixed, since Is(&u) is a decreasing function
of N, as we increase the cutoff energy by mea-
suring the total cross sections at higher energy,
(lj/N)is(tu) decreases roughly as 1/N'; conse-
quently the bound on ~I„(~)~

is greatly reduced.
For example, at present, N = 60 GeV, the bound
is (1.0+0.2)X10 'p '. With the coming data on
total cross sections available up to 300 QeV, the
bound will be reduced to ~«x (1.0+ 0.2}x10 sg ',
so that to an accuracy of better than 0.04/o one
can determine f' without any knowledge of the
total cross sections beyond 300 GeV. This reduc-
tion in principle can be obtained with data on 7t'p
total cross sections at NAL. In this case one can
determine f' using the data on Ref '(&u) in the re-
gion 8-20 GeV, by means of the energy-weighted
dispersion relation for f„(v}, i.e., Eq. (36').

(c) Reduction of the bound for ~I„(&u)) by mea-
suring

Ref�'(v)

at lower energies. Instead of in-
creasing N by measuring the total cross sections
at higher energies, one can measure Ref'(&u) at
lower energies, below 8 GeV, in order to reduce
the bound of ~I„(&o)~. Since Is(~) increases quad-
ratically with ar (approximately), a very large re-
duction of ~I„(~)~

is easily obtained. As an exam-
ple, for ~ in the region 4-8 GeV, ~I„(&u)~
&-,' (1.0+ 0.2) &&10 3g ' at u& = 4 GeV, while for the
averaged dispersion relation

(e(u&, , &u,))=-,'(1.0~0.2)&&10 'p, ',
for &y 4 GeV, ~, = 8 GeV.

In summary„better determination of f' can be
made with future experimental data on Ref '(~) in
the 4-8-GeV region or with data on total cross
sections up to 200-300 GeV.

B. determination of f2 and Low-Energy nlV

Parameters from Low-Energy Data

Conventiona/ Method

We now use the bounds for Is (e) and I„(&u) given
in Eqs. (9) and (14) to analyze the dispersion rela-
tions for fs(&o) and f„(v) in the low-energy region
extended from the threshold to energies below the
resonance region in pion-nucleon scattering. "
The application of (9) and (14) to the derivation of
the bounds for Refs(&u) is straightforward. In this
energy region, due to the presence of the factor
(q/q, )', the contribution from is(&u) to the disper-
sion integral is strongly suppressed and the dif-
ference between the lower and upper limits is
much reduced; as an example, for q =100 MeV/c,
one gets
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Y(~) = —„.—4~; Ref&(~) -&, (~) — — I&(~.)

f' u'=- 4~ f "'M '-4~
+2 f2 +2 I

+——1-— +f (u) .
M 4M' (46)

2

Iz(&u)= — Iz(+ ) =O.Vx10 p '((u, =20 GeV).

The lower and upper bounds for I, ((u) thus differ
by an amount of 0.2&10 'p, '. Neglecting this dif-
ference, we have

The right-hand side of (46) is a linear function of
(~/p, )'. A knowledge of Re fe(v) in the low-energy
region will enable us to plot Y(~) as a linear func-
tion of (e/p, )', and obtain fz(p) and f'. This
method in principle provides a reliable determina-
tion of Refe (p, ) and f' using data on Refe(~) at
points where (I/)q, )'Ie (&u, ) is much smaller than
the right-hand side of (46).

Similarly, for the crossing-odd amplitude f„(&u)
in the low-energy region, one can write using (5)
and neglecting the difference between the lower
and upper bounds [(u, taken in the region 8-20 GeV
where data on Ref„(e,) are available] for (I„(&)(

), ( )=()—
4 .))-f (~)+.—Raf )~)-& (~)

+ P, —Re f„(~)——Ref„(~,)+J„(~,) —J„(~) (47)

which can also be written in the following form:

Z(+) = —,—,1-—, Ref„(~)—-J„(&u)+, , —Ref„(~)-—Ref„(~,)+J„(~,)-J„(~)
2

A ~ 2 2 2 A ~ 2 (48)

By plotting the experimental values of Z (tu) as a function of &u'/p, ', one couM easily obtain f" and f„(tj.).
This, together with the results for f' and fe(p, ), provides a consistent determination of f' and the a, m'p

s-wave scattering lengths.

Z. Direct Determination from Energy-Weighted Average Dispersion Relation

All the remarks concerning the principal-part integration and the energy-weighted average amplitude
discussed in previous sections can be straightforwardly applied to the low-energy case. By integrating
Eqs. (46) and (48) over an energy interval above the threshold with an appropriate energy weight function
p(&u) one gets two equations for f', fe(p, ), and f„(p) which together with Eq. (39) allow us to determine f'
and the w N s-wave scattering lengths directly from the data on total cross sections in the low- and high-
energy regions. For example, taking p(&u) =1, from (46) and (48) one immediately gets

2 2 1 1 y +& ~ 2 2 1 1 y' ~

(46')

+ gP 2 1- 2 +— + gQ 1 —
2 2

= g (01~(d2 (48')

where

()')~, , td, )) =( )J F(~)d~,
1

(Z(&» &2)) = I Z(~)d~.
4)2 —601

The only unknown quantities in (Y(u, , u, )) and
(Z((u„~,)}are the data on Ref„(~) and Refe(~) in
the low-energy interval (&u, , cu, ). These data, once

available at pion factories„will give us immedi-
ately the values of f' and the scattering lengths a,
without the usual extrapolations to the threshold.

IV. CONCLUSION

The main results of this work can be summarized
as follows:

(1) The experimental data on Ref '(ur) in the
8-20-Ge7 region are compatible with the forward
dispersion relation. What one learns from this
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analysis is that to test the dispersion relation it is
necessary to have the total cross sections mea-
sured up to energies much higher than the ener-
gies at which the real parts are determined.

(2) In the 8-20-GeV region, a more stringent
test of the dispersion relation [i.e., an absolute
determination of Ref&(~)] requires measurements
of the m'p total cross sections from 60 to 500 GeV.
Conversely, if the dispersion relation is valid, we
must have on the average

o'+o ~50+3 mb.

(2) The experimental values of

Ref�'(&u)

in the
8-20-GeV region and the total cross sections up
to 60 GeV provide an upper bound for ~I„(&)~
which allows a determination of f' in terms of wN

s-wave scattering lengths to an accuracy of better

than 1% without requiring a measurement of the
total cross sections beyond 60 GeV. A better de-
termination with greater precision can be made
with more data on Ref '(&u) at lower energies (in
the GeV region) or with data on m'p total cross
sections beyond 60 GeV.

(4) A test of energy variation of Ref„(~) and

Ref '(u&) in the 8-20-GeV region can be done with-
out requiring a precise determination of mN low-
energy parameters and the mN coupling constant
when data on the total cross sections are available
up to 300 GeV.

(5) The mN low-energy parameters can be de-
termined to a great accuracy (without any knowl-
edge of the total cross sections beyond the Serpuk-
hov energy) once the measurements of

Ref�'(&u)

are made in the low-energy region.
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