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Clebsch-Gordan coefficients, suitable for reducing in a completely symmetric manner the
tensor product of an arbitrary number of "physical" representations of the Poinc are covering
group P, are described in a straightforward fashion. These Clebsch-Gordan coefficients are
used to define invariant amplitudes for an arbitrary n -point process and to obtain the partial-
wave expansion for the four-point amplitude. A natural definition of crossing leads to the
conclusion that the invariant amplitudes introduced are crossing-symmetric. A new dynami-
cal hypothesis is proposed based on the assumption that the above-mentioned crossing-
symmetric invariant amplitudes are analytic functions on a certain (3n -10) -dimensional
analytic subvariety of the space of complex four-momenta except for those singularities
required by extended unitarity. Analyticity in the usual variables, namely, the scalar pro-
ducts of the complex four-momenta, seems to be ruled out. The advantage of the new hy-
pothesis is that all theories constructed f rom basic three-point vertices would yield renor-
malized perturbation series by means of the successive pole approximation. Since spinor
amplitudes are not employed, another method for introducing coupling constants and de-
termining their dimensions is required. It is proposed that the appropriate universal coupling
constants are the partial-wave amplitudes with given orbital angular momentum l and total
spin s in a given standard channel for the three-point process. The kinematic factor which
defines the dimension of the coupling constants is then )Q~ where Q~ is the relative momen-
tum four-vector in that channel. A qualitative examination of a number of common inter ac-
tions suggests that this hypothesis is reasonable. The dependence of the kinematic factor on
the masses of the particles of the three-point vertex is, in general, different from that given
by spinor theories. This difference changes the meaning of universality as applied to coupling
constants.

I. INTRODUCTION

Of the many unpleasant features of spinor field
theories, perhaps the most annoying is the fact
that most are nonrenormalizable. The theory of
weak interactions is plagued by this problem. The
source of the difficulty is the bad asymptotic be-
havior of the free particle propagator s which is
caused by the so -called spin projection operators .
Moreover, this behavior becomes worse for high-
er spin.

S-matrix theory was established in an effort to
circumvent the difficulties of field theory . But the
central trouble -making feature was retained;
namely, the representation of spin by spinor am-
p litude s . Indeed, $ -matr ix theories based on
ana ly tie ity of sp ino r amplitudes and constructed
from basic three -point amplitudes by means of the
successive -pole approximation" lead to the same
classif ication of renormalizable and nonrenormal-
izable theories as that found in local spinor field
theories .

The principal reason for the bad asymptotic be-
havior is the fact that the spinor basis is not a
unitary one; consequently, the spin sums which oc-
cur in the contribution of some intermediate state
to the unitarity equations are polynomials in both
the energy and the momentum variables and there-

fore grow without limit as the energy increases.
On the other hand, if one could consistently em-
ploy a unitary basis such as those defined by pure
boosts or he lie ity boo sts for massive particles,
the spin sum factors would be a product of unitary
D~ ~ functions which would necessarily be bounded

by unity throughout the physical region. However,
be caus e maximal analytic ity consistent with ex-
tended unitar ity in every channel and the crossing
hypothesis constitute the essential dynamical in-
gredients of 9-matrix theory, one must choose in-
variant amplitudes which have crossing matrices
which are free of singularities .

In the fo llowing, a set of invariant ampl itude s
for an arbitrary n -po int process is defined. These
invar iant amplitudes are just the usual T-matr ix
ampbtudes (with the energy-momentum b function
removed) evaluated in a unitary spin basis and in
the principal reference frame in which the four-
momenta, qJ' (i= 1, . . . , n) satisfy

q; ~ q; =m;2,

Q {f;"=0,

I"'({f)= Z {f;"{fi

diag(5{0)i h{l) ({2)i ({3))i
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where the "all-in" notation for the four-momenta
has been used. Note that this principal reference
frame is defined symmetrically with respect to the
n particles. The fact that the Eqs. (1.1) also make
sense for complex q,". (i=1, . . . , n) suggests that
the invariant amplitudes should be defined on the
complex variety' Q„(q) consisting of the points

[q,." (i = 1, . . . , n)] in complex 4 n-dimensional space
satisfying Egs. (1.1). It is natural to define cross-
ing symmetry in such a way that the analytic con-
tinuation from one physical region to another fol-
lows the principal frame of reference. %'ith this
definition of crossing, the above-mentioned in-
variant amplitudes are crossing-symmetric. This
definition of cx"ossing is not consistent with the
usual one based on spinor amplitudes. Unfortu-
nately, any attempt to decide this issue by direct
appeal to experiment encounters the substantial
difficulty of performing the analytic continuation
from one .physical region to another.

One must also decide which boost type to use,
The most likely possibilities are pure boosts or
hellclty boosts fox' massive pRrtlcles Rnd hellclty
boosts for massless particles. It turns out that
with the definition of crossing mentioned above,
the principal helicity amplitudes are crossing-
symmetric while the principal pure boost ampli-
tudes are not, so that helicity boosts are pre-
ferred.

Following a discussion of revised axioms for
analytic S-matrix theory, the introduction of cou-
pling constants associated with basic three-point
amplitudes is considered. The procedure proposed
is inconsistent with that used in spinor fieM theory
except possibly in certain special cases. The ba-
sic idea is that the kinematic factor which govexns
the dimension of the universal coupling constant
should be ( Q)' where ) Q( is the magnitude of the
relative momentum four-vector of two of the par-
ticles and / is the orbital angular momentum be-
tween these two particles. A qualitative compari-
son of this hypothesis with a number of common
spinor couplings is given.

II. THE CLEBSCH-GORDAN COEFFICIENTS

Physical particle states can be described in an
elegant way by means of certain of the unitary ir-

N, kt es)[m,.Z;]p;~, ), i=1, . . . , N, ,

)q, kets [pp,.), j =iq, +I, . . . , fq, +N„

N, bras ([m,J„]p,a, (,

Iq» bras (P,A, i ),

k =N, +%~+1, . . . , N, +%2+Ps,

E=X, +X, +X, +1, . . . , ~, +N, +N, +N„

the appropriate Clebsch-Gordan coefficient is

reducible representations (UIR) of the Poincare
covering group P.4 A brief summary of the rele-
vant representations is given in Appendix A. The
notational conventions used are those of Moussa
and Stora. '

The problem of coupling together a number of
particle states is frequently encountered; for ex-
ample, in the construction of invariant amplitudes
or in partial-wave analysis. In general, such
problems can be reduced to the selection of the
identity or "vacuum" representation from the ten-
sor product of an arbitrary number of UIR of P.
Since all of the UIR of P can be obtained as induced
representations, this problem can be solved quite
generally with the aid of Mackey's' subgroup the-
orem. Fol' the gloup P this RQRlysls hRs been
performed by Klink and Smith. ' The decomposi-
tion of the tensor product leads to a direct integral
over a space of double cosets. The selection of a
double coset representative amounts to the choice
of an over-all reference frame. The continuous
degeneracy labels are just the four-momenta
evRluRted ln this flame. An expllclt expx'essloQ fox'

the Clebsch-Gordan coefficient which couples an
arbitrary number of massive or massless particle
states of either positive or negative energy to the
vacuum states will be given in this section.

Although the expression is essentially that found
in Ref. 7, it is presented here in the form that
will be required in the following sections and with
all particle states treated in a completely sym-
metric manner. The g) functions which appear in
the Clebsch-Gordan coefficient are defined in Ap-
pendix A.

For a tensor product of

~([V k~ l" ii 'ql& qk~ qj~ qi)~ Pl~i i [~k~k]Pk~ki f i~i i [~i~ilf i~i)

where N is a normalization constant, * denotes complex conjugation, the B(q) are boosts appropriate to
the particle type, and i, j,4, t range over the values indicated above. There are N, + N, discrete degener-



400 ROBERT ALAN COLEMAN

acy labels I p„p. ; ). Each index i(, ranges over the usual 2 J+1 values. Before specifying the measure on
the space of continuous degeneracy labels ( q„q~, q, , q, ), we introduce the real symmetric 4 x4 matrix'

(2.2)
all momenta

The measure on the space of continuous degeneracy parameters is then

di( (q) = Q d'q, &(q, q, )B(q,)gd'q, 6(q, q, —m, ')6(q ) g d'q, 6(q, ~ q, )B(q,)gd'q;6(q; ~ q; —m )8(q;)

"»' Z»» Z»' —Z»; —Z»")»(I"(»))»(M"(»))»(I"(»)l»(M" (»))»(I"(»))»(M "(»)).
k j i

(2.3)

The dimension of this space is 3(N, +N, +N, +N, ) —10. The above measure is suitable when rank(M ")=4.
If rank(M"") &4, then the four-momenta span a space of lower dimension. In such a case, the momenta q

may be chosen such that

q' =0 for all q when rank(M "')= 3

or

q'=0= q' for all q when rank(M"") =2,

(2 4)

where q' and q' denote the first and second components of the four-vector q". In case rank(M"') =2, all
particles are moving along the 3-axis and all spins are quantized along this axis. Orbital angular momen-
tum projection along this axis must be zero and thus the spin projections must be conserved. This fact is
contained in the Clebsch-Gordan coefficient.

The method may readily be extended to include the nonphysical UIR's of the group P ~. For the spacelike
case P = (0, 0, 0, m) and the helicity boosts are well defined everywhere on the spacelike mass shell.

COS20

sin 20 e'"

1/2

sinz6 e '~
0+P

COS2 I9

(2.5)

where p=[m'+(p')']'" and p'= psin6cosq), p'= psinosinq), p'= f) cos0. Moreover, the boost choice (2.5)
is consistent with the conditions (2.4) in the case rank(M" ")=2, for then the operator J" is diagonal and
the angular momentum constraint retains its simple form. For the same reason, for the representations
corresponding to null four-momentum p=(0, 0, 0, 0), one should use a basis in which J"and J"are
diagonal. Then when constructing the Clebsch-Gordan coefficient for the reduction of a tensor product
including such states, one need only include the 5) functions of the appropriate representations in the
bases described above. Those UIR's which cannot be realized on spaces of square-integrable functions
cannot be included in this way.

For the group P~, the essential aspect of the Clebsch-Gordan coefficient is the choice of an over-all
reference frame, and the diagonalization of the matrix M "'(p) accomplishes this objective in a completely
symmetric manner. The same technique may clearly be used for the Euclidean and pseudo-Euclidean
groups in n dimensions. In complex, n-dimensional space, one encounters two types of groups: the semi-
direct product of the group of translations with an orthogonal or pseudo-orthogonal group, or the semidi-
rect product of the group of translations with a unitary or pseudounitary group. In either case, one usually
uses a basis in which the translation operators are diagonal. The states are then labeled in part by com-
plex n-vectors P". For the case of the orthogonal or pseudo-orthogonal group, the over-all reference
frame may be chosen by diagonalizing the matrix

N

M""(P)= Z P,"P' .
5=1

(2.6)

For the case of the unitary or pseudounitary group, the over-all reference frame may be chosen by diago-
nalizing the matrix

(2.7)

and requiring that its eigenvectors be rea.l. (~ means complex conjugate. )
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III. INVARIANT AMPLITUDES

In 9-matrix theory, one adopts the view that all experiments are scattering experiments and that all the
dynamical information about such experiments is contained in a unitary operator 8 which relates in-states
to out-states. This operator transforms as a scalar under the Poincare group. It is customary to intro-
duce the transition operator T according to

9 = j.+2@iT. (3.1)

To predict the result of any given experiment one must compute the matrix element of T for the particular
physical states involved. The problem is considerably simplified by the introduction of invariant ampli-
tudes. In this section, the Clebsch-Gordan coefficients defined in Sec. II will be used to define invariant
amplitudes. The details will be presented only for the case of two-particle quasielastic scattering of mass-
ive particles, but the extension to the general case is straightforward.

For this case, rank(M"" ) = 8 except on the boundary of the physical region and the measure on the space
of continuous degeneracy labels is

4
di). (q) = P d'q;f)(q; ~ q; —m, ')e(q, ) b'(q 4+ q, —q, —q, )5(q4)5(q', )&(q,')&(q,')

&=1

&& 6( ,'q'q+ q,'q,'+ q,'q', + q,'q4)5(&d, q,'+ hi, q,'+ (u, q,'+(d4q,')5(&d, q', + &dmq,'+ (d, q,'+&d, q,') .
The Clebsch-Gordan coefficient is

&([p~, q;)I[m;J;]pA, f=1, , 4)

(3.2)

=N dA, 5 p~, B q~ A.p4 D 4), B q~ AB p4 5 p3, B qs Ap3D ~ B qs A.B p3

&«'(p. , & '(q, )&p.)D'„',a),(& '(q.)»(p ))2&'(P„& '(q, )&p,)DI,,'~,(& '(q, )»(P,))] (8 8)

Then the matrix element of T may be expanded in terms of invariant amplitudes 8([p.;, q;) ) according to

([m,J,]p,X„[m,J,]p,~, [ T ) [mp, ]p,X„[m,J,]p,~, )

=z f 4(s)@()v;,w))&((w;, a)I)~z]), ~;, =), . . . , 4). (34)
P3

The 5 functions in the Clebsch-Gordan coefficient imply

q]'=A". p", , i=1, . . . , 4. (8.5)

of the twelve 5 functions are therefore used to fixe. Two more 5 functions are required to determine
the q". in terms of the P,.". The remaining four 5 functions express the energy-momentum conservation

f)'(p4+ ps —pa —p&) ~

Thus the expansion becomes

([m J ]p A. ;[m J,]p, l),, ) r~[m J',]p I, ;[m,J ]p,X, )

=f (p, +p, —p, —p, ) g 8, „,„,„,„,( )q'„D;,*( -B'( )q»( p)) '„D';„',*( -B'( )q& (fop))
P4P3 P2 Py

xd„,',(a-'(q, )rTa(p, ))D'„"„'(a-'(q, )Xa(p, )), (3.6)

where q,
" (f= 1, . . . , 4) and X have the values determined by the 6-function constraints and the values of p;"

(i=1, . . . , 4).
The interpretation of this expansion is straightforward. Any set of amplitudes evaluated in a fixed frame

of reference is an invariant set. The amplitudes g» „„(q)are just the T-matrix elements evaluated in
P4P3 P2]fy

the frame in which the scattering occurs in the 1-3 plane and in which M" (q) is diagonal, and with the

energy-momentum 6-function factor removed. The four-momenta q,
" in this frame are scalars and possess

only two degrees of freedom as is evident from the measure di)(q). The D~ ) functions contain the Wigner

rotations necessary to trans:m from a general frame to this fixed frame.
Evidently, one may define invariant amplitudes in infinitely many ways. The use of the matrix M"'(p)

has the advantage of treating all particles similarly. It is interesting to note that this matrix is closely re-
lated to the matrix of scalars S;, = p; ~ p, . Both have essentially the same characteristic equation. (This is
true for an arbitrary number of particles. ) Although one may in principle employ any type of spin basis in-
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eluding a spinor basis, the use of a unitary spin basis for the specification of the dynamical amplitudes is
preferred since the spin sum factors in the unitarity equation are then products of unitary D~~~ functions
which are necessarily bounded by unity throughout the physical region.

IV. CROSSING

([m, J] p, .),);[m,J,]P,A., I TI[m, J,]p,) „[m,J,]p,),)

= ~'(P, + P, —Ps —P, ) Z &(„,)„,„,„,(q;}DI„'~,(B '(q, }A( )B(p&))D'„",~,*(B '(q, )A( )B(P,))
P4]f3 A P1

xD„s~ (B '(qs)A ( )B(ps))D„) (B '(q, )A(„)B(p,)). (4.1}

The corresponding expansion in the P channel (13-24) is

([m, J,]P,) „.[ms Js]Ps) s I TI [ms Js]Ps)(.„[m,J,]P)(,&

=5 (Ps+Ps —Ps —P, ) Q 8(„)„s~ (Q;)Dss), (B '(Qs)A(())B(Ps))Dp ), (B '(Qs)A(s)B(Ps))
P4 P2 P3 tf1

xD s), (B '(Qs)A(())B(Ps))D„'), (8 '(Q, )A(s)B-(P,)), (4.2)

where q; and Q; denote the four-momenta in the principal frames corresponding to the four-momenta p;
and P,-, respectively, and A«& and A.

&&)
are defined by

q,."=A" p', (i=1, . . . , 4}, Q,"=A(q)„P", (i=1, . . . , 4). (4.3)

We turn now to the derivation of the crossing matrix for the invariant amplitudes defined in Sec. III. The
definition of crossing used here differs from that which is usually employed. A discussion of the usual
definition of crossing is given in the text of Martin and Spearman, ' who follow closely the work of Trueman
and Wick." The crossing properties depend on the type of boost used. The case of helicity boost proves to
be the simplest and therefore will be discussed first.

In the following discussion, quantum numbers arising from internal symmetries are suppressed. Con-
sider a process involving four massive particles. Equation (3.6) gives the invariant amplitude expansion
in the (s channel (12-34)

The procedure used to obtain the crossing matrix for the invariant amplitudes is the following:
(1) Analytically continue Eq. (4.1) from the o -channel physical region to the P-channel physical region.
(2) Relate the continued o-channel T-matrix element to the P-channel T-matrix element.
(3) Express the continued o -channel D(~) functions (the spin basis) in terms of the P-channel D(~) func-

tions.
(4) By comparing the resulting equation with Eq. (4.2), obtain the expression for the continued n-channel-

invariant amplitude in terms of the P-channel-invariant amplitude; that is, the crossing matrix.
In order to relate the continued o. -channel 7'-matrix element to the P-channel T-matrix element, we

shall need the equations which give the transformation of these T-matrix elements under an arbitrary but
fixed Lorentz transformation. The Jacob and Wick" phase convention for two-particle helicity states is
not adopted here in order to treat all particles as symmetrically as possible. The ambiguity in the defini-
tion of the helicity boost for 8= m is resolved by choosing y =0. The required transformation equations are

( [m,J,]p,z„[m,J,]p, z, I T I [m, J,]p,x „[m,J,]p, z, )

([m, J,]p,')L,';[ms Js]ps)(sI Tl[m, J,]ps'))s';[m, J,]p,')).,') D'„,4~,*(B '(p,')AB(p, ))D~is~,*(B '(p,')AB(p, ))

and

xD' l' (B '(P')AB(ps))DI, ,'g, (B '(P,')AB(p, )) (4.4)

([m, J ]P &; [m, J,]P))., I TI [m, J,]P,&„[m,J,]P,)(., )

([m,J,]P,')(,,'; [ms Js]PsksI T [ImsJ]sP,'A,';[ mJ, ]P,'X,')D(', ) (B '(P,')AB(P, )}D(,'„) (B '(P,')AB(P, ))3 3 3 3& 1 1 1 1 g4)(4 4 4

4 2 3 1

XD P (B '(Ps)AB(Ps})D ' (B '(P,')AB(P, )), (4.5)

where A is an arbitrary but fixed Lorentz transformation and p,'=Ap; and P,'=AP; for i=1, 2, 3, 4. Ana-
lytically continue Eq. (4.4) in the four-momenta from the n-channel physical region to the P-channel physi-
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cal region. Choose A to be an infinitesimal transformation so that p; and P& follow essentially the same
path of continuation. Then under the continuation the four-momenta change according to

P4 4y ~4 4& P3 3& P3 3&

P2 2p P2 2& Pj. j. y ~1 1'
(4.6)

The behavior of the helicity boost B„(p)under the continuation P - P-depends on the path of continuation
followed in the p' plane because of the dependence on [p[ =[(p')' —m']"' [see Egs. (A8), (A9)]. We choose
the path shown in Fig. 1. In this case

p'- -P',
I pl- -I PI,

e-e,
and

B„(P)"„--Bs(P)",R,(s)'„.

(4.V)

(4.8)

Then

D),)(B„~(P')AB~(P)) D), )(R~ (w)B„'(P')AB)))(P)B3(w)) =(-) "D~~),(Bs '(P')ABs( P))

=D",I*,(B„-'(P')AB„(P)).

Thus the continued version of Eq. (4.4) is

([m4J4]P~)).~; [m'~ J3] —Ps —X3[ T ( [m J 2]
—2P2 —)).2; [m, J,]P,))., )

([m,J,]P,')).,'; [m, J,] —P,' —)).,') T) [m, J,] —P,' —A.,'; [m, J,]P,')).,')
X4X,'X.,'Xf

xD ~ (B '(P')AB(P~))D, (B '(P')AB(P )) D *(B '(P')AB(P))D ' (B '(P')AB(P, )).
4 4 "3 3

(4.9)

Comparison of Eq. (4.9) with Eq. (4.5) gives the crossing relation

([m,J,]P,)),„[m,J,] —P, —))., ~ T) [m,J,] - P, —)).„[m,J,]P,))., )

=([m, J~JP,))„[m,J,]P2.)) [ T~[m, J,]P,)).„[m,J,]P)))., ) (4.10)

up to a helicity-independent phase factor. This derivation of Eq. (4.10) is given in the text of Martin and
Spearman' and is reproduced here for completeness.

The next step is the analytic continuation of Eg. (4.1) from the n-channel physical region to the P-channel
physical region. We assume that the path of continuation may be chosen so that

P4 4& q4 Q4& P3 3& ~3 Q3&

P - -P2, a2- -Q„Pg- Pg eg-Qg
(4.11)

and so that the boosts B„(q;) and B„(p;)change in a similar fashion for each i = 1, 2, 3, 4. Then E)ls. (4.3)
imply

In )v (8)v 'P

Thus Eq. (4.1) becomes

([m4 J4]P~))4; [m3 J3] —Ps '—
))3 ) T([m J2] —P2 —))2; [m, J~]P~)),). (4.12)

(P4 + P2 P3 Pg) Z ~ pgI pp p2, pg(Q$7 Q39 Q2P Ql)
P4 P3 P2 P1

XD~„2q)*(B '(Q2)X(q)B(P2))Dq') (B '(Q, )A(s)B(P,)). (4.13)

Using Eg. (4.10), we can compare Eq. (4.13) with Eq. (4.2) and so obtain the crossing relation for the in-
variant amplitudes, namely,
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(n ) (8)
~uc, -u, .—u2. u, (Q~( Q» Q» Q~)-&u, , uu. u, , »(Q4(Q» Q» Q)). (4,14)

Note that if an "all-in" formalism i's adopted in which outgoing states are represented by states of nega-
tive energy, then the crossing matrix for the principal helicity amplitudes is the identity matrix up to a
helicity-independent phase.

If pure boosts are used, the major change in the preceding argument is that the boosts behave differently
under the analytic continuation p- P -Th.us Eq. (4.8) and those aspects of the discussion which depend on
it must be changed. The pure boost is given by E(ls. (A6), (A7):

B(p)"„=

pO

m

P $ P P
m m(m+ p')

p' p'p'
m m(m+ p')

p 1p2

m(m+ p')

1 PP
m(m+ p')

p'p'
m(m+ p')

p'p'
m(m+ p')

(4.15)

p' p3p 1

m(m+ p')
p'p'

m(m+ p') m(m+ p')

The continued boost is given by

-B(-P)".=
p 1 plpl

( —p')

m m(m —p')
p3p 1

m(m- p')

P2
m

p lp2

m(m —P')

pp
m(m —P')

plp3
m(m —p')

p 2p 3

m(m- P')

(4.16)

This boost is related to the pure boost B(P)"„by

B( P) u = B-(P)",R- (4.17)

where

0 2PP 1

2P P'

0

2 -2
pp

PP
2 ~ 2

plp3
2 -2
PP

2 ~ 2

pp

(4.18)

Note that the limit of R'„as
~ P) -0 depends on the direction from which P -0.

Let the unitary matrix which transforms a UIR of the group SU(2) into its conjugate" be Ut~). Then

p(~ )D(~ )(U(~ )) -& —D(~ ) 4 (4.19)
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Instead of Eq. (4.10), one obtains

([m, J4]P4X4; [m2J2]P, X2( T~[m, J,]P3X„[m,J,]P X,)

([m, J,]P4X„[m,J,] —P3p, ~ T~[m, J,] —P 2p, „[m,J,]P A~., ) D „'„(R, ')O'„,",D p„,(R, ')(U 2~, ) ',
p2V2 p3V 3

(4.20)

where R; is the rotation defined by Eq. (4.18) for momentum P, . The crossing relation for the invariant
amplitudes is

8." ~ ~ (Q~, -Q„-Q~, Q,) = Q 8), q, „,~, (Q4, Q~, Q3)Qj)U~„D, ~(R2)(U~„) 'D ~(R~),
P2V2P3V3

(4.21)

where R; is now the rotation defined by Eq. (4.18)
for momentum Q;. Since Eq. (4,21) is rather more
complicated than Eq. (4.14), helicity boosts are
preferred.

For zero-mass particles the helicity boosts are
most natural. The crossing relation is the same
as that for massive particles when helicity boosts
are used except that a, helicity-dependent phase
factor may be present because helicity is an in-
variant for a zero-mass particle. The comment
concerning the use of the "all-in" notation applies
here also.

The definition of crossing discussed above dif-
fers sharply from that usually employed. Group
theory itself can only relate amplitudes which are
evaluated at the same point in the space of scalars.
Any attempt to relate amplitudes evaluated at dif-
ferent points in the space of scalars necessarily
involves additional assumptions which are of a dy-
namical nature. The question is in which scheme
is the functional dependence of this interpolation
the simplest. In the scheme described above, the
principal helicity amplitudes are selected as the
fundamental dynamical amplitudes and the inter-
polation follows the principal reference frame. In

the customary scheme, the covariant spinor ampli-
tudes are chosen as the fundamental dynamical
amplitudes by appeal to local spinor field theory.
Invariant amplitudes which are, free of kinematical
singularities as defined with respect to the spinor
amplitudes are introduced by expanding the spinor
amplitude in a suitable spin basis of Lorentz co-
variants. The crossing properties of the invariant
amplitudes then follow from those of the spinor
amplitudes which are known from field theory.

Although in principle the crossing relations given
by the two schemes could be confronted with ex-
periment, in practice the analytic continuation
from one channel to another is extremely difficult
to carry out. It would seem more promising to
check the functional behavior of the interpolation
within a given channel. For example, one could
look at the energy dependence of the forward prin-
cipal helicity amplitude or examine the dependence
of the high-energy principal helicity amplitude on
scattering angle. It may be that the functional de-
pendence is simpler in the new scheme.

V. REVISED AXIOMS FOR ANALYTIC
S-MATRIX THEORY

Im Po

FIG. 1. The cut P plane.

Re P'

%'e are now in a position to state a set of revised
axioms" for analytic 3-matrix theory. The postu-
lates concerning the linear superposition of states,
the completeness of in and out states, the connect-
edness structure, and the unitarity of the S matrix
remain intact. The points at issue are the follow-
ing:

(1) Which of the many invariant amplitudes that
can be associated with the connected part of an n-
point process should be considered the dynamical
one?

(2) What is the appropriate domain of definition
of this amplitude; that is, which complex scalar
variables should be used?

It is proposed to replace the usual axioms re-
lating to these questions by the following:
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(1) For the connected part of an n-point process,
the appropriate dynamical amplitude is the princi-
pal helicity amplitude. The reason for this choice
is that the crossing matrix in the "all-in" formal-

ism is the identity matrix.
(2) The appropriate domain for the invariant

amplitude is the complex analytic variety V„(q)

n

'0, (q)= (q)R C""' q, q, =, i=(, . . . , ; Q q,."=0; M"'(q)=0 forge (5.1)

The basic dynamical assumption is that the prin-
cipal helicity amplitudes are analytic functions on
'0„(q) except for those singularities re(luired by ex-
tended unitarity in all channels. The consequences
of this postulate could be explored by means of
perturbation theory; that is, the successive pole
approximation. Perturbation theory has not been
thoroughly developed from the S-matrix viewpoint
because the usual form of S-matrix theory would
yield the same results as field theory and the field-
theoretic methods are easier. The revised S-
matrix axioms proposed above are not consistent
with spinor field theory, so it becomes impor-
tant to develop an adequate S-matrix perturbation
theory.

It is expected that the new axioms will have the
effect of eliminating ultraviolet divergences so that
all theories constructed from basic three-point
vertices by means of the successive pole approxi-
mation would have renormalized perturbation
series so that the only undetermined constants are
the coupling constants associated with the basic
vertices. This statement can be made plausible by
the following argument. Recall that the unitarity
equation expresses the cut-discontinuity of an am-
plitude as a sum of terms each of which is a prod-
uct of two amplitudes and a spin sum factor. In the
new theory the spin sum factor is always bounded
by unity throughout the physical region of the given
channel because it is a product of unitary D'~' func-
tions. Consequently, the asymptotic behavior of
the discontinuity is governed by the high-energy
behavior of the two amplitudes which in turn is
governed by contributions to their crossed channels
so that the asymptotic behavior is the result of
some intermediate-state contribution in a crossed
channel. However, when spinor amplitudes are
used, the spin sum factor is not bounded by unity
throughout the physical region but rather grows
without limit polynomially in the energy. In the-
ories corresponding to nonrenormalizable field
theories this energy dependence of the spin sum
factor forces the introduction of additional sub-
traction constants which cannot be determined.
For a theory which corresponds to a renormaliza-
ble field theory, cancellations occur which remove

this additional energy dependence. The important
point is that in the new theory, the feature of
bounded spin sums occurs regardless of spin.

The most promising application for the new the-
ory is the theory of weak interactions which is
presently plagued by ultraviolet divergences. In
view of the sharp break with spinor field theory,
it is important to reformulate quantum electro-
dynamics and gravitation as S-matrix theories.
The problem of infrared divergences present in
these theories could possibly be handled in the
manner suggested by Barut' or in the way dis-
cussed by Storrow. " From the viewpoint of the
hypothesis described above, the success of quan-
tum electrodynamics is a result of fortuitous can-
cellations which improve the asymptotic behavior
of the theory.

The spa, ce '0„(q) of scalar variables introduced
above differs in some respects from the conven-
tional one." Usually, one considers the matrix of
scalar products S;, = P; ~ P,. and defines an analytic
variety V„(S) consisting of those points in the
&n(n —1)-dimensional complex space spanned by
the variables S;, for is j such that rank(8, ,) ~ 4
and energy and momentum are conserved. Then
the invariant amplitudes are assumed to be de-
fined on V„(S). Both of the analytic varieties, 'U„(q)
and '0„(S), have complex dimension (Sn —10). The
number of nonlinear constraints required to de-
fine 'U„(S) is &(n —5)(n —4) for n ~ 6 and no such
constraints are required for n =4, 5 while the num-
ber of nonlinear constraints required to define
V„(q) is n+6. Thus, for small n, V„(S) is easier
to work with than V„(q). Another important differ-
ence follows from the fact that the variables S;,.
are quadratic functions of the variables q,". Thus
a function which is analytic on V„(q) may be ex-
pected to have cut singularities if it is expressed
as a function on '0„(S). This difference seems to
be essential for the scheme we have proposed be-
cause the D' functions, which appear in the spin-
sum factor in the unitarity equation, have argu-
ments which can be readily expressed in terms of
the variables q,". but not in terms of the variables
S,&. A study of the Appendixes B and C will make
this apparent.
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VI. UNIVERSAL COUPLING CONSTANTS

The technique used to introduce coupling con-
stants and to determine their dimensions in the
context of spinor field theory and spinor S-matrix
theory is well known. Since we have proposed to
dispense with spinor amplitudes, a new rationale
for introducing coupling constants and determining

their dimensions must be found. It turns out that
the question is of interest in its own right and
leads to a hypothesis which is physically reason-
able yet differs from the usual one except in spe-
cial cases.

The T-matrix element for a given channel of a
three-point process evaluated in the principal
frame of reference has the invariant amplitude ex-
pansion

&[m, ~,]p,l, l Tj[m, ~,]p,~„[m,~,]pp, &

=64(p, —p, —p, ) Q 8& & &
D~&~& (B '(q, )AB(p, ))D

& q (B '(q2)AB(p~))D~ "(B '(q~)AB(p~)), (6.1)
P3 P2 Py

where Q» „depend only on the masses and areP3P2Pj
therefore constants. From the normalization con-
dition (A3), it follows that each state has the di-
mension of a length L. The left-hand side of (6.1)
therefore has the dimension L'. The 5' function on
the right-hand side of (6.1) has the dimension L'
so that the constants g „„,„,have the dimension
L '. However, the electromagnetic coupling con-
stant is dimensionless and the gravitational cou-
pling constant has the dimensions of a length L'.
It follows that some dimensional kinematic factor
depending both on the masses of the particles pres-
ent and on the nature of the physical process must
be present.

We note that a partial-wave amplitude corre-
sponding to a definite orbital angular momentum l
has a natural dimension. The allowed values of
orbital angular momentum depend on the channel
examined. An examination of known interactions
suggests that the defining channel is the one in
which a "current" absorbs or emits an "exchanged"
particle as shown in Fig. 2. If all of the particles
are massive, it is natural to analyze the ampli-
tude Q „,„,„, into partial waves with total orbital
angular momentum l and total spin s. Then the
partial-wave amplitude with given (l, s) may be
factored into an amplitude g(l, s) and a kinematic
factor ) Q~' where Q" is the relative momentum
four-vector defined by Eq. (B8). The factor ) Q)'
has the dimension L ' so that the amplitude g(l, s)
has the dimension L' '. For electrodynamics
l=1 and for gravitation l=2 so that the correspond-
ing coupling constants have their usual dimension
for these two cases.

We now consider a number of familiar three-
point vertices. The particles are numbered as in
Fig. 2. First consider the case in which particles
1 and 3 have J =0~ and particle 2 has J =1 . The
usual spinor coupling for this case is

g., =g4~ "4~„, (6.3)

where g is a dimensionless coupling constant. For
the Dirac spinors, we shall employ the conven-
tions used in the text of Gasiorowicz. '6 Using the
Gordon decomposition of the current

4r "0=
2M P "0+

2M
(4o"'0),

the interaction (6.3) may be written

(6 4)

~'"'= g 2M ""'"'g2M
('"'"". (6.5)

2 y ITlp

where g is a dimensionless coupling constant.
Conservation of angular momentum requires that
the particles 1 and 2 are in a state of relative or-
bital angular momentum l =1 so that the coupling
constant is also dimensionless according to the
new scheme.

If particles 1 and 3 have J = 2' and particle 2 has
J =1, then again parity requires l=1 for both the
spin-nonf lip and the spin-flip amplitudes which are
therefore characterized by dimensionless coupling
constants. For simplicity take m, = nz, . Then the
usual spinor interaction is

Z~t —ggy 8 (6.2) FIG. 2. Three-point vertex.
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The first term is analogous to (6.2) and corre-
sponds to the spin-nonf lip amplitude. The second
term corresponds to the spin-flip amplitude. The
factor 2M is due to the fact that spin-y states are
usually normalized according to

([M 2]p'z'iIM, ]px) =6, ,—6'(P' —p) (6.6)

(6.7)

where g is dimensionless. Conservation of parity
requires that the relative orbital angular momen-
tum of particles 1 and 2 should be l =1 so that the
new scheme also requires a dimensionless cou-
pling constant.

Finally, we examine the case in which particles
1 and 3 have J = &' while particle 2 has J =0'.
Then parity requires that l=0. Thus the coupling
constant should have the dimension of an inverse
length. However, the usual spinor interaction is

in, ——g ggrp (6.8)

instead of (AS). A factor I/(2M)'" is associated
with each spinor field. It is important to note that
both terms of (6.5) correspond to coupling with
particles 1 and 2 in a state of relative orbital an-
gular momentum l =1 and therefore should have
dimensionless coupling constants. The usual prac-
tice is to associate a coupling constant with the
dimension of a length with an interaction having
the structure of the second term of (6.5). This
procedure is misleading. For example, the cou-
pling constant for the electromagnetic spin-flip
amplitude is customarily stated in terms of the
magnetic moment e/2M. However, this constant
varies widely between the leptons and the baryons.
It is evident that e and not e/2M is the appropriate
universal coupling constant. Moreover, the mini-
mal electromagnetic coupling becomes much more
comprehensible if it is expressed by saying that
the spin-nonf lip and the spin-flip amplitudes both
contribute and that the corresponding dimension-
less coupling constants are both equal to e.

If particles 1 and 3 have J =0' or J = &' and
particle 2 has J"=2', then particles 1 and 2 must
be in a state of relative orbital angular momentum
l=2. Thus the coupling constant must have the
dimension of a length. This result agrees with our
expectation in the case of gravitation. We note,
however, that in the cases of electromagnetism
and gravitation the zero-mass limits are non-
trivial.

Next, consider the case in which particles 1 and
3 have J = 2' and particle 2 has J =0 . The well-
known example is pion-nucleon coupling. The
usual spinor interaction is

I'(m- e+ v)
I'(v- g+ v)

(6.9)

and the presumed universality of the four-fermion
interaction structure, In the theory of strong in-
teractions, the definition of coupling constants
would be different, so that the discussion of such
topics as SU(S) symmetry breaking would be af-
fected.

Finally, we note that the relationship of this hy-
pothesis for the introduction of coupling constants
with crossing symmetry needs to be clarified. In
connection w'ith this problem we offer the following

where g is a dimensionless constant. Here again,
it would seem that the abnormal normalization of
spin- —, states (6.6) is misleading. The fact that
l =0 and there is no spin-flip contribution suggests
a comparison with y' theory which has a coupling
constant with the dimension of an inverse length.

For a given three-point vertex, the kinematic
factor

~
Q~' is not in general the same as that given

by the corresponding spinor coupling even -in those
cases in which the two approaches give the same
dimension for the coupling constant. It follows
that the meaning of universality for the coupling
constants is different in the two approaches.
There are only two theories for which firm experi-
mental evidence concerning universality exists,
namely, electrodynamics and gravitation. Un-
fortunately, for these theories the three-point pro-
cess is not physical and one must employ a limit-
ing procedure. In the limit

~
Q~-0 and in the

limiting principal frame the process corresponds
to the absorption (or emission) of a, zero-momen-
turn photon or graviton from the massive particle
which is at rest. This process is reminiscent of
the static Coulomb or Newtonian potential. Since
the boost which takes the zero-momentum photon
or graviton into a real photon or graviton must be
singular, a reasonable limit probably exists.
Moreover, since one of the masses is zero and the
other two are equal, it is not unreasonable to ex-
pect that the kinematic factors will come out cor-
rectly as well.

The phenomenology of the less well-known the-
ories will be affected by the proposed change in
the kinematic factor. Conclusions concerning the
structure of a theory based on polarization and
angular correlation experiments would not be af-
fected much. However, conclusions based on ob-
served decay rates and cross sections depend on
both the universality assumption and the form of
the kinematic factors in an essential way and con-
sequently may be expected to change. For exam-
ple, in the theory of weak interactions the con-
clusion that the pseudoscalar coupling is excluded"
is based on both the observed decay ratio
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observations. For the coupling of a massive neu-
tral particle with J~=1 to a charged particle with
J"= 2', one finds that in the "exchange" channel
there are two partial-wave amplitudes which con-
tribute, a spin-nonf lip and a spin-flip amplitude.
Both of these amplitudes are associated with orbi-
tal angular momentum l =1 and are dimensionless.
Symbolically,

g~"=IQI(g&'& +g&") (6.10)

The "minimal" coupling. hypothesis corresponds to
the assumption that

&(i) &(~)
SNP SF (6.11)

If the neutral particle has J' =2', then both the
partial-wave amplitudes are associated with orbi-
tal angular momentum l = 2 and have the dimension
of a length. In this case

8&"=I Q P(g&'& +g&'~)
SNF Sp (6.12)

(2) (2) s.
+SNF g SP (6.13)

If the partial-wave analysis is performed in the
annihilation channel, one finds that the coupling
occurs in the spin-triplet state and that for 8&')

either I =0 (s wave) or l= 2 (d wave) is possible
while for Q~" either I = 1 (p wave) or I =3 (f wave)
is possible. Symbolically,

and

ft&'& = g&'&+I Q'Pg&'& (6.14)

(6.15)

In order to introduce coupling constants analo-
gous to e and 0 one may impose the conditions

g(&)g(&)

g(2)gP)

and

I
Qi I

[g(1)/g(l)]l/2

I
Q&

I

—[g(~)/gP )]»2

(6.16)

(6.17)

Then

&"'=I Q'l(e+e),
8"'=I Q'P(l +I ). (6.18)

In the above discussion, many details have been
omitted. Still, one may hope that further analysis
would lead to a deeper understanding of the mean-
ing of universal coupling constants and their rela-
tionship to the crossing hypothesis.

and the "minimal" coupling hypothesis corresponds
to the assumption

VII. CONCLUSIONS AND COMMENTS

It is customary to assign a fundamental role to
the use of the finite-dimensional, nonunitary, ir-
reducible representations of the homogeneous
Lorentz group in the description of particle inter-
actions involving particles with spin. The main
reason for this practice is the success of quantum
electrodynamics. However, this theory is a rather
special case, and in the general case the non-
unitary nature of the representations seems to
seriously distort the role of spin in particle inter-
actions.

The momentum-space description of an elemen-
tary system is well understood. Unfortunately, no
satisfactory space-time description of an elemen-
tary system is known yet. For this reason, it was
decided to work within the general structure of the
8-matrix formalism. For a given process one
must choose a set of invariant amplitudes which
are considered dynamical. One must use a repre-
sentation in which the particle momenta are diago-
nal so that energy-momentum conservation may be
easily imposed. However, the usual reliance on a
spinor spin basis was rejected. The decision to
work with a unitary spin basis, such as one de-
fined by pure boosts or helicity boosts, was moti-
vated by a desire to obtain bounded spin sums. To
define an invariant amplitude one has only to choose
a fixed frame of reference. The principal refer-
ence frame was chosen because it is defined sym-
metrically with respect to all particles involved in
the process. Since the principal reference frame
can also be defined for complex values of the par-
ticle momenta, it was natural to define crossing
so that the analytic continuation followed this
frame. With this definition, it turns out that the
principal helicity amplitudes were the dynamical
invariant amplitudes. The natural domain for these
functions is the analytic variety U„(q) defined by
the conditions (1.1).

Although this hypothesis is simple in its basic
concept, it is in certain respects more difficult
to work with than the usual one. The definition of
the analytic variety '0„(q) involves nonlinear con-
straints even for n =4, 5. In the usual theory such
nonlinear constraints appear only for n ~ 6. An
analysis of the structure of g„(q) similar to that
given by Jacobson' for the usual manifold of sca-
lars would be relatively straightforward. Obtain-
ing an explicit analytic atlas might be somewhat
less trivial. In order to obtain an integral repre-
sentation for complex functions on ~„(q), one must
employ the theory of complex exterior differential
forms. " Even then there remains the task of find-
ing explicit expressions for the spectral differen-



410 ROBERT A LAN COLEMAN

tial forms from the unitarity equations. In addi-
tion, there is the problem of proving that the
analyticity assumptions are consistent with the uni-
tarity equations. Since the Wigner rotations which
appear are rather complicated, it would probably
be necessary to employ more sophisticated mathe-
matical techniques to understand their structure.
The main reason for facing these hard problems is
the expectation that the new formalism would yield
renormalizable theories regardless of the spin of
the particles involved. It is also interesting to note
that the principal helicity amplitudes have simple
properties with respect to both crossing and parti-
cle statistics. It does not seem possible to con-
struct such amplitudes in the usual formalism. '

Since a fundamental role for spinor amplitudes
was rejected and since the usual method for intro-
ducing universal coupling constants depends on the
use of the spinor spin basis, it was necessary to
develop a new approach to this question. In a basic
three-point amplitude, two particles are coupled
to form a third particle. If the process occurs
with the two particles in a state of orbital angular
momentum l, then it is natural to introduce a
kinematic factor ) Q)' where ( Q) is the magnitude
of the relative momentum of the two particles„
With this idea in mind, the procedure proposed
for identifying universal coupling constants may be
described as follows. First, select an appropriate
channel of the three-point process. Then analyze
the amplitude into partial-wave amplitudes with
orbital angular momentum L and total spin s.
Write the partial-wave amplitude for given l and s
as a product of [ Q~' and a constant g. Then g is
taken to be the universal coupling constant. The
dimension of g is L' '.

An examination of a number of common interac-
tions indicates that this hypothesis is a plausible
one. The fact that the kinematic factor is in gen-
eral different from the usual one means that the
meaning of universality of coupling constants is
changed. If the hypothesis were accepted, the
phenomenology of strong and weak interactions
would have to be reexamined. Conclusive experi-
mental evidence for universality is available only
for the theories of electrodynamics and gravitation.
Unfortunately, in these cases it is necessary to use
a limiting procedure. Even so, it is not unreason-
able to expect that the hypothesis will work in these
cases since the limiting process has a Coulomb or
Newtonian character. Finally, the relationship of
this hypothesis to crossing symmetry needs to be
clarified.

In this paper we have proposed new axioms for
analytic S-matrix theory and new criteria for
identifying universal coupling constants. Although
we have been explicit enough to define the general

formalism, we have not presented any detailed
formulas for specific processes such as A&V scat-
tering and Compton scattering. We expect to do

this in subsequent work. We anticipate no essen-
tial difficulty in obtaining the expressions for the
single-pole contributions to four-point amplitudes
which involve only massive particles. As we have
pointed out above, processes involving zero-mass
particles require special handling; nevertheless,
the pole terms could also be worked out for these
cases. Evaluating the contributions from two-
particle intermediate states would be more diffi-
cult. The cut discontinuities can be evaluated
readily enough. However, since 'U, (q) is more
complicated than '04(S), the integra. l representation
for functions defined on u4(q) will be much more
difficult to write down than the Mandelstam" rep-
resentation.
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APPENDIX A: THE PHYSICAL STATES

A brief summary of those UIR of P which are
used to describe particle states is given in this
appendix. For additional information concerning
the notational conventions used in this paper, the
reader should consult Ref. 5.

The elements of the proper, orthochronous
Poincare covering group P,' are faithfully repre-
sented by the matrices

(
—

)
A H(a)A~ '
0 X~' (Al)

where A u SL(2, C), a" is a four -vector, and H (a)
is the associated 2 x 2 Hermitian matrix

a'+a' a' —~a'
H a)= a'+ ia' a' —a' (A2)

([mJ ]p'X'~[mJ ]pA. ) =6~ ~2&u~D'(p' —p) . (A3)

The UIR of P characterized by [mZ] is given by

A denotes the Lorentz transformation correspond-
ing to X.

The eigenket corresponding to a particle of mass
m, spin J, momentum p, and spin-projection A. is
normalized according to
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U(a, A)l [mJ]p, X ) =e'~"~ ' Q l[mZ]Ap, &') D( z(B '(Apg B(p)),
V

(A4)

where D ~ denotes the well-known UIR of the group SU(2) and B(P) denotes one of the boosts defined below.
The matrix elements of the unitary operator U(a, A) are the distributions

~~~„.~'„(a,A) =([mJ]P, A. l U(a, A) i[md]q, p. )

= e'&'2~, V(p, Aq}D~„'&(B-'(P}AB(q}), (A5)

where (u~ = (m'+ p')"".
The meaning of the spin projection eigenvalue A. is determined by the type of boost employed. For mass-

ive particles, the two most common choices are the pure boost and the helicity boost. The pure boost is
given by

C0 +m+ 1 ' 2

B(P) =[2m(u)~+m}] ""
p'+ ip cu&+ m- p'

The corresponding tensor form is

(A6)

pl

B(p)".=
m m(m+&u&)

p2p1

m(m+(u, )

p3p1

m(m+(u~)

p'p'
m(m+(o~)

P P
m(m+ (uq )

p'p'
m(m+ &up )

p'p'
m(m+ (g~ )

p'p'
m(m+ &u& }

1+
m(m+ (oq )

The helicity boost is given by

m+ ~~+ P COS 28

B„(P)= (2m(m+ ~ )) "'
~

((m+&u~+lpl) sin(-'8)e~

-(m+~~-Ipl) sin(-,'8 e

(m+(up-lpl) cos(-'. 8)
(A8}

with the corresponding tensor form

B„(p)~„=R,(y)~„R,(8),R,(-y}'EBS(lpl P (A 9)

where B,(l

pl�)

denotes a pure boost along the g axis and R, (8) and R,(y) denote rotations about the y and z
axes, respectively. The angles 6l and y are defined by

p'=lplsin8cosq, p'=lplsin8siny, p'=lplcos8.

For a massless particle with helicity A. , the eigenkets are normalized according to

(P'~ ~l P~ &) =»p 6'(p' —p),

(A10)

(A11)

where +~=lpl. The standard momentum vector is chosen to be p =(m, 0, 0, m) where m is an arbitrary
positive number. The corresponding UIR of P is given by

U(a, A)l p, X) =exp[i(Ap) ~ a]l Ap, X) exp[ikII(B '(Ap)AB(p))]

and the matrix elements of the unitary operator U(a, X) are the distributions

&~.,'(a, A) =(P, A l U(a, X) l q, A) = e'~'2&v~6'(p, Aq) exp[i X)t(B '(p)XB(q)) ],
where the helicity boost is given by

(A12)

(A13)

COS 20

B(P) =

sin(28)e'~

1I2
sin(28)e

m

QPp

m"'
cos(k8}

COp

(A14)
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with 8 and y defined as in (A10) with ~~=lpl. The angle y (B '(p)AB(q)) of the little-group element is de-
fined by

B '(P)AB(q) =l

(0
(o. + i P)e 'x" )

—f )(/2
(A15)

APPENDIX B: REDUCTION OF THE TWO-PARTICLE STATE AND THE PARTIAL-WAVE EXPANSION

In this appendix, the Clebsch-Gordan coefficients (for the special case n =2) defined in Sec. II are used
to reduce the two-particle state and thereby obtain the partial-wave expansion for the four-point amplitude.
This example illustrates the details of applying the Clebsch-Gordan coefficients in a rather interesting
case. Moreover, the expansion obtained differs somewhat from that given by the usual l -s, multipole and
helicity couplings. A discussion of these other approaches to the reduction of two-particle states may be
found in the work of Moussa and Stora. It is interesting to note that crossed-channel expansion in terms of
the principal or discrete series of representations of the group Q(1, 2) can be carried out in much the same
way. The Clebsch-Gordan coefficient needed for the reduction of the two-particle state is

g([md']pa: &qq„q, p, p, ,p, }l[m Z, ]p„x„[m,d ]p x, )

p, B q+p)D&Jj+B q+B p )5 p, B q, A.p, Dp), B 'q~ A.B p,

x & (P, B (q )AP )D „(B (q )AB(P ))] . (B1)

The measure on the space of continuous degeneracy labels is

dy, (q, q„q,) = d q 6(q ~ q —m )8(q)5(q —q,
o —q,o)d4q, 6(q, ~ q, —m, )8(q, )6(q —q,3 —q ')

(B2)"d'q25(qa q2 ™2')8(qs)6(q'q'+q|q~l+ q2q2)6(q')6(ql)5(qR)5(q')6(ql)6(q2)

In this case, the space of continuous degeneracy labels reduces to a single point and the [q, q„q, }are de-
termined by [m, m„m, }. Qne may write

A. =R 8RR„B,B~B„.
Since all the momenta q, q„q2 are along the z axis, R, is undetermined by the 6 functions in the Clebsch-
Gordan coefficient. Integration over this parameter yields the Kronecker 5„„,„.The other five pa-

P ~ tt] + P2
rameters of X are determined by the 5 functions leaving four 5 functions which express energy-momentum
conservation. The two-particle state decomposes according to

l [m, z, ]pp„[m, z,]p,~, &

d34 (qq, qa) Z dm'2
2 l[m&j p&: [~~,~.qq, q. }&

&I ~&~2 J

x8([mJ]pA:[gy, ,p2qq, q2} l[m, Z, ]pp„[m J~]p2X~). (B4)

Qnly one point contributes to fdic(qq, q~). The g„can be carried out using 5„„,,„, and fdm~d'P/2ur~ can
be carried out using the energy-momentum 5 functions. Then one obtains

1[m,z,] pp, ; [~z,]p,~, &

i[md]pX: p, ,p &D2„+„z(B '(q)AB(p))D~„'~, (B "(q,)AB(p,))D & I,(B '(q, )AB(p2)), (B5)
J ~ Pj. P2

l [m, z,]pp„. [m, z, ]p,g &

1[md]pA:p, ,g2&D~ q, „q (B '. (q)AB(p))D „,I,(B '(q, )AB(p, ))D „g (B '(q~)AB(p2)). (B6)
J~uiV2

where q, q„q„and X have the values required by the 5 functions. Using the unitarity of the D function
one has

The expression for the inverse relation is



SELECTION OF DYNAMICAL INVARIANT. . . 413

I[m&ji»: &qq, q.u I,~. j&

CP

2
'

l[m, Z, ]P,X„[m,g, ]P,Z, &6 +([mZ]PX: [qq, q, IiP. ,P., j )[mi J,]P,X„[m Z, ]P,y, ) .
u, x~ &p~

Introduce the new variables

(p, —p, ) ~ p — X(mi', m, ', P P)
P=Pi+Pai Q=2 (Pi —P~) — p. p p

~
Q'Q= — 4p. p (B8)

where

A'(4i/ ZQ) 83) Zi +8/ +83 2(Z]ZQ +ZQZ3+gpei) (B9)

For fixed P, Q depends on only two angles which may be chosen to be the polar angles of Q in the rest
frame of P. Corresponding to this change of variables, introduce the notation

and

M'=P ~ P (»0)

dP, dj~ ~~~ dP
d~Q

2~p 2~~ 2u~
(»1)

and define

) M, P, Q, A.„X„[m,Z, ],[m, Z, ]& =~[m, Z, ]PP„[m,J,]P,X, & .

Then the energy-momentum 5 function gives P = p = p, + p„m=M and

(B12)

l[m~]p~:u u'i&= Z &'Qlm P Q ~»~a [mi~ij [ma~a]&
Xy)ip

xDi„', , „(B '(q)AB(p))D ~", „',(B '(q, )AB(p, ))D „,"„,'(B '(q, )AB(p,)),

where X, P„and p, are to be expressed in terms of P and Q. The reader is warned that no attempt has
been made to obtain the correct relative normalization which may be absorbed into the measure d'Q.

The partial-wave expansion for the four-point function is obtained by combining the result derived above
with the signer-Eckart theorem. The result is

([m, Z,]P,X„[m,Z, ]P,X, ) Ti [m, Z, ]P,X„[m,Z, ]p, X, &

(P4 + P3 P2 Pl) 2 ~ JJ4 iig fly pi(+) $4+ pg. pg+ fbi(B ( 43)~43A21 B(q21))
~e P4 Ps Pg Py

xD ~~), (B '(q~)X~iB(p3))D~~iI, (B '(q, )A~iB(pi)). (B14)

As discussed in Sec. III, the invariant amplitudes are just the T-matrix elements in the frame in which
M"'(p) is diagonal; that is, in this frame

&[m, &,]p,~„[m,&]p,~, l Ti[~&.]p.~„[m,&,]py, & =&'(p, + p, —P. —p, )&...,...,(P;),

whence

~ k4kg kgki(i i)
~ V4 P3 Pg P j.

p4VSIiaVi( ) p4+ ps pa+pi( (q. 4 (q»)

xD'„",',(B '(q.)&.,B(p.))D'„,",(B '(q, )A., B(i,)) (B16)
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In these formulas, the invariant amplitude is de-
fined on the variety 83(p) as defined in the Intro-
duction and the argument of the partial-wave am-
plitude is taken to be the total energy &=~, +&2
= &, +&4 in the special reference frame. The
analyticity properties of the partial-wave ampli-
tudes are to be derived from the analyticity prop-
erties of the invariant amplitudes which in turn
are to be determined by the requirements of ex-
tended unitarity.

Equations (B14) and (B16}have been written for
the case of pure boosts. If helicity boosts are used
a few sign changes must be made because of tl. e
different meaning of the spin projection labels.

APPENDIX C: KINEMATICS

M"'(P) = Zp,"P"
k=1

(cl)

and the q,
" are defined by

q)'=A" p,' (i=1, . . . , n), (c2)

where A~„ is the Lorentz transformation which
diagonalizes M" (p). The additional conditions re-
quired if rank (M ) & 4 are given in Eq. (2.4). De-
fine the scalar quantities

A special dynamical role has been assigned to
the helicity amplitudes evaluated in the principal
reference frame in which M""(q) is diagonal. The
purpose of this appendix is to discuss the trans-
formation from a general reference frame to this
principal frame. We first make some observa-
tions concerning the case of the general n-point
amplitude and then describe certain special cases
which can be worked out explicitly.

Let pt' and q,". (i=1, . . . , n) denote the four-mo-
menta of the particles in an n-point amplitude rela-
tive to the general and principal reference frames,
respectively. The matrix M"'(P) is defined by

Note that there is an intimate connection be-
tween the matrix M"'(P) and the matrix S;, of
scalar products

(C6)~&g =0&'P, ~

One can readily show that

M, = Tr(S),

M3 = Tr(SS),

M3 = Tr(SSS),

M3 = Tr(SSSS) .

Consequently, the nontrivial part of the character-
istic equation for S„ is given by Eq. (C4).

Denote by t(„) (o. =0, 1, 2, 3) the solutions to Eq.
(C4) with g(»&0 and E(»&0 (k=1, 2, 3) in the physi-
cal regions. Then

and

M"'(q) =»ag(k(» -t'(» h(3)1-h(3)) (c6)

5(o) = Z
k=1

5( )
= Z q'q (k= 1

t =j.

(G9)

Once the solutions $(„) (o(=0, 1, 2, 3) of the
quartic equation (C4) are known, the Lorentz trans-
formation 2", which diagonalizes M""(p) and the
momenta q,". (i= 1, . . . , n) can be computed by well-
known standard techniques.

In certain special cases, the characteristic equa-
tion (C4} reduces to a quadratic. For an arbitrary 3-
point function, rank (M ) = 2. If the particle mass-
es are denoted by m, (i=1, 2, 3) then the charac-
teristic equation is

(3 —(m, '+ m, '+ m, ') ~ ——,'-X(m, 3, m, ', m, ') = 0,

M, = Tr(M),

M, = Tr(MM},

M3 = Tr(MMM),

M» = Tr(MMMM ) .
Then the characteristic equation for M""(p) is

g -C, g +C2E -C3$+C4=0,

where

C, =M, ,

C3 = 3(M, —M3),

C3 = 3 (M,' —SM,M3+2M, ),
C, =,', (M,'-6M, 'M, +6M,—M, +SM, '-6M, }.

(CS)

(C4)

(c6)

The eigenvalues are

1](,) = 3((m, '+ m, '+ m, ')

(c11)

+((m,3+ m, '+ m, ')'+ 3)).(m, 3, m, ', m, ')]"'I,
1

((,)
--—,Om, 3+ m, '+ m, ') (C12)

- [(m, '+ m, '+ m, ')'+ SA (m, 3, m, ', m3')]"'],

E(,)
—g(2) —0 .

The momenta q", (i=1,2, 3) are given by

where

(Z1$ Z3t Z3) Zl +Z3 +Z3 (&IZ2+Z3Z3+Z3Z1) '2 2 2
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m3 (m, '+m, '+m, ')+ X(m,2, pn, 2, m, 2)/m, '
[(m '+m, '+m ')'+31(m ' m, ' m ')j' '

m1 (m1 + m2' + m2 ) + X(m„, m ', m3 )/m, .

/2 [(m '+ m, '+ m ')'+31.(m '
m,

' m ')j 't'
X/2

(C13)

qi q2

where the signs of the space components for the
case in which m, &m, + m„m, &m, are qy &0, q2&0,
and q,'& 0. For the special case m, =M and m,

m

C,b = (m, 'm, 2- m, 'm, ')(m, '+ m, '- m, '- m, '), (C18)

C,c = (m, 'm, ' —m, 'm, ') (m, '+ m, ' —m, ' —m, ')

q,'= —q,'=[(—2M)' -m']' ' q'=0
(C14)

For the general four-point function the eigenvalue
equation is

s=(p, + p, )'=(p, + p,)',
t =(P, +P3)' =(P.+ P.)'

u = (p, + p, )' = (p, + p,)',
(C19)

g3-C~ $2+ C2 $ -C3= 0,
where

Cl =s+I;+ u = m12+ m22+ m32+m42P

C, =(st+tu+us)

3 2 2 2 2—4X(m, , m, , m, , m, ),

C, = stu —(as+bt+cu)

in which

2 2 2 2
(21& 22& 23& ~41 ~1 +22 +23 +~4

2 (8182 +8183 + 8124

+8223 + 2224 + 2324)

and

(C15)

(C16)

(C17)

where the "all-in" notation has been used for the
momenta p2 (i=1, 2, 3, 4). The equation for the
boundary of the physical region is given by the con-
dition rank (M) =2; that is, C, =0.

For certain special mass ratios, the cubic equa-
tion (C15) factors. The simplest case is equal-
mass scattering. The case in which the masses
are equal in pairs can also be worked out explicit-
ly. These cases include a number of interesting
processes such as nucleon-nucleon scattering and
pion-nucleon scattering.

For equal-mass scattering which we denote by
(aa-tta), the principal reference frame is just the
symmetrically oriented center-of-mass frame
shown in Fig. 3. Thus in this case, the center-of-
mass helicity amplitudes are crossing-symmetric.
This result is in sharp contrast with that obtained
from spinor field theory.

If the masses are equal in pairs, there are two

)k x

x,

FIG. 3. The principal frame aa aa. FIG. 4. The principal frame aa —bb.
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cases to consider which we denote by (aa-bb) and
(ab a-b) .In the first case, the principal refer-
ence frame is again a center-of-mass frame but
is not so symmetrically oriented as in the case of
equal-mass scattering. This frame is illustrated
in Fig. 4. The angle is determined by the condi-
tion I"(q)=0. ln the second case (ab a-b), the
principal frame differs from the symmetrically
oriented center-of-mass frame by a boost in the
negative g direction. This frame is shown in Fig.
5.

We are now in a position to evaluate the Wigner
rotations which occur in the partial-wave expan-
sion (B16) for the kinematic cases discussed
above. For the cases (aa-aa) and (aa-bb), only
the argument of the intermediate D~~ ~ function dif-
fers from the identity rotation if helicity boosts
are used. This nontrivial Wigner rotation is just
a rotation about the x, axis through an angle 8, the
center-of-mass scattering angle. For the case

Ak x

FIG. 5. The principal frame ab ab.

(ab-ab), the situation is somewhat more compli-
cated and the computation rapidly becomes labori-
ous.
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